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Detailed proofs
In this Supporting material we present details and extended formulae for the propositions.

To start, we consider the values of agony for general d depending on the choice of the alternative
rankings.

• No inversion and splitting. When b < 0, each class is divided into 2−b classes. As for
the affinity matrix, the only part affected by the change in the ranking is the one above the
diagonal, which has no impact on the computation of E[Ad(G, r(b))]. Hence one has

E[Ad(G, r(b))] = s

(
N

R
2b
)2 2a−b−1∑

k=0

(k + 1)d(2a−b − k) . (1)

• No inversion and merging. When b ≥ 0, for any pair (i, j) it holds:

E[mij ] =

(
N

R

)2


22bs j < i

(2b − 1)p+ 2b−1(2b + 1)s+ (2b−1 − 1)(2b − 1)q j = i

p+ (22b − 1)q j = i+ 1

22bq j > i+ 1 ,

(2)

which gives

E[Ad(G, r(b))] =s

(
N

R
2b
)2 2a−b−1∑

k=1

(k + 1)d(2a−b − k)+

+ 2a−b
(
(2b − 1)p+ 2b−1(2b + 1)s+ (2b−1 − 1)(2b − 1)q

)
• Inversion and merging. When b ≥ 0 the expression for agony of the inverted ranking

becomes

E[Ad(G, r(i,b))] =22b
(
N

R

)2

q

2a−b−1∑
k=2

(k + 1)d
(
2a−b − k

)
+

+ 2d
(
N

R

)2 (
2a−b − 1

) ((
22b − 1

)
q + p

)
+

+ 2a−b
(
N

R

)2 ((
2b − 1

)
p+

(
2b−1 − 1

) (
2b − 1

)
q + 2b−1

(
2b + 1

)
s
)
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• Inversion and splitting When b < 0

E[Ad(G, r(i,b))] =

(
N

R
2b
)2 2−b−1∑

k=0

(k + 1)d
(
2a
(
2−b − k

)
s+ (2a − 1) kp

)
+

+

(
N

R
2b
)2 2−b−1∑

k=0

(
k + 1 + 2−b

)d (
(2a − 1)

(
2−b − k

)
p+ (2a − 2) kq

)
+

+

(
N

R
2b
)2

q

(2a−2)2−b∑
k=0

(
k + 1 + 21−b

)d (
(2a − 2) 2−b − k

)
.

Then, we present the proofs of the propositions.

Proof of Proposition 1
We explicitly show that in the d = 1 case there exists critical values for s at which the planted
ranking ceases to maximize hierarchy both for Twitter-like and Military-like hierarchies.

To determine the optimal number of classes we first treat b as a continuous variable and
compute the derivative oh h̄1 with respect to it. The unique critical point is denoted by b∗ and it
is given by

b∗ =
1

2
log2

22as+ 6(q − p)
3q − s

.

Note that it must hold
0 ≤ b ≤ a

and we want to avoid the continuous relaxation at the boundaries so we consider the extreme
values separately.

When p ≥ q > s (Twitter-like hierarchy), we first notice that

∂h̄1
∂b
|b=b∗< 0

Moreover, it holds
h̄1(b = a− 1) > h̄1(b = a) ,

that is the trivial ranking is never better than that with two classes.
Moreover, we denote with s2 the value of s such that the rankings with two and three classes

have the same value of hierarchy, i.e.

h̄1 (b = a− log2 3) = h̄1(b = a− 1) ,

since for any fixed b > 0, h̄1 is monotone decreasing with respect to s,

h̄1 (b = a− log2 3) < h̄1(b = a− 1)∀s ≥ s2 .

Similarly, one can find the critical value sm such that the ranking with of R− 1 classes shares the
value of hierarchy with the planted one,

h̄1(b = 0) = h̄1 (b = a− log2 (2a − 1)) .

Finally, we can combine the results to obtain the optimal number of classes for the direct
ranking in the region p ≥ q > s:

R̃∗ =


R s ≤ sm
2a−b

∗
sm < s < s2

2 s ≥ s2 ,
(3)
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where

sm =
6 (2a − 1) p− 3 (2a − 2) q

2a − 4a + 8a
(4)

s2 =
3

7

(4a − 12) q + 12p

4a

With a reasoning similar to the one carried before, one gets that when p ≥ q > s the optimal
number of classes for the inverted ranking is such that

1 ≤ R̃∗ ≤ 2

hence,
hi,∗1 ≤ 0, ∀ p ≥ q > s, ∀ a .

One can conclude that the optimal ranking for the twitter-like hierarchy is the direct one with a
number of classes which depends on s, according to (??).

When q = 0 (Military-like hierarchy), when it is defined, we have

∂2h̄1
∂b2
|b=b∗> 0 ,

so, to obtain the optimal directed ranking we only need to check the extreme values for b, i.e.
b = 0, b = a. The optimal number of classes for the direct ranking is given by

R̃∗ =

{
R s ≤ sm|q=0

1 otherwise ,

where
s1 =

6p

2a(1 + 2a)
.

Then, one can consider the inverted ranking.
It easy to verify that

E[A1(G, r(i,b))] > E[A1(G, r(p))], ∀ b < 0 ,

that is, also for the inverted ranking splitting is never optimal on average.

As for merging, the optimal choice for b is given by

bi,∗ =
1

2
log2

2p

s
,

which is well defined when s > 2
4a p and satisfies a

2 ≤ bi,∗ ≤ a. The optimal number of classes fro
the inverted ranking is given by

R̃i,∗ =


1 s ≤ si2
2 si2 < s ≤ si3
2a−b

i,∗
s > si3

,

where

si2 = 22−2ap

si3 = 3si2 .

When s ≤ s1, the planted ranking is optimal and non zero and decreasing, and

si2 < s1 < si3 . (5)
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Denote by si the value of s such that

h̄i1(b = a− 1) = h̄1(b = 0) .

One gets

si =
12p

3 2a + 22a+1 − 2
,

and when s > si the optimal inverted ranking has a higher value of hierarchy than the planted,
which is the optimal directed one.

Finally, one can write the expression for the estimate of the optimal value of h in proposition
??.

For p ≥ q > s,

h̄∗1 =


− (2a−2)(−6(2a−1)q+2a(2a+2)s−6p)

6(2a(2p−3q+s)+4a(q+s)−2p+2q) s ≤ sm
3((4a+2)q−2p)

√
4as−6p+6q

3q−s −2a+1(4as−6p+6q)

3
√

4as−6p+6q
3q−s (2a(2p−3q+s)+4a(q+s)−2p+2q)

sm < s < s2

4a(q−s)+4p−4q
2(2a(2p−3q+s)+4a(q+s)−2p+2q) s ≥ s2 .

When q = 0,

h̄∗1 =


2a(6p+s)−8as−6p

6(2a−1)p+3 2a(2a+1)s s ≤ si
4as−4p

2(2a(2p+s)+4as−2p) si < s ≤ si3
−2a+3

2 s
√

p
s+4as+2p

2a(2p+s)+4as−2p s > si3 .

Proof of Proposition 2
We here proceed to show that in the d = 0 case (FAS), both for Twitter-like and Military-like
hierarchies, agony is minimized by the ranking where nodes are partitioned in singletons. When
b > 0, the derivative of h with respect to b is negative hence the planted ranking is better that
any other with a fewer number of classes. Instead, when b < 0 one has

E[A0(G, r(b))] = s(2a + 2b)

(
N

R

)2

which implies
E[A0(G, r(b))] < E[A0(G, r(p))], ∀ b < 0 ,

and
∂h̄0
∂b

= −2a+b−1

m
s < 0 ∀ b < 0

So the optimal ranking is obtained for the limit value of b

b∗ = − log2

N

R
, R̃∗ = N .

Similar computations give that any inverted ranking (i.e ∀ b) has never a higher value of hier-
archy than the the ranking we just discussed.

One get the formula in proposition 2

h∗0 = 1− 22a(N + 1)s

(22a(q + s) + 2a(2p− 3q + s)− 2p+ 2q)N
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Proof of Proposition 3
For the case d = 2 one can follow the same procedure we showed for d = 1 and find the critical
values for resolution threshold.

When p ≥ q > s, the optimal number of classes is given by

R̃∗2 =


R s ≤ s2,m
2a−b

∗
2 s2,m ≤ s ≤ s2,1

1 s ≥ s2,1 ,

where

b∗2 = log2(
2 3
√

2
(
22as− 3p+ 3q

)
3
√
β + 35 23aq2s− 34 23a+2qs2 + 33 23a+2s3

+ (6)

+

3

√
1
3β + 24 23aq2s− 33 23a+2qs2 + 32 23a+2s3

3
√

2 32(3q − 2s)
) ,

β =

√
36 26as2(3q − 2s)4 − 25 33(3q − 2s)3 (4as− 3p+ 3q)

3
.

is the unique zero of the first order derivative of h̄2 with respect to b, and

s2,m =
6
(
21−a(q − p) + 2p− q

)
−3 2a + 23a+1 + 4a + 4

s2,1 =
22aq + 4p− 4q

3 22a

with s2,1 being the value of s such that

h̄2(b = a− 1) = h̄2(b = a) = 0 .

When q = 0, the planted ranking is optimal and gives positive h̄2 when s < s02,1, where

s02,1 =
3 22−ap

5 2a + 4a + 4
.

For the inverted ranking instead one can compute the optimal choice for the number of classes,
that is

R̃i,∗
2 =


a s ≤ si2,2
a− 1 si2,2p < s < si2,3
log( 6p

s )
log(4) s > si2,3 ,

where

bi,∗2 =
log
(
6p
s

)
2 log(2)

,

and

si2,2 =
12

22a
p

si2,3 = 3si2,2 .

For any choice of p and a, it holds
s2,1 < si2,2 ,

so the inverted ranking is optimal for s > si2,2.
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