Enantiomeric recognition of D- and L-lactate by CEST with the aid of a paramagnetic shift reagent

Lei Zhang,^{†,} André F. Martins, ^{†,‡,} Piyu Zhao,[†] Michael Tieu,[†] David Esteban-Gómez,[§] Gregory T. McCandless,[†] Carlos Platas-Iglesias[§] and A. Dean Sherry^{*, †,‡}

[†] Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States, [‡] Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States, [§] Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain

Contents

1. General	S2
2. Synthesis and characterization	S2
3. ¹ H NMR spectra of free Yb ³⁺ complexes	S6
4. H ₄ proton chemical shift of Yb complexes with D and L lactate	S6
5. Solid state X-ray crystal structure analysis of Yb₃ dimer	S7
6. 2D COSY NMR of Yb ₃ + L or D lactate	S8
7. DFT computational details	S8
References	S31

*E-mail: dean.sherry@utsouthwestern.edu; sherry@utdallas.edu

These authors contributed equally in this work.

1. General

All reagents and solvents were purchased from commercial sources and used as received without other purification unless stated in the work. ¹H, ¹³C and CEST Z-spectra NMR have been recorded on a Bruker AVANCE III 400 NMR spectrometer. Temperature unit controller Model # 2416 was used to control the temperature. Hydrogenation reactions were carried out using a Parr hydrogenation apparatus. Preparative HPLC was performed on a Waters Delta prep HPLC system equipped with a Waters 2996 photodiode array detector and a Phenomenex Luna C18 column (5 mm, 30 mm × 250 mm). The final concentration of the complexes were checked by Evan's method¹.

2. Synthesis and characterization

Scheme S1. Synthetic pathways used to obtain the final ligands studied in this work.

N-alkyl- bromoacetamides. Bromoacetyl bromide (1.1 equiv) was dissolved in dichloromethane (50 mL) and added dropwise to a cooled solution (0°C) on a round flask

containing the amine (1 equiv) and potassium carbonate (5 equiv) in water. The biphasic mixture contains water (50 mL) and dichloromethane (100 mL). The resulting solution was allowed to warm to room temperature and stirred for 8 hours. The organic layer was washed with brine (100 mL) for three times and dried over Na_2SO_4 . The organic phase solvents were removed under vacuum.

N-(2-bromoacetyl) L-glycine ethyl ester (arm-0): The title compound was prepared in an analogous manner to that described above and was obtained as a white solid. (Yield 95%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.28 (3H, t, CH₃), 3.91 (2H, s, BrCH₂), 4.06 (2H, d, NHCH₂), 4.23 (2H, q, CH₂CH₃), ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1 (CH₂CH₃), 28.4 (BrCH₂CO), 39.7 (NHCH₂CO), 61.0 (CH₂CH₃), 169.5 (CH₂COO), 177.8 (CH₂CONH).

N-(2-bromoacetyl) L- alanine ethyl ester (arm-1): The title compound was prepared in an analogous manner to that described for arm-0 and was obtained as a white solid. (yield 96%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.29 (3H, t, CH₂CH₃), 1.48 (3H, d, CHCH₃), 4.19 (2H, s, BrCH₂CO), 4.21 (2H, q, CH₂CH₃), 4.35 (1H, q, NHCHCO), 8.03 (1H, s, NH). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1 (CH₂CH₃), 17.3 (CHCH₃), 28.7 (BrCH₂), 51.1 (NHCHCO), 61.3 (CH₂CH₃), 171.5 (CHCO), 177.5 (CH₂CO).

N-(2-bromoacetyl) L-glutamic acid γ-benzyl ester α-tert-butyl ester (arm-2): The title compound was prepared in an analogous manner to that described for arm 0 and was obtained as a colorless oil. (Yield 98%) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.47 (9H, s, CH₃), 2.03-2.22 (2H, m, CHCH₂CH₂), 2.45 (2H, m, CH₂CH₂CO), 3.82 (2H, m, NHCH₂CH). 3.85 (2H, s, BrCH₂CO), 4.51 (1H, m, CH₂CHCH₂), 5.12 (2H, s, OCH₂Ph), 7.35 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 27.2 (CHCH₂CH₂), 27.9 (CH₃), 28.8 (CH₂CH₂CO), 30.2 (NHCHCH₂), 52.6 (BrCH₂), 66.7 (OCH₂Ph), 82.8 (C(CH₃)₃), 128.6-135.8 (Ph), 165.7 (CHCOO), 170.2 (CHCOO), 172.4 (BrCH₂CO).

1,4,7,10 –tetraazacyclododecane-1,4,7-tris(2-acetamidoglycine) (1): Compound 0 was prepared using a previously reported method² with the yield of 79%. The ligand 0 (1 g, 1.6 mmol) was dissolved in water and a concentrated solution of 1N NaOH was used to change the pH to 12. The resulting solution was stirred for 12 hours and neutralized with a 1N HCl solution. The final solution was lyophilized and the solid was used in the next steps without further purification.

1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido- L-glutamic acid γ -benzyl ester α -tert-butyl ester 10-benzycarbamate (2): 1-benzyloxycarbonyl-1,4,7,10- tetraazacyclododecane

trihydrochloride (1 g, 2.4 mmol) and bromo-N-(2-acetamido- L-glutamic acid γ -benzyl ester α -tert-butyl ester (3.04 g, 7.32 mmol) were dissolved in anhydrous CH₃CN in the presence of of K₂CO₃ (2.66 g, 19 mmol). The resulting solution was stirred at 65°C for 24 hours under N₂ condition. The organic phase was filtered and solvents removed under vacuum. The residue was purified by chromatography using a Al₂O₃ column eluted with 2%methanol/98% dichloromethane to afford the title compound as a white solid (2.1 g, 66%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.43 (27H, s, C(CH₃)₃), 2.35 (12H, m, CHCH₂CH₂CO), 2.5-3.0(22H, m, CH₂ on cyclen and NCH₂CO), 3.85 (2H, s, COCH₂Ph), 4.48 (3H, t, NHCHCH₂), 5.09 (6H, s, OCH₂Ph), 7.30-7.40 (20H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 27.5 (CHCH₂CH₂CH₂), 27.9 (C(CH₃)₃), 30.57 (CH₂CH₂CO), 30.59 (COCH₂), 49-55 (ring CH₂), 57.8 (CH), 58.9 (NCH₂CO), 66.4 (OCH₂Ph), 82.3 (C(CH₃)₃), 129-138 (Ph), 156.6 (NCOCH₂), 170.0 (CH₂CONH), 171.1 (CHCOO), 172.4 (OCOCH₂).

1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido- L-glutamic acid α -tert-butyl ester) (3): compound 2 (2.1 g, 1.6 mmol) was dissolved in ethanol and transferred to a flask with 20% palladium on carbon (wt %). The mixture was shaken on a Parr hydrogenator under a hydrogen pressure of 50 psi for 10 hours at room temperature. The resulting solution was filtered and solvent was removed under vacuum to afford the title compound as a colorless solid (1.4 g, 96%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.41 (27H, m, C(CH₃)₃), 2.17-2.65 (28H, m, ring CH₂, CHCH₂CH₂CO), 3.25 (6H, s, NCH₂CO), 4.55 (3H, t, NHCHCH₂), 8.03 (3H, s, NH). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 27.0 (CHCH₂CH₂), 27.4 (C(CH₃)₃), 31.1 (CH₂CH₂CO), 41-55(ring CH₂), 57.8 (CH), 59.9 (NCH₂CO), 84.0 (C(CH₃)₃), 164.8 (CH₂CONH), 171.3 (OCOCH₂), 177.7 (COO).

1,4,7,10- tetraazacyclododecane- 1,4,7 –**tris(2-acetamido) L-alanine ethyl ester 10benzycarbamate (4):** 1-benzyloxycarbonyl-1,4,7,10- tetraazacyclododecane trihydrochloride (1 g, 2.4 mmol) and N-(2-bromoacetyl) - L- alanine ethyl ester (1.75 g, 7.3 mmol) were dissolved in anhydrous CH₃CN in the presence of 8 equivalences of NaHCO₃ (1.61 g, 19 mmol). The resulting solution was stirred at 65°C for 24 hours under N₂ condition and then the organic phase was filtered and solvents removed under vacuum. The residue was purified by chromatography using a Al₂O₃ column eluted with 2%methanol/98% dichloromethane to afford the title compound as a colorless oil (1.0 g, 53%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.21-1.33 (18H, m, CHCH₃, CH₂CH₃), 2.16-3.28 (16H, m, ring CH₂), 3.25 (6H, s, NCH₂CO), 4.12-4.48 (9H, m, CH, CH₂CH₃), 5.04 (2H, s, PhCH₂O), 7.28-7.53 (8H, m, Ph, NH). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.3 (CH₂CH₃), 18.2 (CHCH₃), 44-55 (ring CH₂ CH), 59.5(NCH₂CO), 61.2 (CH₂CH₃), 67.5 (PhCH₂O), 127-136 (Ph), 156.2 (NCOO), 170.8 (CH₂CO), 173.1 (CHCOO).

1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido) L-alanine ethyl ester (5): compound 4 (1.0 g, 1.2 mmol) was dissolved in ethanol (50 ml). 20% palladium on carbon (wt %) was then added. The reaction mixture was shaken on a Parr hydrogenator under a hydrogen pressure of 50 psi for 10 hours at room temperature. The resulting mixture was filtered and

solvents removed under vacuum to afford the title compound as a colorless oil (0.56 g, 67%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.12 -1.38 (18H, m, CHC<u>H</u>₃, CH₂C<u>H</u>₃), 2.46-2.96 (16H, m, ring C<u>H</u>₂), 3.25 (6H, s, NC<u>H</u>₂CO), 4.11-4.46 (9H, m, C<u>H</u>, C<u>H</u>₂CH₃), 7.93 (3H, s, N<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.4 (CH₂CH₃), 17.7 (CHCH₃), 44-55 (ring CH₂ CH), 57.2 (NCH₂CO), 59.5 (CH₂CH₃), 171.0 (NCOO), 172.0 (CH₂CO), 173.2 (CHCOO).

1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido) L-alanine (6): compound 5 (0.56 g, 0.86 mmol) was dissolved in H₂O. Slowly change the pH to 12 using 1N NaOH solution and leave the reaction for 16 hours at room temperature. The residue was then lyophilized to afford title compound as a white solid (310 mg, 63%). ¹H NMR (400 MHz, D₂O): δ (ppm) 1.36 (9H, d, C<u>H</u>CH₃), 2.46-2.65 (16H, m, ring C<u>H</u>₂), 3.25 (6H, s, NC<u>H</u>₂CO), 4.19 (3H, q, C<u>H</u>CH₃), 8.03 (3H, s, N<u>H</u>). ¹³C NMR (100 MHz, D₂O): δ (ppm) 17.5 (CH<u>C</u>H₃), 45.2-55.1 (ring <u>C</u>H₂, <u>C</u>H), 58.1 (N<u>C</u>H₂CO), 172.8 (CH₂CONH), 180.3 (<u>C</u>OO).

1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido) L- glutamic acid (7): compound 3 (1.4 g, 1.5 mmol) was reacted directly with 4 mL TFA for 8 hours. Solvent was then removed under vacuum and the final compound was obtained as a yellow oil (900 mg, 79%). ¹H NMR (400 MHz, D₂O): δ (ppm) 2.17 (6H, m, CHCH₂CH₂), 2.40- 2.60 (m, cyclen ring CH₂ plus CH₂COO⁻), 3.25 (6H, s, NHCH₂), 4.45 (3H, t, NHCH). ¹³C NMR (100 MHz, D₂O): δ (ppm) 28 (CHCH₂), 31.9 (CHCH₂CH₂), 45.2-65.2 (cyclen rings CH₂, NCH₂ and CH), 170-183 (CHCOO⁻, CH₂COO⁻ and CONH).

General procedure for the preparation of Yb³⁺ complexes.

Yb (III)- 1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido- L-Glutamic acid α -tertbutyl ester) (Yb1): The ligand was dissolved in acetonitrile or H₂O and 0.95 equivalents of YbCl₃ were added. Concentrated solutions of 1N NaOH and 1N HCl were used to adjust the pH to 5.5~6.0. Xylenol Orange tests were performed until no free metal was detected. Samples were filtered using 2 um membrane filter for further experiment. Stock solutions were prepared with miliQ Water. m/z (ESI-MS⁺) : 904 (M+H)⁺.

Yb (III)- 1,4,7,10- tetraazacyclododecane- 1,4,7 –**tris(2-acetamido) L-alanine ethyl ester** (**Yb2):** complex was synthesized in an analogous manner to that described for Yb 1 using ligand 5. The title compound was obtained as a colorless solid. m/z (ESI-MS⁺) :734 (M+H)⁺.

Yb (III)- 1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido) L-alanine (Yb3): complex was synthesized in an analogous manner to that described for Yb 1 using ligand 6. The title compound was obtained as a colorless solid. m/z (ESI-MS⁺) :790 (M+H)⁺.

Yb (III)- 1,4,7,10- tetraazacyclododecane- 1,4,7 –tris(2-acetamido) L- glutamic acid (Yb4): complex was synthesized in an analogous manner to that described for Yb 1 using ligand 7. The title compound was obtained as a colorless solid .m/z (ESI-MS⁺) :846 (M+H)⁺.

3. ¹H NMR spectra of free Yb³⁺ complexes.

Figure S1. Proton NMR of Yb₁₋₄ complexes (50 mM) in the absence of lactate. Samples were dissolved in D_2O .

4. H₄ proton chemical shift of Yb complexes with D and L lactate.

Figure S2. Schematic representation of the Yb-lac complex with the proton number assignments (H_{1-6}) .

D- and L-lactate. The most highly shifted downfield resonance is assigned to the axial H ₄ proton. All NMR spectra were recorded at 25°C in D ₂ O at 9.4 T. pD = 6.5				
L-lactate (ppm)	D-lactate (ppm)			

53.6/52.1

41.0

41.0

52.8

50.4

101.3/100.5

82.9

85.8

96.9

95.8

77.2/75.4

67.8

67.1

73.2

72.1

67.1/66.3

43.7

50.0

64.3

61.5

53.6/52.1

39.2

43.7

50.5

48.1

Table S1. Chemical shifts of all four ethylene proton resonances in the five Yb _x complexes with
D- and L-lactate. The most highly shifted downfield resonance is assigned to the axial H ₄ proton.
All NMR spectra were recorded at 25°C in D_2O at 9.4 T. pD = 6.5

5	Salid state	V_rav	crystal	structure	analysis	of Vh.	dimor
D . i	Sonu state	A-ray	crystar	structure		$OI I D_2$	unne

67.1/66.3

42.1

47.6

65.0

62.6

Yb0

Yb1

Yb2

Yb3

Yb4

101.3/100.5

84.7

85.3

98.1

97.4

77.2/75.4

68.9

65.2

75.7

74.3

A colorless crystal was obtained by slow evaporation of diethyl ether into a vial containing a concentrated solution of Yb_3 complex and L-lactate (1:1) dissolved in water and methanol (4:1).

Figure S3. ORTEP representation of Yb₃ dimer. One of the carboxylates on the side arms would coordinate to another Yb₃ complex metal ion to form a dimer.

Note: the crystal growth attempt yielding crystals of the Yb₃ dimer was adjusted to pH 7.4.

The crystal structure presented is based on data that does not meet the standards set forth by the crystallographic community (as judged with the online checkCIF as a guide). However, a rough model of the data does provide identification evidence of the Yb₃ dimer. This rough model (using orthorhombic space group C222) has the following unit cell parameters based on single crystal X-ray diffraction data collected at T = 100 K:

 $a = 19.329 (5) \text{ Å}, b = 46.225 (12) \text{ Å}, c = 19.127 (5) \text{ Å}, V = 17090 (8) \text{ Å}^3$

6. 2D COSY NMR of Yb₃ + L or D lactate

Figure S4. 2D COSY NMR of Yb₃ with L-lactate (left) or D-lactate (right). The samples contained equimolar Yb₃:lactate concentrations in D_2O .

7. DFT computational details

Table S2. Comparison of the experimental and calculated (using Eq 1) ¹H NMR shifts (ppm) of L-lactate•Yb₃ and D-lactate•Yb₃ and axial and rhombic contributions to the observed pseudocontact shifts.^{*a*}

	L-lactate•Yb ₃				D-lactat	e•Yb ₃		
	Experimental	Calculated	$\delta_i^{\text{pse}}(\text{axial})$	$\delta_i^{\text{pse}}(\text{rhomb})$	Experimental	Calculated	$\delta_i^{\text{pse}}(\text{axial})$	$\delta_i^{\text{pse}}(\text{rhomb})$
H _{1ax}	75.17	75.21	-13.98	-58.13	72.72	72.07	-17.45	-51.52
H_{1eq}	17.07	20.53	-2.21	-15.22	18.85	19.08	2.92	-18.90

H _{2ax}	-14.45	-14.45	-23.00	40.56	-11.78	-10.90	30.00	-15.99
H _{2eq}	23.39	24.89	-13.06	-8.73	24.14	26.16	-1.36	-21.70
H _{3ax}	91.71	88.27	-19.56	-71.80	96.35	92.41	-25.30	-64.00
H _{3eq}	31.19	32.42	-4.12	-25.20	31.43	33.25	-14.78	-15.37
H _{4ax}	-6.48	-6.94	27.73	-17.69	-7.51	-6.95	-12.69	22.74
H _{4eq}	20.14	20.72	3.70	-21.32	19.55	19.92	-3.84	-12.98
H _{5ax}	64.37	62.26	-20.18	-38.98	63.72	59.10	-6.63	-49.37
H _{5eq}	5.39	7.54	-6.91	-2.47	5.69	6.31	12.02	-15.23
H _{6ax}	-44.94	-41.50	-21.02	65.62	-40.90	-39.0	34.47	7.67
H _{6eq}	-6.48	-3.90	-11.96	18.96	-6.55	-3.66	5.89	0.88
H _{7ax}	52.27	49.47	-11.61	-34.77	49.68	45.49	-21.23	-21.16
H _{7eq}	-2.46	-0.48	1.63	1.95	-2.80	-1.03	-12.34	16.47
H _{8ax}	-32.52	-31.89	38.41	-3.42	-35.01	-33.38	-18.38	54.87
H _{8eq}	5.39	8.46	11.18	-16.54	3.04	5.91	-9.93	7.12
H _{9ax}	-40.26	-45.71	-16.84	65.65	-36.23	-40.06	7.32	35.84
H _{9eq}	-8.23	-6.87	0.12	28.46	-5.53	-3.76	-10.08	16.93
H _{10ax}	-38.28	-42.26	38.41	-3.42	-41.24	-45.05	18.74	29.40
H _{10eq}	-21.86	-19.93	7.59	15.44	-26.04	-21.19	22.93	1.37
H _{11ax}	-44.94	-48.20	-21.02	65.62	-39.08	-41.28	8.78	35.60
H _{11eq}	-28.26	-25.48	0.12	28.46	-22.51	-22.73	-6.91	32.74
H ₁₂	-5.60	-4.32	8.29	0.21	-6.55	-4.42	-10.24	18.83
H ₁₃	11.39	10.90	-3.82	4.56	11.48	10.90	6.24	-12.96
H ₁₄	12.91	11.93	4.56	-12.31	13.52	13.05	-9.63	0.75
H ₁₅	-4.21	С	С	С	-4.15	С	С	С
H ₁₆	-0.57	С	С	С	-0.30	С	С	С
H ₁₇	3.12	С	С	С	3.04	С	С	С
CH _{lact.}	37.84	33.73	-14.32	-15.32	56.09	57.80	-8.42	-45.28
CH _{3lact.}	29.94	28.80	-7.55	-19.94	20.20	22.54	-5.45	-15.79
NH	-59.68	-62.15	51.46	14.73	-65.91	-68.19	49.58	22.66
$[\chi_{zz} - 1]$	$/3(\chi_{xx} + \chi_{yy} +$	1130 <u>+</u> 48				1279 <u>+</u> 57		
γ)1 ^b								
Azz/J	. \b	-3825 +				-3501 +		
(χ _{××} – χ	Cyy)	86				90		
		00				70		

^{*a*} The diamagnetic shifts were estimated to be 4.10 and 1.31 ppm for lactate CH and methyl protons, respectively, 1.32 ppm for the methyl protons of the ligand, 4.18 ppm for protons H12, H13 and H14, 4.04 ppm for amine NH protons and 3.1 ppm for the remaining protons. ^{*b*} In ppm×Å³. ^{*c*} Not included in the analysis.

Figure S5. Absolute differences (ppm) between the experimental and calculated pseudocontact shifts obtained for the *S*- $\Lambda(\delta\delta\delta\delta)$ (blue bars) and *S*- $\Delta(\lambda\lambda\lambda\lambda)$ (grey bars) isomers of L-lactate•Yb₃ (top) and D-lactate•Yb₃ (bottom).

Computational Details

Geometry optimizations were performed using the hybrid meta-GGA approximation to DFT with the TPSSh exchange-correlation functional,³ and the Gaussian 09 package (Revision E.01).⁴ The large-core relativistic effective core potential (LCRECP) of Dolg *et al.* and the related [5s4p3d]-GTO valence basis set were used for Yb,⁵ together with the standard 6-311G(d,p) basis set for all remaining atoms atoms. The LCRECP approach includes $46+4f^{13}$ electrons of Yb(III) in the core, and thus calculations were conducted on a pseudo-singlet state configuration. No symmetry constraints have been imposed during the optimizations. The default values for the integration grid (75 radial shells and 302 angular points) and the SCF energy convergence criteria (10^{-8}) were used in all calculations. The stationary points found on the potential energy

surfaces were confirmed to represent local energy minima using frequency analysis (0 imaginary frequencies). Solvent effects (water) were included by using the integral equation formalism variant of the polarizable continuum model (IEFPCM).⁶

Optimized Cartesian Coordinates obtained with DFT calculations

 $\Lambda(\delta\delta\delta)$, D-lactate•Yb₀, 0 imaginary frequencies

Center	Atomic	Coor	cdinates (Ang	(stroms)
Number	Number	X	¥ 	۲
1	70	0.026748	-0.594166	-0.214257
2	8	2.262815	-0.604988	0.517192
3	8	0.207793	1.713855	0.107810
4	8	-2.196819	-0.149619	0.455128
5	8	0.071194	-0.120452	2.160109
6	8	-0.165845	-2.435877	1.097975
7	8	-0.021928	-3.547786	3.045537
8	7	1.787911	0.290984	-2.036917
9	7	-1.164454	0.801528	-2.118331
10	7	-1.733187	-2.060582	-1.452353
11	7	1.137038	-2.506722	-1.481515
12	7	4.449217	-0.026045	0.410251
13	1	5.229696	0.453354	-0.052058
14	7	-0.361853	3.864017	-0.320979
15	1	-0.904481	4.563394	-0.842087
16	7	-4.376376	-0.732678	0.663527
17	1	-5.158411	-1.365760	0.463423
18	6	1.173338	1.355503	-2.876443
19	1	1.193341	2.287568	-2.310168
20	1	1.763894	1.525623	-3.786081
21	6	-0.253697	1.010198	-3.280434
22	1	-0.262482	0.094703	-3.873954
23	1	-0.644118	1.809653	-3.924280
24	6	-2.393004	0.092964	-2.583668
25	1	-3.193310	0.301573	-1.874129
26	1	-2.720050	0.486066	-3.554829
27	6	-2.173457	-1.410268	-2.717346
28	1	-1.410790	-1.606708	-3.471487
29	1	-3.102377	-1.872562	-3.077315
30	6	-1.142427	-3.400679	-1.741691
31	1	-1.056341	-3.917302	-0.784529
32	1	-1.802611	-3.984724	-2.395508
33	6	0.239958	-3.288323	-2.364368
34	1	0.202067	-2.793525	-3.337565
35	1	0.635154	-4.296121	-2.537534
36	6	2.408568	-2.142856	-2.148840
37	1	3.185076	-2.066288	-1.388234
38	1	2.725012	-2.921022	-2.853431
39	6	2.245318	-0.830571	-2.908080

40	1	1.500175	-0.962522	-3.694782			
41	1	3.188904	-0.563517	-3.401877			
42	6	2.926527	0.848290	-1.273812			
43	1	3.820916	0.965628	-1.897617			
44	1	2.636757	1.834775	-0.903359			
45	6	3.212230	0.002654	-0.045725			
46	6	4.912721	-0.700553	1.616222			
47	1	4.391730	-0.317660	2.498179			
48	6	-1.534328	2.099492	-1.508243			
49	1	-1.736167	2.865093	-2.266807			
50	1	-2.444307	1.948318	-0.923388			
51	6	-0.480563	2.567259	-0.519183			
52	6	0.504932	4.526090	0.646200			
53	1	0.265297	4.204640	1.663423			
54	6	-2.871478	-2.232585	-0.521456			
55	1	-3,767600	-2.600709	-1.035462			
56	1	-2,574397	-2.968865	0.229659			
57	- 6	-3 147397	-0 945703	0 233144			
58	6	-4 827390	0 384828	1 483174			
59	1	-4 294471	0.301020	2 438052			
60	- 6	0 023337	-2 515630	2.376024			
61	6	0.020007	_1 103158	3 085/3/			
62	1	0.571152	0 686961	2 /16083			
63	1	1 344106	-3 080703	-0 664640			
64	I G	-6 255170	-3.000703	1 722602			
65	0	-6.901021	1 102017	2 /10000			
00	0		1.10301/	2.419000			
00	0	-0.0/90/2	-0.01/3/9	1.210410			
67	0	0.201301	6.062347	0.303324			
60	ð o	-0.560879	6.412819	-0.36/455			
20	0	0.902273	0.//4333	1.2/24/0			
70	0	0.443373	-0.441000	1.749077			
71	0	0.939472	0.265960	0.040301			
12	8	0.9888/4	-0.965406	2.743895			
/3	6	-0.378018	-1.007032	4.39/80/			
74		-0.061842	-0.08/429	4.89/236			
15	1	-1.455527	-0.960284	4.219445			
/ b 7 7	1	-0.166/28	-1.853929	5.052877			
//		1.452840	-1.205819	3.259/83			
/8		-4.643259	1.336042	0.976440			
/9		1.554045	4.285972	0.453/25			
80	\bot	4.722302	-1.//5545	1.553441			
E (RTPS:	sh) =-2225.2975.	LU5 Hartree					
Zero-po	pint correction	= 0.641500					
Therma.	L correction to	Energy = 0.685/64					
Therma.	l correction to	Enthalpy = 0.686/08					
'l'hermal	Thermal correction to Gibbs Free Energy = 0.560812						
Sum of	electronic and	zero-point Energies = -2	224.656010				
Sum of	electronic and	thermal Energies = -2224	.611/46				
Sum of	electronic and	thermal Enthalpies = -22	24.610802				
Sum of	Sum of electronic and thermal Free Energies = -2224.736698						

_____ Coordinates (Angstroms) x y Center Atomic X Y Z Number Number _____ 0.050999 -0.597326 -0.207319 70 1 2.282463 -0.653283 0.521259 8 8 8 8 2 3 0.220783 1.710183 0.138279 4 -2.175459 -0.142724 0.461553 0.036357 -0.128578 2.169487 -0.208507 -2.439047 1.093406 5 8 6 8 7 8 -0.634740 -3.500527 3.027679 1.826191 0.284261 7 -2.013301 8 7 9 -1.120517 0.824269 -2.117329 10 7 -1.724074 -2.033266 -1.477260 7 11 1.141929 -2.515505 -1.478884 7 12 4.472928 -0.085355 0.441400 5.260338 0.392697 13 1 -0.010171 7 -0.300622 3.869484 14 -0.306269 1 4.577450 15 -0.819728 -0.839760 7 0.617695 16 -4.371392 -0.677997 17 1 0.393519 -5.164599 -1.289153 1.2295651.3619811.2526912.288303 18 6 -2.848578 19 1 -2.273014 1.830335 1.535129 20 1 -3.750921 -0.196458 21 6 1.033502 -3.268977 -0.207380 0.122775 22 1 -3.869648 23 1 -0.573294 1.841429 -3.910283 -2.349725 0.130000 -3.155032 0.337355 24 6 -2.600816 25 1 -1.896140 -2.665398 0.535106 26 1 -3.570748 27 -2.745265 6 -2.138442 -1.372734 1 28 -1.364776 -1.568035 -3.488417 29 1 -3.064302 -1.826098 -3.124017 -1.147372 -3.380058 -1.762953 30 6

-1.077525

0.242003

0.218581

0.626482

2.419083

3.195312

2.727132

2.273588

1.530284

3.222315

2.967455

3.864948

2.685730

-1.807745

-3.899487

-3.954496

-3.282738

-2.783176

-4.294407

-2.158378

-2.098619

-2.933449

-0.837524

-0.955057

-0.578529

0.822871

3.239317 -0.042063

0.938930

1.807941

4.923847 -0.783219 1.638849

$\Delta(\lambda\lambda\lambda\lambda)$, D-lactate•Yb₀, 0 imaginary frequencies

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

1

6

1

1

6

1

1

6

1

1

6

1

1

6

6

-0.805989

-2.425138

-2.371916

-3.343071

-2.545984

-2.140851

-1.378718

-2.852482

-2.889698

-3.680405

-3.377887

-1.240911 -1.860552

-0.860366

-0.023160

47	1	4.409403	-0.402245	2.525527
48	6	-1.486962	2.122243	-1.505544
49	1	-1.674186	2.892800	-2.262826
50	1	-2.404862	1.976582	-0.931627
51	6	-0.440848	2.574805	-0.502619
52	6	0.565046	4.518493	0.670780
53	1	0.301041	4.210167	1.686022
54	6	-2.880390	-2.192348	-0.566731
55	1	-3.776922	-2.529548	-1.100813
56	1	-2.616752	-2.950343	0.175081
57	6	-3.140477	-0.912593	0.205988
58	6	-4.810748	0.434646	1.450326
59	1	-4.291891	0.425186	2.413057
60	6	-0.433146	-2.481108	2.367607
61	6	-0.484195	-1.119395	3.086775
62	1	-0.266874	0.755456	2.416666
63	1	1.344073	-3.099542	-0.667764
64	6	0.292292	-1.110336	4.396670
65	1	0.181181	-0.148796	4.904770
66	1	1.354187	-1.291891	4.211636
67	1	-0.091668	-1.898885	5.046087
68	1	-1.542385	-0.900256	3.269870
69	6	-6.345536	0.286521	1.673870
70	8	-6.871753	1.179242	2.371166
71	8	-6.883486	-0.716224	1.127108
72	6	0.379585	6.058358	0.515326
73	8	-0.438674	6.421583	-0.375140
74	8	1.063001	6.760144	1.289305
75	6	6.458584	-0.552379	1.776476
76	8	6.986251	0.163576	0.880347
77	8	6.995864	-1.102321	2.760938
78	1	1.611262	4.252372	0.497835
79	1	-4.598651	1.390215	0.963108
80	1	4.714484	-1.853744	1.562544
	 = -2225 2975	108 Hartree		
Zero-point	correction	= 0.641595		
Thermal co	rrection to	Energy = 0.685796		
Thermal co	rrection to	Enthalpy = 0.686740		
Thermal co	rrection to	Gibbs Free Energy = 0.561	253	
Sum of ele	ctronic and	zero-point Energies = -22	24.655916	
Sum of ele	ctronic and	thermal Energies = -2224	611715	
Sum of ele	ctronic and	thermal Enthalpies = -222	4.610771	
Sum of ele	ctronic and	thermal Free Energies = -	2224.736258	
Sam OF CEC		enermar rree miergreb -	, , , , , , , , , , , , , , , , ,	

 $\Lambda(\delta\delta\delta)$, D-lactate•Yb₃, 0 imaginary frequencies

Center	Atomic	Coordinate	s (Angs	stroms)
Number	Number	Х	Y	Z

1	70	0.055355	-0.702379	-0.304536
2	8	2.275003	-0.573219	0.469889
3	8	0.185582	1.631037	-0.252441
4	8	-2.193837	-0.216434	0.265284
5	8	0.032126	0.052046	1.999677
6	8	-0.127134	-2.376974	1.220031
7	8	0.043388	-3.249705	3.283752
8	7	1.840499	-0.009982	-2.177852
9	7	-1.117796	0.434024	-2.380832
10	7	-1.647279	-2.342596	-1.371882
11	7	1.229894	-2.728306	-1.293333
12	7	4.447322	0.071528	0.354470
13	1	5.195680	0.602082	-0.108370
14	7	-0.530837	3.703669	-0.838484
15	1	-1.189730	4.305649	-1.351023
16	7	-4.339897	-0.880968	0.615018
17	1	-5.050900	-1.623399	0.595498
18	6	1.224553	0.933425	-3.152015
19	1	1.211808	1.925663	-2.698659
2.0	- 1	1.833854	1.008565	-4.062147
21	-	-0 185556	0 511614	-3 541513
22	1	-0.164908	-0.470699	-4.016299
23	1	-0 574774	1 217048	-4 287729
24	6	-2 323845	-0 354821	-2 772450
25	1	-3 138525	-0 079151	-2 103863
26	1	-2 642300	-0 092075	-3 789273
20	6	-2 074334	-1 858161	-2 715770
28	1	-1 295531	-2 129577	-3 429265
29	1	-2 987845	-2 379629	-3 030690
20	- 6	-1 026569	-3 695956	-1 487213
31	1	-0 953325	-1 093467	-0 173829
32 32	1	-1 661794	-1 366591	-2 079732
22	-	0 367950	-3 632199	-2 090146
31	1	0.343347	-3 262700	_3 117949
24 25	1	0.785675	-1 645010	-2 128267
36	1	2 508675	-2 424106	-2.120207
30 37	1	2.500075	-2.424100	-1 218227
30	1	2 854023	-2.233004	-1.210227
20	L G	2.004020	-3.277420	-2.572799
39 40	0	2.331001	-1.221110	-2.090910
40 41	1	L.J90393	-1.400520	-3.667200
41 40	L G	J.2/0140 2 052172	-0.997733	-3.410310
42	0	2.9531/3	0.659675	-1.4/1989
43		3.85913/	0./1066/	-2.088151
44		2.639931	1.680995	-1.241464
45	6	3.224708	-0.009228	-0.135/53
46	6	4.883//8	-0.337822	1.691976
4 /		4.166055	0.038669	2.42/3/1
48	6	-1.523566	1.789732	-1.947167
49	1	-1.681661	2.459701	-2.800631
50		-2.46/914	1.699645	-1.405922
51 - 0	6	-0.538439	2.390327	-0.955396
52	6	0.143838	4.495655	0.194157

53	1	-0.028424	4.024971	1.167020
54	6	-2.799526	-2.425695	-0.447162
55	1	-3.681422	-2.861702	-0.931650
56	1	-2.507071	-3.070871	0.385331
57	6	-3.112224	-1.072491	0.166417
58	6	-4.814458	0.226078	1.449914
59	1	-4.094236	0.391369	2.257572
60	6	0.051879	-2.300583	2.499344
61	6	0.332206	-0.891989	3.055055
62	1	0.467442	0.898487	2.169060
63	1	1.427611	-3.191084	-0.406447
64	6	-5.006020	1.527233	0.666191
65	6	1.649783	4.628694	-0.047597
66	6	5.002236	-1.858939	1.828939
67	1	-5.460358	2.264645	1.330092
68	1	-4.052776	1.917685	0.303231
69	1	-5.671956	1.365650	-0.186711
70	6	-6.163807	-0.253444	2.084304
71	8	-6.698614	0.549546	2.878609
72	8	-6.573746	-1.391806	1.719930
73	1	1.842724	5.044558	-1.040917
74	1	2.059887	5.308371	0.701377
75	1	2.153360	3.662999	0.036460
76	6	-0.555981	5.897033	0.190578
77	8	-1.442292	6.069001	-0.693632
78	8	-0.152742	6.700710	1.057697
79	1	4.031661	-2.344841	1.705139
80	1	5.695039	-2.255353	1.080507
81	1	5.393282	-2.088030	2.821790
82	6	6.261611	0.361821	1.937852
83	8	6.730574	1.016997	0.964410
84	8	6.758721	0.185801	3.071092
85	6	-0.470096	-0.579344	4.311083
86	1	-0.200234	0.403005	4.707518
87	1	-1.541218	-0.590329	4.092880
88	1	-0.257503	-1.335747	5.068542
89	1	1.406374	-0.845939	3.265525
E(RTPSSh) =	-2343.283	3577		
Zero-point	correction	= 0.724926		
Thermal cor	rection to	Energy = 0.773606		
Thermal cor	rection to	Enthalpy = 0.774551		
Thermal cor	rection to	Gibbs Free Energy = 0.639	9431	
Sum of elec	tronic and	zero-point Energies = -23	42.558932	
Sum of elec	tronic and	thermal Energies = -2342 .	510251	
Sum of elec	tronic and	thermal Enthalpies = -234	2.509307	
Sum of elec	tronic and	thermal Free Energies = -	2342.644426	

 $\Delta(\lambda\lambda\lambda\lambda)$, D-lactate•Yb₃, 0 imaginary frequencies

Center	Atomic	Coord	dinates (Ang: v	stroms)
		۸ 		
1	70	-0.049411	-0.688915	-0.29002
2	8	-2.270819	-0.574785	0.41636
3	8	-0.134771	1.634469	-0.03645
4	8	2.156760	-0.313408	0.52165
5	8	-0.015788	-0.211218	2.14479
6	8	0.044012	-2.567200	1.00217
7	8	-0.259765	-3.707383	2.9160
8	7	-1.711005	0.212210	-2.16923
9	7	1.273438	0.623210	-2.1721
10	7	1.705117	-2.227795	-1.42510
11	7	-1.178707	-2.582777	-1.54783
12	7	-4.425514	0.119925	0.24492
13	1	-5.184902	0.527937	-0.31413
14	7	0.535533	3.758084	-0.47013
15	1	1.056601	4.426752	-1.0511
16	7	4.337614	-0.933096	0.70193
17	1	5.116154	-1.532002	0.39542
18	6	-1.025355	1.228324	-3.01718
19	1	-1.027842	2.177134	-2.4792
20	1	-1.579320	1.393264	-3.95023
21	6	0.399917	0.817863	-3.3658
22	1	0.392394	-0.120575	-3.92290
23	1	0.835348	1.577440	-4.02870
24	6	2.494004	-0.133604	-2.57728
25	1	3.273483	0.065375	-1.8415
26	1	2.871286	0.227880	-3.5424
27	6	2.230198	-1.630420	-2.68478
28	1	1.498470	-1.821478	-3.47033
29	1	3.158093	-2.135023	-2.98429
30	6	1.077744	-3.552341	-1.71678
31	1	0.937984	-4.050451	-0.75682
32	1	1.740871	-4.166385	-2.3389
33	6	-0.277608	-3.401629	-2.3915
34	1	-0.189692	-2.920519	-3.36840
35	1	-0.698698	-4.398469	-2.56742
36	6	-2.424600	-2.193644	-2.2463
37	1	-3.209093	-2.069824	-1.49973
38	1	-2.757768	-2.976746	-2.93762
39	6	-2.198192	-0.905844	-3.02929
40	1	-1.443835	-1.082746	-3.7982
41	1	-3.120395	-0.609906	-3.54576
42	6	-2.838312	0.838492	-1.44423
43	1	-3.717437	0.969035	-2.08663
44	1	-2.515965	1.825498	-1.10380
45	6	-3.181587	0.056342	-0.18738
46	6	-4.977966	-0.516077	1.44274
47	1	-4.635847	-1.554555	1.48033
48	6	-4.564578	0.208530	2.72769

49	1	-3.481245	0.183366	2.866035
50	1	-5.046142	-0.282488	3.575108
51	1	-4.890376	1.252549	2.696639
52	6	1.668034	1.929249	-1.596967
53	1	1.907362	2.663460	-2.375511
54	1	2.563224	1.774869	-0.990260
55	6	0.604742	2.453572	-0.647726
56	6	-0.387399	4.480611	0.408795
57	1	-1.400381	4.100083	0.246177
58	6	-0.019543	4.336099	1.888819
59	1	-0.091608	3.296267	2.215757
60	1	-0.707370	4.944996	2.477961
61	1	1.000159	4.692328	2.063325
62	6	2.793469	-2.419833	-0.439597
63	1	3.692883	-2.842036	-0.903441
64	- 1	2 429038	-3 118485	0 318161
65	- -	3 099873	-1 127665	0 295468
66	6	4 874073	0 234348	1 406671
67	1	4 480968	1 141133	0 938115
68	6	4.525901	0 236469	2 897878
69	1	3 119651	0.332144	3 057621
70	1	5 029146	1 082599	3 368809
70	1	4 872619	-0 686054	3 372467
71	I 6	-0 181207	-2 659576	2 272832
72 72	6		-2.039370 -1.216214	2.275052
75	1	0 020401	-1.510214	2.990420
74	1	0.939401	-0.009094	2.230930
75		-1.413427	-3.133227	-0.724224
70 77	0	0.424575	0.193970	1.109505
70	0	7.030429	1.100779	1.0402//
70	0	0.009030	-0.024/31 E 077100	0.00000
19	0	-0.340023	5.977100	-0.040903
00	0	-1.132039	0./43420	0.040230
00	0	0.496525	0.20001	-0.950646
82	6	-6.532601	-0.506221	1.266222
83	8	-7.179155	-1.085117	2.165362
84 05	8	-6.968320	0.099577	0.246215
80	0	0.253545	-1.240364	4.301270
00	1	1.342223	-1.311407	4.208514
8/	1	-0.000482	-0.304019	4.863136
88	1	-0.088397	-2.0/8044	4.9/041/
89	Ţ	-1.495330	-1.201260	3.099897
E (RTPS:	51) =-2343.28488	306 Hartree		
zero-po	pint correction	= 0.726201		
Thermal	L correction to	Energy = 0.774341		
Thermal	L correction to	Entnalpy = 0.7/5285		
Thermal	L correction to	GIDDS Free Energy = 0.64	3USL	
sum of	electronic and	zero-point Energies = -2	342.55868U	
sum of	electronic and	thermal Energies = -2342	.510540	
sum of	electronic and	thermal Enthalpies = -234	42.509596	
Sum of electronic and thermal Free Energies = -2342.641830				

Λ((λλλλ),	D-lactate•Yb ₃	, 0 i	maginary	r frec	juencies
----	---------	---------------------------	-------	----------	--------	----------

Center Number	Atomic Number	Coor X	rdinates (Ang Y	stroms) Z
	70	0.078435	-0.866349	-0.208714
2	8	-2.073134	0.007343	0.200994
- 3	8	0.443509	1.379594	-0.805081
4	8	2.251759	-0.506780	0.687448
5	8	0.167015	0.521522	1.894546
6	8	-0.388156	-2.022747	1.691742
7	8	-1.015876	-2.253244	3.836669
8	7	-1.933101	-2.294811	-1.142992
9	7	-0.526385	-0.208702	-2.701509
10	7	2.116441	-1.287811	-1.871561
11	7	0,702670	-3.330552	-0.414393
12	7	-4,232153	-0.340575	0.813386
13	1	-5,023684	-0.978242	0.970968
14	- 7	-0.409775	3,273792	-1,719306
15	1	-1 085997	3 737779	-2 339281
16	1 7	4 393462	0 218552	0 483062
17	1	5 178867	0 538934	-0 099875
18	- 6	-2 511095	-1 687688	-2 377203
19	1	-3 151772	-0 857080	-2 074724
20	1	-3 155269	-2 410875	-2 892400
20	6	-1 443472	-1 189676	-3 338519
22	1	-0 836791	-2 024365	-3 693704
22	1	-1 928554	-0 751428	-4 220562
2.5		0 709327	-0 059579	-3 525771
25	1	1 166317	0.035375	-3 273/29
25	1	0 449830	-0 016574	-4 591162
20	6	1 704503	-1 185438	-3 295296
28	1	1 261477	-2 1/115/	-3 5791/6
20	1	2 577528	-1 034019	-3 943306
30	6	2.377320	-2 627936	-1 611436
31	1	3 282175	-2 562660	-0 676383
32	1	3 / 31 956	-2 886786	-2 105576
33	1	1 660034	-3 708276	-1 475061
31	1	1 110289	-3 837927	-2 109180
35	1	2 1/53/3	-1 666260	-1 255678
35	1	-0 507706	-1 190399	_0 381886
30	1	-0 907198	-1 130019	0.501000
27	1	-0.256042	-4.130019	-0 500020
20	I 6	-0.230942	-3.230902	-0.390930 -1.305404
39	0	-1.110265	-2 752105	-2 402505
40	1	-1.110303	-3.755105	1 202064
4 L 4 O			-4.30303/	-1.302964
42	0	-2.943384	-2.211001 0.765557	-0.00/146
43	1		-2.700000/	U.OUIOOI
44			-2.031439	-0.3//031
45	6		-U./SII43	0.333330
40	ю	-4.540/98	0.9/333/	1.304/80

47	1	-3.764399 1.236155	2.109727
48	6	-4.636826 2.073863	0.322933
49	1	-3.673272 2.247045	-0.161134
50	1	-4.960051 2.994642	0.811682
51	1	-5.374483 1.805071	-0.439092
52	6	-1.159551 1.120399	-2.575471
53	1	-2.146340 1.011243	-2.120462
54	1	-1.280927 1.611401	-3.548929
55	6	-0.309969 1.963287	-1.633640
56	6	0.191361 4.259667	-0.816407
57	1	0.029455 3.934857	0.215711
58	6	1.691903 4.441266	-1.064164
59	1	2.242410 3.521557	-0.853379
60	1	2.056714 5.234983	-0.409987
61	1	1.874469 4.733386	-2.102711
62	-	3 112202 -0 250331	-1 534666
63	1	2,742983 0,722883	-1.867368
64	1	4 079865 -0 437367	-2 015902
65	- 6	3 249553 -0 185070	-0 023449
66	6	4 697721 0 468314	1 895199
67	1	3 006070 1 002307	2 322804
68	I 6	A 823140 _0 826820	2.322004
60	1	4.023149 - 0.020020 3.977447 - 1.372612	2.703474
	1	5.077447 - 1.572012 5.116710 - 0.560795	2.720000
70 71	1	5.110/10 -0.309/03 5.502010 -1.472270	2 270220
71		J.J.J.J.J.J.	2.270239
12	6		2.002100
73	0		3.058346
74	1	1.131883 0.449096	2.002607
15			0.489794
/ 0 7 7	6	6.035057 I.281933	1.913063
7 / 7 0	8	6.428140 1.644214	3.042081
78	8	6.5/8528 I.4/20/0	0.788192
/9	6	-0.590433 5.595703	-1.045613
80	8		-0.315240
18	8	-1.4/3099 5.5/12/6	-1.949932
82	6	-5.896099 0.805169	2.150537
83	8	-6.289638 1.813/11	2.7/41/1
84	8	-6.452686 -0.324670	2.046180
85	6	0.263611 0.320760	4.340200
86	1	1.290109 -0.060501	4.325445
87	1	0.289980 1.405406	4.466452
88	1	-0.253144 -0.126755	5.190293
89	1	-1.474737 0.376750	3.068856
E (RTPSS Zero-po	h) = -2343.2824int correction	4274 Hartree = 0.725412	
Thermal	correction to	Energy = 0.773786	
Thermal	correction to	Enthalpy = 0.774731	
Thermal	correction to	Gibbs Free Energy = 0.640668	
Sum of	electronic and	zero-point Energies = -2342.557015	
Sum of	electronic and	thermal Energies = -2342.508641	
Sum of	electronic and	thermal Enthalpies = -2342.507697	

Sum of electronic and thermal Free Energies = -2342.641759

Center Number	Atomic Number	Cooi X	rdinates (Ang Y	stroms) Z
	 70	-0.073687		-0.204323
2	8	2.078310	-0.054557	0.370470
3	8	-0.346756	1.435438	-0.677568
4	8	-2.291431	-0.437740	0.577764
5	8	-0.266004	0.401048	1.991998
6	8	0.228017	-2.137451	1.642106
7	8	0.685749	-2.546721	3.803370
8	7	1.942384	-2.277835	-1.103613
9	7	0.689718	-0.061394	-2.608239
10	7	-2.021003	-1.108222	-2.009760
11	7	-0.749786	-3.274485	-0.599989
12	7	4.226426	-0.485580	0.979201
13	1	5.047427	-1.104456	0.943460
14	7	0.568757	3.361095	-1.453830
15	1	1.131304	3.861162	-2.153414
16	7	-4.405359	0.339050	0.274244
17	1	-5.213260	0.484459	-0.344898
18	6	2.613008	-1.615580	-2.260792
19	1	3.256737	-0.823888	-1.872104
20	1	3.266787	-2.326798	-2.780179
21	6	1.617638	-1.030217	-3.249282
22	1	1.012515	-1.826431	-3.685293
23	1	2.163995	-0.556116	-4.074934
24	6	-0.485959	0.172947	-3.498376
25	1	-0.932142	1.128978	-3.217906
26	1	-0.157170	0.270531	-4.540844
27	6	-1.523409	-0.933018	-3.398359
28	1	-1.095762	-1.883098	-3.721496
29	1	-2.352994	-0.712191	-4.082658
30	6	-2.672913	-2.443396	-1.867213
31	1	-3.286350	-2.418302	-0.962881
32	1	-3.343443	-2.633196	-2.714865
33	6	-1.648571	-3.558511	-1.738138
34	1	-1.043615	-3.642885	-2.642842
35	1	-2.167962	-4.515283	-1.610758
36	6	0.430123	-4.174626	-0.548369
37	1	0.766865	-4.191552	0.488003
38	1	0.162174	-5.197167	-0.839092
39	6	1.531809	-3.661715	-1.465330
40	1	1.177548	-3.639121	-2.498470
41	1	2.393768	-4.340197	-1.436674
42	6	2.884093	-2.287245	0.038255

$\Delta(\delta\delta\delta)$, D-lactate•Yb₃, 0 imaginary frequencies

43	1	2.437842	-2.853664	0.858690
44	1	3.845779	-2.742195	-0.228333
45	6	3.056610	-0.846426	0.492772
46	6	4.653462	0.864023	1.359093
47	1	4.324919	1.563591	0.584376
48	6	1.347796	1.240279	-2.366466
49	1	2.298057	1.077895	-1.854380
50	1	1.545536	1.779954	-3.300939
51	6	0.456022	2.049544	-1.435098
52	6	-0.198177	4.319061	-0.653179
53	1	-1.258897	4.057246	-0.715221
54	6	-3.011032	-0.064348	-1.677403
55	1	-2.601180	0.914926	-1.937476
56	1	-3.951244	-0.200227	-2.226113
57	6	-3.238978	-0.067285	-0.176922
58	6	-4.839181	0.402431	1.672067
59	1	-4.462661	-0.478951	2.197773
60	6	0.392370	-1.788191	2.879228
61	6	0.234474	-0.281831	3.162616
62	1	-1.238793	0.357460	2.002329
63	1	-1.267737	-3.421485	0.266254
64	6	-4.349405	1.675625	2.371234
65	6	0.237607	4.336451	0.815611
66	6	4.099116	1.311154	2.713963
67	1	-4.743653	1.688715	3.388718
68	1	-3.258347	1.721305	2.414111
69	1	-4.713415	2.561913	1.843421
70	6	-6.403366	0.355177	1.645390
71	8	-6.957417	0.270453	2.761663
72	8	-6.935461	0.431930	0.501878
73	1	1.303195	4.573427	0.892895
74	1	-0.329399	5.111126	1.335090
75	1	0.054096	3.372163	1.294795
76	6	0.008868	5.715791	-1.326305
77	8	0.815048	5.747376	-2.299233
78	8	-0.637949	6.657285	-0.819264
79	1	3.011945	1.411234	2.684025
80	1	4.369034	0.593808	3.494566
81	1	4.538387	2.279115	2.961573
82	6	6.219364	0.833476	1.368363
83	8	6.750963	-0.291760	1.147604
84	8	6.776597	1.926270	1.604929
85	6	-0.618933	0.003491	4.391369
86	1	-0.636252	1.074161	4.607408
87	1	-1.646117	-0.345343	4.241509
88	1	-0.200691	-0.528159	5.247189
89	1	1.241373	0.115065	3.313980
E (RTPSSh) =	 = -2343.281355	 1 Hartree		

E(RTPSSh) = -2343.2813551 Hartree Zero-point correction = 0.725710 Thermal correction to Energy = 0.773966 Thermal correction to Enthalpy = 0.774910

Thermal correction to Gibbs Free Energy = 0.641985Sum of electronic and zero-point Energies = -2342.555645Sum of electronic and thermal Energies = -2342.507389Sum of electronic and thermal Enthalpies = -2342.506445Sum of electronic and thermal Free Energies = -2342.639370

Center Number	Atomic Number	Coo: X	rdinates (Ang Y	stroms) Z
		0 079345		
2	, 0	2 302191	-0 600605	0 462209
2	8	0 171877	1 633967	-0 218715
4	8	-2,172762	-0.221232	0.293305
5	8	0.021078	0.039370	2.010417
6	8	-0.131706	-2.385198	1.214080
7	8	-0.453743	-3.237036	3.268281
8	7	1.857922	0.003803	-2.166999
9	7	-1.100012	0.448486	-2.373901
10	7	-1.633264	-2.328749	-1.384103
11	7	1.243953	-2.725084	-1.296483
12	7	4.473698	0.048156	0.353610
13	1	5.219746	0.588351	-0.101321
14	7	-0.520197	3.710721	-0.819026
15	1	-1.166517	4.316891	-1.342710
16	7	-4.334773	-0.860927	0.586504
17	1	-5.055674	-1.592997	0.541535
18	6	1.243834	0.954737	-3.134309
19	1	1.228207	1.942669	-2.671425
20	1	1.855627	1.039269	-4.041967
21	6	-0.164211	0.534171	-3.531144
22	1	-0.141199	-0.444860	-4.012350
23	1	-0.551919	1.243971	-4.273977
24	6	-2.303199	-0.338987	-2.775724
25	1	-3.120442	-0.071590	-2.106441
26	1	-2.620501	-0.067577	-3.790623
27	6	-2.049250	-1.841077	-2.729436
28	1	-1.263052	-2.105215	-3.437409
29	1	-2.958168	-2.363911	-3.055288
30	6	-1.016753	-3.684283	-1.497344
31	1	-0.948373	-4.082088	-0.483799
32	1	-1.652029	-4.352441	-2.092682
33	6	0.379944	-3.625330	-2.095689
34	1	0.360021	-3.255488	-3.123310
35	1	0.793853	-4.639664	-2.133065
36	6	2.520349	-2.416803	-1.984211
37	1	3.283808	-2.239190	-1.227759
38	1	2.859442	-3.265356	-2.590239
39	6	2.345085	-1.204949	-2.893542

1 (0000)	T 1 / / T71	<u>^· ·</u>	· ·
Δ(δδδδ)	I -lactatee Y ha	(1) 1maginary	treamencies
11(0000),	\square incluice 103,	o magmary	nequencies

40	1	1.610227	-1.442302	-3.665013
41	1	3.289603	-0.980938	-3.406288
42	6	2.972138	0.667118	-1.457571
43	1	3.875025	0.729818	-2.077229
44	1	2.656614	1.684010	-1.210763
45	6	3.249169	-0.023941	-0.134001
46	6	4.913971	-0.386497	1.681829
47	1	4.197045	-0.026283	2.426051
48	6	-1.510786	1.801610	-1.937425
49	1	-1.663221	2.475283	-2.788950
50	1	-2.459637	1.708716	-1.404383
51	6	-0.535353	2.397483	-0.934423
52	6	0.145876	4.500140	0.221200
53	1	-0.048380	4.036195	1.193238
54	6	-2.796102	-2.409693	-0.472371
55	1	-3.677930	-2.826902	-0.973127
56	1	-2.524198	-3.073076	0.352608
57	6	-3.101594	-1.062626	0.159004
58	6	-4.810627	0.238137	1.431263
59	1	-4.101909	0.383088	2.252760
60	6	-0.324473	-2.291617	2.490437
61	6	-0.433781	-0.859921	3.048251
62	1	-0.315260	0.932999	2.160416
63	1	1.447138	-3.193590	-0.413765
64	6	-4.975992	1.553490	0.665377
65	6	1.657112	4.615546	0.005416
66	6	5.035799	-1.909960	1.787722
67	6	0.360443	-0.660133	4.332091
68	1	0.209593	0.348099	4.726577
69	1	1.427149	-0.812310	4.148267
70	1	0.024825	-1.384153	5.076645
71	1	-1.498742	-0.673186	3.227934
72	1	-5.433267	2.284926	1.333844
73	1	-4.013072	1.939941	0.324186
74	1	-5.629862	1.412540	-0.200322
75	6	-6.175006	-0.236923	2.036357
76	8	-6.711933	0.557484	2.837633
77	8	-6.592462	-1.363113	1.643916
78	1	1.872005	5.024143	-0.986423
79	1	2.060507	5.295142	0.758072
80	1	2.148867	3.645173	0.103766
81	6	-0.538439	5.909075	0.198994
82	8	-1.411820	6.084238	-0.697417
83	8	-0.137496	6.714435	1.065548
84	1	4.065980	-2.395242	1.655746
85	1	5.727928	-2.289503	1.029939
86	1	5.429240	-2.158744	2.774857
87	6	6.291370	0.309929	1.938598
88	8	6.758174	0.984055	0.977136
89	8	6.790894	0.112572	3.067345

E(RTPSSh) = -2343.2837707 Hartree

```
Zero-point correction = 0.724919
Thermal correction to Energy = 0.773611
Thermal correction to Enthalpy = 0.774556
Thermal correction to Gibbs Free Energy = 0.639201
Sum of electronic and zero-point Energies = -2342.558852
Sum of electronic and thermal Energies = -2342.510159
Sum of electronic and thermal Enthalpies = -2342.509215
Sum of electronic and thermal Free Energies = -2342.644570
```

Center Number	Atomic Number	Coor X	dinates (Ang Y	stroms) Z
	 70	-0.044260	-0.677521	-0.272061
2	8	-2 290379	-0 608653	0 412503
3	8	-0.121073	1.636099	0.059421
4	8	2.189012	-0.312747	0.449515
5	8	-0.049413	-0.242031	2.123332
6	8	0.077949	-2.547152	1.007433
7	8	0.306385	-3.674759	2.937452
8	7	-1.738724	0.269890	-2.129463
9	7	1.235006	0.682347	-2.160837
10	7	1.694675	-2.192216	-1.493283
11	7	-1.191050	-2.547557	-1.563793
12	7	-4.456447	0.055651	0.261461
13	1	-5.218711	0.471643	-0.286421
14	7	0.489904	3.773407	-0.400666
15	1	0.984520	4.449546	-0.997281
16	7	4.368732	-0.936182	0.611832
17	1	5.144123	-1.533855	0.299505
18	6	-1.071932	1.311720	-2.957486
19	1	-1.069333	2.244008	-2.390898
20	1	-1.640000	1.503186	-3.877171
21	6	0.349019	0.918298	-3.336932
22	1	0.337957	0.002264	-3.929596
23	1	0.775636	1.703411	-3.975454
24	6	2.446417	-0.064605	-2.609492
25	1	3.242193	0.114977	-1.886815
26	1	2.802589	0.320962	-3.573488
27	6	2.178160	-1.558640	-2.750993
28	1	1.422048	-1.727477	-3.518328
29	1	3.096552	-2.052879	-3.094868
30	6	1.064358	-3.511898	-1.792993
31	1	0.946613	-4.025775	-0.837956
32	1	1.714330	-4.116371	-2.438398
33	6	-0.304684	-3.353990	-2.435525
34	1	-0.237391	-2.858839	-3.406882
35	1	-0.728442	-4.348571	-2.617295
36	6	-2.439791	-2.141736	-2.250051

 $\Delta(\lambda\lambda\lambda\lambda)$, L-lactate•Yb₃, 0 imaginary frequencies

37	1	-3.224326	-2.038899	-1.501035
38	1	-2.771273	-2.909172	-2.959536
39	6	-2.220511	-0.836309	-3.006946
40	1	-1.467562	-0.995584	-3.781132
41	1	-3.146180	-0.537458	-3.516099
42	6	-2.868280	0.868712	-1.386333
43	1	-3.745835	1.022056	-2.026213
44	1	-2.548251	1.842701	-1.007822
45	6	-3.207847	0.032457	-0.165447
46	6	-5.002974	-0.656514	1.418269
47	1	-4.624398	-1.682921	1.410574
48	6	-4.630239	0.016802	2.743196
49	1	-3.548475	0.019551	2.894421
50	1	-5.105123	-0.530976	3.559169
51	1	-4.990937	1.049727	2.758926
52	6	1.638830	1.968252	-1.547066
53	1	1.876449	2.725134	-2.304014
54	1	2.535793	1.789146	-0.950097
55	6	0.585805	2.470692	-0.573850
56	6	-0.439883	4.486582	0.479046
57	1	-1.446635	4.085602	0.326637
58	6	-0.062066	4.367757	1.958014
59	1	-0.132258	3.334070	2.303726
60	1	-0.748356	4.985026	2.539995
61	1	0.957957	4.727800	2.121395
62	6	2.814705	-2.401048	-0.548172
63	1	3.703867	-2.798431	-1.052488
64	1	2.486812	-3.129005	0.198110
65	6	3.125910	-1.121915	0.208072
66	6	4.899251	0.216364	1.343792
67	1	4.524852	1.133388	0.878998
68	6	4.512112	0.201948	2.825462
69	1	3.431258	0.294871	2.953571
70	1	5.002558	1.041582	3.320920
71	1	4.845922	-0.726706	3.297712
72	- 6	0.227404	-2.630621	2,290240
73	6	0.356788	-1.290382	3.037579
74	1	0.352626	0.597655	2.382448
7.5	1	-1.428693	-3.117823	-0.752499
76	6	6.453380	0.170627	1.163116
77	8	7,079785	1,133006	1,656108
78	8	6,908604	-0.837283	0.551685
79	6	-0.425875	5.978800	0.004879
80	8	-1,219809	6.738428	0.599300
81	8	0.392860	6.256840	-0.916863
82	6	-6.554250	-0.692781	1.220555
83	Ř	-7,189653	-1.346908	2.075392
84	8	-7 000700	-0.045120	0.231480
85	6	-0.457512	-1.242582	4.322991
86	1	-0.291192	-0.299792	4.850790
87	1	-1.523641	-1.343297	4.105126
88	- 1	-0.152299	-2.067408	4,969230
	-	······································		

	9 1			1.421852	-1.161720	3.260391
E (RTPS	SSh) = -2343	.284795 Ha:	tree			
Zero-p	point correct	tion = 0.72	25903			
Therma	al correction	n to Energy	y = 0.774	254		
Therma	al correction	n to Entha	py = 0.7	75198		
Therma	al correction	n to Gibbs	Free Ene	rgy = 0.642	2092	
Sum of	f electronic	and zero-	oint Ene	rgies = -23	342.558892	
Sum of	f electronic	and therma	al Energi	es = -2342.	510541	
Sum of	f electronic	and therma	al Enthal	pies = -234	2.509597	
Sum of	f electronic	and therma	al Free E	nergies = -	2342.642703	

Center	Atomic Coordinates (Angstroms)			troms)
Number	Number	X	Y	Z
1	70	0.159420	-0.887098	-0.148587
2	8	-2.073195	-0.099249	0.076691
3	8	0.350310	1.330905	-0.908106
4	8	2.317576	-0.401347	0.696805
5	8	0.048716	0.692322	1.735706
6	8	-0.274577	-1.839357	1.856947
7	8	-0.421343	-1.895492	4.097492
8	7	-1.761169	-2.520583	-0.952321
9	7	-0.453441	-0.493203	-2.687325
10	7	2.230717	-1.342949	-1.801725
11	7	0.917352	-3.312548	-0.144421
12	7	-4.167321	-0.522343	0.847837
13	1	-4.893891	-1.193430	1.127073
14	7	-0.708829	3.054373	-1.938324
15	1	-1.434348	3.394264	-2.583196
16	7	4.394399	0.481452	0.438504
17	1	5.139821	0.835494	-0.174097
18	6	-2.348967	-2.067249	-2.246989
19	1	-3.050987	-1.259233	-2.033805
20	1	-2.930629	-2.876496	-2.705672
21	6	-1.294093	-1.590744	-3.235132
22	1	-0.628573	-2.415645	-3.496491
23	1	-1.788009	-1.274171	-4.163135
24	6	0.765768	-0.321314	-3.529450
25	1	1.160588	0.678491	-3.339725
26	1	0.499063	-0.362597	-4.593382
27	6	1.830679	-1.362563	-3.230559
28	1	1.459134	-2.362204	-3.459666
29	1	2.697522	-1.191089	-3.881934
30	6	2.887628	-2.630925	-1.435672
31	1	3.454328	-2.467803	-0.515706
32	1	3.601180	-2.932196	-2.213178

Λ(λλλλ),	L-lactate•Y	⁷ b ₃ , 0	imaginary	frequenc	eies

33	6	1.866406	-3.731221	-1.198439
34	1	1.299328	-3.938043	-2.108521
35	1	2.384953	-4.657639	-0.925829
36	6	-0.235871	-4.237029	-0.003741
37	1	-0.636425	-4.089406	0.999235
38	1	0.078974	-5.283055	-0.098491
39	6	-1.292343	-3.928311	-1.055631
40	1	-0.875800	-4.064055	-2.055791
41	1	-2.134068	-4.625938	-0.961568
42	6	-2.784374	-2.386396	0.105832
43	1	-2.395254	-2.822177	1.029275
44	1	-3.720017	-2.893632	-0.160242
45	6	-3.006067	-0.902247	0.352259
46	6	-4.538136	0.822956	1.295414
47	1	-3.743069	1.211438	1.939366
48	6	-4.768640	1.792260	0.131793
49	1	-3.847240	1.973265	-0.426075
50	1	-5.130302	2.737855	0.539335
51	1	-5.525122	1.394480	-0.551487
52	6	-1.186631	0.789767	-2.682696
53	1	-2.180091	0.638143	-2.256727
54	1	-1.303023	1.196978	-3.694696
55	6	-0.452284	1.772625	-1.779573
56	6	-0.263563	4.150663	-1.073908
57	1	-0.397042	3.849313	-0.030378
58	6	1.201739	4.525152	-1.313860
59	1	1.867798	3.696182	-1.063360
60	1	1.447170	5.384147	-0.687104
61	1	1.358648	4.800549	-2.361100
62	6	3.169920	-0.235537	-1.537563
63	1	2.759726	0.689977	-1.949981
64	1	4.151404	-0.409909	-1.995819
65	6	3,285887	-0.053154	-0.033242
66	6	4.655698	0.884421	1.822423
67	1	3.782075	1.420902	2.204558
68	6	4.957321	-0.313110	2.729234
69	1	4.099384	-0.986294	2.793152
70	1	5.197472	0.057732	3.727210
71	1	5.817296	-0.871626	2.347541
72	-	-0.210281	-1.308184	3.037015
73	6	0.214494	0.170576	3.074338
74	1	0.623800	1.458354	1.604714
75	1	1.409857	-3.313764	0.748968
76	6	5.867066	1.873446	1.770540
77	8	6,183538	2,392179	2.862634
78	8	6,404797	2.029538	0.637717
79	6	-1.220668	5.353667	-1.367206
80	8	-1,017055	6.381624	-0.687026
81	8	-2.089653	5.161917	-2.265200
82	6	-5-833077	0.654512	2.159134
83	8	-6.273496	1.703340	2.677064
84	8	-6.301041	-0.517058	2.232698
	-			=

85	6	-0.571291	0.992940	4.086264
86	1	-0.203512	2.021842	4.116868
87	1	-1.633201	1.004645	3.827586
88	1	-0.457148	0.547777	5.076223
89	1	1.282360	0.181465	3.320681
E (RTPSS	Sh) = -2343.281	4821 Hartree		
Zero-po	oint correction	= 0.725316		
Thermal	l correction to	Energy = 0.773884		
Thermal	l correction to	Enthalpy = 0.774828		
Thermal	l correction to	Gibbs Free Energy = 0.64	0017	
Sum of	electronic and	zero-point Energies = -2	342.556166	
Sum of	electronic and	thermal Energies = -2342	.507598	
Sum of	electronic and	thermal Enthalpies = -23	42.506654	
Sum of	electronic and	thermal Free Energies =	-2342.641466	

Center	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	70	-0.100184	-0.807033	-0.224939	
2	8	2.129000	-0.139280	0.288157	
3	8	-0.207198	1.519464	-0.551811	
4	8	-2.308370	-0.423292	0.567893	
5	8	-0.103261	0.370170	1.941953	
6	8	0.179134	-2.141275	1.585433	
7	8	0.100465	-2.637734	3.775078	
8	7	1.831072	-2.315415	-1.201861	
9	7	0.681658	0.040999	-2.603216	
10	7	-2.062810	-0.899067	-2.060015	
11	7	-0.908282	-3.176834	-0.722012	
12	7	4.217513	-0.742505	0.961197	
13	1	4.992377	-1.416985	0.924802	
14	7	0.772297	3.415840	-1.325871	
15	1	1.316437	3.901053	-2.049954	
16	7	-4.414836	0.396930	0.317854	
17	1	-5.205776	0.624337	-0.297480	
18	6	2.517569	-1.644124	-2.344598	
19	1	3.216354	-0.911280	-1.937264	
20	1	3.115144	-2.370192	-2.909480	
21	6	1.543374	-0.957794	-3.290088	
22	1	0.884024	-1.698639	-3.745069	
23	1	2.105864	-0.487146	-4.107052	
24	6	-0.476928	0.392133	-3.474625	
25	1	-0.872858	1.350271	-3.131253	
26	1	-0.141979	0.538544	-4.509456	
27	6	-1.571322	-0.660951	-3.439465	
28	1	-1.197860	-1.608797	-3.829596	

$\Delta(\delta\delta\delta)$, L-lactate•Yb₃, 0 imaginary frequencies

29	1	-2.392805	-0.350385	-4.098291
30	6	-2.769403	-2.211534	-1.990869
31	1	-3.401036	-2.204963	-1.099191
32	1	-3.428891	-2.337655	-2.858770
33	6	-1.791906	-3.370085	-1.891535
34	1	-1.170575	-3.435002	-2.787075
35	1	-2.349187	-4.311339	-1.820961
36	6	0.220865	-4.140677	-0.693737
37	1	0.558522	-4.202405	0.340550
38	1	-0.101701	-5.140096	-1.009207
39	6	1.345788	-3.662925	-1.602388
40	1	0.989226	-3.591355	-2.632336
41	1	2.169515	-4.387893	-1.598614
42	6	2.780161	-2.413824	-0.071349
43	1	2.306619	-2.974544	0.737820
44	1	3.711079	-2.917465	-0.359902
45	6	3.040762	-1.000911	0.424212
46	6	4.723078	0.558246	1.406514
47	1	4.447483	1.313867	0.664787
48	6	1.421567	1.286746	-2.308714
49	1	2.363310	1.040470	-1.814398
50	1	1.643888	1.856712	-3.219413
51	-	0.597253	2.111211	-1.328821
52	6	0,077463	4.394615	-0.486137
53	1	-0.985354	4.138693	-0.455147
54	- 6	-3 003032	0 162716	-1 648261
55	1	-2 542393	1 138821	-1 820126
56	1	-3 943340	0 120575	-2 212283
57	6	-3 241378	0 025799	-0 153974
58	6	-4 877318	0 316900	1 705065
59	1	-4 569972	-0 645583	2 123833
60	6	-0 009272	-1 852443	2 834197
61	6	-0 457833	-0 407113	3 111457
62	1	-0 642901	1 171452	1 902631
63	1	-1 455196	-3 333620	0 124290
64	6	-4 325832	1 454914	2 569518
65	6	0 638845	4 438442	0 938970
66	6	4 180757	0 969414	2 778485
67	6	0 147262	0 181664	4 376836
68	1	-0 239772	1 187677	4.570050
69	1	1 235901	0 229596	4.000014
70	1	-0 112944	-0 454617	5 224516
70	1	-1 550954	-0 433997	3 187261
72	1	-1 746768	1 367963	3 572654
72	1	-3 236296	1 /11786	2 636380
7.0	1	-4 612953	2 /2/097	2.050500
75	ہ ۲	- C T T T T T T T T T T T T T T T T T T	2.7270J/ 0 265021	1 6/0100
76	U Q	-0.440/23 _7 000007	0.303931	1.040130 0 7/0500
, 0 77	U Q		0.210201	2.142JJO 0 500600
78	1	1 705210	Δ. 570430 Δ. 680101	0.300023 0 010761
79	⊥ 1	n 1133210	5 214861	1 197697
80	⊥ 1	0.113320	3 / Q / 7 Q /	1 //Q/00
00	1	0.000410	5.400/04	T.440400

81	6		0.243170	5.778229	-1.197330
82	8		1.000426	5.791700	-2.208813
83	8		-0.378695	6.727739	-0.674710
84	1		3.099213	1.116312	2.750384
85	1		4.414788	0.204994	3.525564
86	1		4.661353	1.904076	3.073387
87	6		6.283219	0.432541	1.433763
88	8		6.749863	-0.716518	1.190601
89	8		6.901825	1.482912	1.708936
E(RTPSSh) = Zero-point	= -2343.2804 correction	1807 Hartr = 0.72526	ee 4		
Thermal con	rection to	Energy =	0.773767		
Thermal con	rection to	Enthalpy :	= 0.774712		
Thermal con	rrection to	Gibbs Fre	e Energy = 0.641	.352	
Sum of elec	ctronic and	zero-poin	t Energies = -23	42.555216	
Sum of elec	ctronic and	thermal E	nergies = -2342 .	506713	
Sum of elec	ctronic and	thermal E	nthalpies = -234	2.505769	
Sum of elec	ctronic and	thermal F	ree Energies = -	2342.639129	

References

(1) Djanashvili, K.; Peters, J. A. Contrast Media Mol. Imaging 2007, 2, 67.

(2) Wu, Y.; Soesbe, T. C.; Kiefer, G. E.; Zhao, P.; Sherry, A. D. J. Am. Chem. Soc. 2010, 132, 14002.

(3) Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. *Phys. Rev. Lett.* **2003**, 91, 146401.

(4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision B.01*, Gaussian, Inc.: Wallingford CT, 2009.

(5) Dolg, M.; Stoll, H.; Savin, A. Theor. Chim. Acta 1989, 75, 173-194.

(6) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.