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A Biophysical origin and dynamics of sponta-
neous beating

We start with the generic equation for the non-linear Rayleigh oscillator [1]:

γχ̈+ rχ̇+ Λχ̇3 + kχ = fext(t) (A.1)

We discuss here three possible scenarios that motivate the biological origin
of this equation for the oscillating degree of freedom χ(t):

1. χ(t) represents the physical displacement of the contractile machinery (sar-
comeres) coupled to the deformations induced by the probe (fext(t)). This
model was discussed in detail by Jülicher and Prost [2, 3] in the context of
acto-myosin displacement within the sarcomere. The elastic response of
the acto-myosin bundle is manifested in the spring constant k. The first
order friction coefficient, ρ accounts for both dissipation of energy via the
viscous environment as well as for the input of energy by the ATP depen-
dent activity of myosin. Therefore, unlike purely damped oscillators, ρ
can have a negative sign (when activity dominates friction) which allows
for spontaneous contraction oscillations with frequency ωc =

√
k/γ. If

only linear terms are kept, energy input (the case of r < 0) would result
in a diverging amplitude. To maintain stability, the overall energy input
must dissipated by a higher order friction term λ > 0, and is related by
Jülicher and Prost to the loading rate of myosin heads. Lastly, fext(t) is
the mechanical force applied to the contractile unit via the cellular adhe-
sions that connect the sarcomeres to the substrate, such as focal adhesions
at the cell edges [4] or integrin-mediated adhesions (by costameres) along
the line of sarcomeres [5].

2. χ(t) represents the ionic calcium concentration in the cytosol, and the
external force applies tension to the either the sarcolemma, or directly to
the sarcoplasmic reticulum (SR) - affecting calcium release. In this con-
text, ρ relates to auto-catalytic activation of ryanodine receptors (RyR)
on the SR, and the higher order restoring term λ > 0 represents deactiva-
tion of RyR (which is still not fully understood) once a certain threshold
of cytoplasmic concentration is reached [6, 7]. The spring constant k en-
tails numerous mechanisms such as SR Ca2+-ATPase activity, sarcolemma
Na+-Ca2+ pumps and mitochondrial Ca2+ uniports, all of which working
to reduce calcium concentration to baseline levels. Lastly, the external
force fext is coupled to the sarcolemma (or the SR), through integrin ad-
hesions [5]. The tension applied to the sarcolemma (or the SR membrane)
modulates the activity of mechano-sensitive protein complexes that mod-
ulate calcium release from SR [8].

3. χ(t) represents the calcium concentration as in the second scenario, but
the external force is coupled via the adhesions of the substrate to sar-
comeres. In this case, the deformations in the substrate by the probe
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modulate the binding kinetics of actin-myosin, which, in turn, either ap-
ply further tension to the stress sensitive sarcolemma or SR, or reduce the
amount of calcium bound to troponin at rest. This modulates the effective
ionic concentration, and further paces the calcium concentration χ(t). In
this scenario, contractility is a crucial intermediate step in entrainment of
calcium.

For each of these cases, the acceleration term Eq. A.1, proportional to γ,
is not at all related to inertia (mass) because both the cell interior and exte-
rior are aqueous solutions where frictional dissipation is dominant and inertia is
negligible [9, 10]. Rather, this term originates in the dynamical active process
of binding and unbinding of myosin motors to actin filaments (first scenario), or
from the dynamics of opening and closing of RyR channels (second and third
scenarios). The separation of the time scales associated with binding/unbinding
of myosin, or opening/closing event of RyR, and the time scale of apparent os-
cillations yields an ”effective mass” γ > 0 term that is a function of the different
kinetic rate constants in the system (as shown in detail in Ref. [3]).

To demonstrate this, we study a simple system that couples contraction of
a sarcomere (x(t)) to the actin bound myosin concentration (µ(t)) (this is anal-
ogous to the derivation of Jülicher and Prost [2, 3], but perhaps more transpar-
ent):

µ̇ =κ+µtot − (κ+ + κ−)µ+ a1ẋ (A.2)

ηf ẋ+Λẋ3 = a2µ− kx (A.3)

Here, κ+/κ− are binding unbinding rates of myosin to actin, µtot is the
overall myosin concentration available for binding in a sarcomere, ηf is the
friction coefficient and k is the elastic response of the sarcomere modeled as a
damped spring. A non-linear friction term proportional to Λ > 0 is introduced,
for reasons explained below. In this simple picture, the contraction increases
the overlap region between myosin and actin, allowing for more myosin heads
to bind feeding back into the myosin rate equation (as expressed by the term
proportional to a1). The force generated by the sarcomere is proportional to
the number of bound myosin heads (hence a2). The solution for Eq. A.2 for the
myosin concentration, as a function of the general, time dependent displacement,
is given in terms of the Green’s function G(t):

µ(t) = µh(t) + a1

∫ t

−∞
G(t− t′)ẋ(t′)dt′ (A.4)

where µh(t) = µ0 exp(−(κ+ + κ−)t) is the solution of the homogeneous
equation and µ0 some arbitrary initial condition.

The myosin binding and unbinding rates are typically much faster (∼ 0.01−
0.1 Hz) [11] than the time-scale of associated with oscillations (ωc ∼ 1 Hz).
In the context of the above model, this implies that there are numerous bind-
ing/unbinding events of myosin heads in one contraction cycle of the sarcomeric
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unit. The Green’s function for Eq. A.4 is given by G(t−t′) = exp(−(κ++κ−)(t−
t′)) which is sharply peaked around t′ = t (since k+, k− << ωc, the time scale
for changes in displacement). If the Green’s function is sharply peaked about
the time t′ = t, we can expand the slowly varying velocity ẋ(t′) about t′ < t,
and introduce it back into Eq. A.4:

µ(t) = µh(t) + a1ẋ(t)

∫ t

−∞
G(t− t′)dt′ + a1ẍ(t)

∫ t

−∞
(t′ − t)G(t− t′)dt′ (A.5)

The feedback between the velocity ẋ(t) and the position x(t) is proportional
to the integral of the Green’s function (zeroth order moment). The inertial term
is associated with the first moment of the Green’s function, which accounts
for force accumulation due to the positive feedback between contraction and
the increase of bound myosin. In our simple picture, the Green’s function is
G(t − t′) =exp(−(κ+ + κ−)(t − t′), which is indeed sharply peaked around
t′ = t. Using this result, the equation for myosin concentration in our example
scales as:

µ(t) ∼ κ+µtot
(κ+ + κ−)

+
a1

(κ+ + κ−)
˙x(t)− a1

(κ+ + κ−)2
¨x(t) (A.6)

which, when introduced back into Eq. A.3 for the displacement yields:

γ∗ẍ+ r∗ẋ+ Λẋ3 + kx = 0 (A.7)

With γ∗ = a1/(κ
+ + κ−)2 and r∗ = (ηf − a1/(κ

+ + κ−)). Note that the
activity of myosin results in an inertial term with an effective mass γ∗. The
“mass” γ∗ is related to the cooperative dynamics of myosin binding and the
active force they apply to contract the sarcomere. Note that r∗ can be negative
if the input of energy to the oscillator from the activity dominates over friction
(i.e. - ηf < a1/(κ

+ + κ−)). In that case, the sarcomere will spontaneously
contract. Note that the non-linear frictional dissipation term (Λ > 0) must be
present since otherwise the input of energy for the case where r∗ < 0 will causes
diverging oscillation amplitudes.

With the inertial term derived, and a higher order dissipation term Λ > 0
introduced to suppress unbounded growth, the system displays spontaneous
oscillations for values r < 0. This is inherently different from a regular damped
oscillator (r > 0), where any dissipation causes any initial displacement or
velocity to eventually decay to 0. In the absence of external pacing fext(t) = 0,
for the case where the spring constant is large (stiff spring) relative to the
dissipative terms (r, Λ � k), one solves Eq. A.1 and finds that the system
oscillates with the natural frequency ωc =

√
k/γ. Therefore, we insert the

solution χ(t) = A(t) cos(ωct) into Eq. A.1 to find:

γ((Ä−Aω2
c ) cos(ωct)− 2Ȧωc sin(ωct) + r(Ȧ cos(ωct)−Aωc sin(ωct))

+Λ(Ȧ cos(ωct)−Aωc sin(ωct))
3 + kA cos(ωct) = 0

(A.8)

For long times, we expect the amplitude to relax to its steady-state value,
As. The steady-state is defined by the oscillator state when the amplitude does
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not change in time. We therefore set Ȧ and Ä equal to zero, and collect terms
of sine and cosine:

As(k − γω2) cos(ωct) +Asωc(r − ΛA2
sω

2
c sin2(ωct)) sin(ωct) = 0 (A.9)

For Eq.A.9 to be valid for all times, the terms multiplying the sine and cosine
separately must equate to zero:

As
2

(k − γω2) = 0

Asωc
2

(r − 3

4
ΛA2

sω
2
c ) = 0

(A.10)

The first condition determines the oscillation frequency in steady-state, and
the second determines the average steady state amplitude As =

√
4r/3Λω2

c as
shown in the paper.

B Dynamics of a paced cell

B.1 Derivation of the Adler equation

We now introduce periodic forcing by an external probe/cell fext(t) = F cos(ωpt),
which oscillates at a frequency that is, in general, different from the spontaneous
beating frequency ωc. Rescaling all the coefficients of Eq. A.1 by the effective
mass γ, so that ρ = r/γ, λ = Λ/γ, Ap = F/γ (same notation as in the main
text) we get:

χ̈+ ρχ̇+ λχ̇3 + ω2
cχ = Ap cos(ωpt) (B.11)

For the entrained regime, where the system oscillates at the probe frequency
ωp, we write the solution in complex form:

χ(t) = a(t)eiωpt + a∗(t)e−iωpt, a(t) = A(t)eiφp(t), a∗(t) = A(t)e−iφp(t)

(B.12)
where A(t), φp(t) are respectively, the amplitude and phase of the oscillating

displacement χ(t).

Since the observed time that it takes a spontaneously beating cell to syn-
chronize with the probe is much longer than the characteristic beating time (15
minutes compared to a time scale of 1 second, corresponding to ∼ 1 Hz oscil-
lations) we use the method of averaging – where we average over the slowest
mode of oscillation [12]. For an arbitrary function of time g(t) with period T ,
this is written as:

〈g(t)〉 =
1

T

∫ T
2

−T2
g(t)eit/T dt (B.13)
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Inserting Eq. B.12 into Eq. B.11, and averaging over the slowest mode (with
a period 2π/ωp) we write the dynamics of a(t) as:

(ä+ 2iωpȧ)− (ω2
p − ω2

c )a− ρ(ȧ+ iωpa) + λ
4

(
3ȧ2(ȧ∗ − iωpa∗)

+6ȧ(aa∗ω2
p + iωpaȧ∗)− 3a2(ȧ∗ω2

p − iω3
pa
∗)
)
−Ap = 0

(B.14)

We now define the time scale a/ȧ ∼ τ which is much longer than the time
scale for oscillations 1/ωp (since the amplitude and phase are slowly varying).
Because this time scale is long, we consider only terms up to order 1/τ in
Eq.B.14. All terms higher order than ȧ/a are neglected in the long-time limit.
Using the definitions in Eq. B.12 and comparing real and imaginary terms, we
obtain two dynamical equations for the phase amplitude A(t) and phase φp(t):

2ωpȦ = ρωpA−
3

4
λω3

pA
3 −Ap sin(φp)

2ωpAφ̇p = (ω2
c − ω2

p)A−Ap cos(φp)
(B.15)

For weak forcing Ap, the dynamical equation for the amplitude becomes in-
dependent of phase, and the steady-state amplitude has a similar form to that

of a spontaneously beating cell, i.e. -As =
√(

4ρ/3λω2
p

)
(where ωc is replaced

by ωp due to the change in frame of reference).

We scale the probe amplitude (Ap) by the amplitude of spontaneous oscil-
lations (As) and define the scaled probe amplitude fs = Ap/(2ωpAs) as in the
main text. Focusing on the case where the spontaneous frequency and the probe
frequency are not very different (i.e. - ωc ∼ ωp) we obtain the Adler equation
(Eq. 2) as presented in the text. Note that in the experiments performed by
Nitsan et al. [13] the amplitude ratio (equivalent to fs) was kept fixed, so that
the beating amplitude of the cell and the beating amplitude generated by the
probe in the vicinity of the cell were roughly equal (As ∼ Ap). According to
our theory, this implies that the transition from entrained beating to bursting
should occur when the frequency of the probe is roughly twice the frequency of
the cell, the same order of magnitude as observed by Nitsan et al.[13].

B.2 Solving the Adler equation

First, we rescale time by the detuning ∆ω = (ωc − ωp), so that t∗ ≡ ∆ωt. This
allows us to write the dimensionless form of Eq. 2:

˙φp(t∗) = 1−Q cos (φp(t
∗)) (B.16)

where we define the coupling strength Q = fs/∆ω as in the main text. This
dynamical equation has two bifurcation points, Qcr = ±1 where the steady-state
solution change their character. For |Q| ≥ 1 the equation has a steady-state
solution corresponding to φss = arccos(Q−1). This describes the regime where
cell beating is entrained to the probe frequency ωp. However, for |Q| ≤ 1 there
is no steady state solution, and the phase grows with time. This corresponds to
a beating cell not fully entrained to the probe. In the limit of very weak forc-
ing, or a large frequency difference ∆ω, the phase grows linearly in time, which
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Figure 1: phase φp as a function of reduced time t∗, in the “bursting” regime
(|Q| < 1) for: (A) Q=0.1 - Inset: comparison with a linear slope (dashed,
red), (B) Q=0.5 and (C) Q=0.7, arrow pointing at “mid-point” of the quasi-
entrainment regimes.

means that the cell beats with its own spontaneous frequency ωc. However, for
a value of Q close to the bifurcation point (|Q| → 1) we expect the cell to be
entrained most of the time, with occasional periods of non-entrained behavior
(which, for now, we assume nothing about).

To find an expression for the phase φp, we integrate Eq. B.16 for the two
regimes of Q. This yields:

φp = 2 arctan
(√

Q−1
Q+1 tanh

[
π t
∗

τ + φ0

])
, |Q| > 1

φp = −2 arctan
(√

1−Q
Q+1 tan

[
π t
∗

τ + φ0

])
+ 2πm, |Q| < 1

(B.17)

where we define the characteristic time τ = 2π/(∆ω
√

(1−Q2)).For |Q| < 1,
the square roots are imaginary which transforms the hyperbolic tangent to a
regular one. Therefore, the equation becomes periodic in time with m = 1, 2, 3...
the period index, defined for the time intervals πm− τ/2 < t < πm+ τ/2. Note
that the time scale τ cannot explain the observed time of about 15 minutes re-
quired to entrain spontaneously beating cells, as this would imply Q extremely
close to the critical value Qcr = ±1, which is not necessarily the case in the
experiments. In the main text, we discuss a more robust scenario for the long
time needed to transition from spontaneous to entrained beating.

We now derive the time regime for Q < 1 for which the cell is approximately
entrained and the time regime for which the cell beats spontaneously (with ωc).
To examine the periodic behavior of the solution in Eq. B.17 we arbitrarily set
φ0 = 0 without loss of generality, and evaluate the time derivative of Eq. B.17.

φ̇p =
1−Q2

1 +Q cosh
(√

1−Q2 t∗
) (B.18)

For Q → 0 Eq. B.18 goes to unity, which is the limit where the cells beat
with their spontaneous frequency. As Q is gradually increased, the phase shows
distinct time regimes of intermittent slow and rapid changes (see Fig. 1). We
show in the main text that the time regimes where the derivative φ̇p(t) is nearly
zero corresponds to an entrained cell (beating with ωp) while the time regimes

where φ̇p(t) ≥ 1 corresponds to a non-entrained cell (beating with ωc). To
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estimate the fraction of each period for which the cell is approximately entrained
(the temporal regime where φ̇p ≈ 0), we expand Eq. B.18 in time t∗, around
any of the mid-points (see arrow in Fig. 1C) of the “slow” change in phase:

φ̇p ≈ (1−Q) +
1

2
Q(1−Q)2

(
t∗ − 2πm√

1−Q2

)2

(B.19)

Thus in the vicinity of the mid-point, the change in phase is parabolic, and
an estimate of the point of crossover (time t∗c) from φ̇ ≈ 0 to φ̇ ≈ 1 occurs
when the second term in Eq. B.19 approximately equals the first. This yields
t∗c =

√
2/ (Q(1−Q)), which for Q→ 1 goes to infinity; namely, the cell becomes

entrained for the entire time of its beating cycle. In the opposite limit (small
Q), we expand around the region where φ̇p ≥ 1 of any one cycle to find:

φ̇p ≈ (1 +Q) +
1

2
Q(1 +Q)2

(
t∗ − π + 2πm√

1−Q2

)2

(B.20)

Using an analysis similar to the one for Q → 1, we see that when Q → 0
almost all of the beating cycle is characterized by φ̇ ≈ 1 (beating with spon-
taneous frequency). By comparing the first and second term as before, we get
t∗c =

√
2/(Q(1 +Q)) which diverges for Q → 0. This means that in the limit

of very weak pacing force, the fraction of the beating cycle for which φ̇p ≈ 1 is

almost unity and the duration for which the cell is entrained is (φ̇p ≈ 0).
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C Dynamics of adaptive response

The experiments show that the time required for a cell to transition from spon-
taneous to entrained beating is about 15 minutes [13], which is two to three
orders of magnitude longer than the duration of a single beating cycle (∼1 sec).

The observed long time for the transition from spontaneous beating may
be due to biological adaptation needed to transmit mechanical information
(probe-induced strain of the cellular adhesions) to the cytoskeleton, resulting
in a change in the beating frequency. We therefore apply a phenomenological
description since the biological details are not known and are beyond the scope
of the theory presented in this paper. Below, we consider the case where the
adaptation process is manifested in the ability of the cell to sense the periodic
deformations by the nearby probe.

We start by modifying the pacing force in Eq. B.11 to include exponential
dependence in time, with a characteristic time scale τa (related to the biological
modifications within the cell):

χ̈− ρχ̇+ λχ̇3 + ω2
cχ = Ap(1− e−t/τa) cos(ωpt) (C.21)

where τa is the adaptation time which experiments suggest, is much longer
than that of a single beating cycle (i.e.∼ 1/ωc, 1/ωp). Anticipating that the
steady-state will be entrained beating, we use a reference state where the phase
φp(t) is relative to ωpt and write χ(t) = A(t) cos(ωpt + φp(t)), with A(t) and
φp(t) the time dependent amplitude and phase respectively. Following the same
derivation as before (phase slowly varying, stiff spring compared to dissipative
response) we average over a single cycle and separate real and imaginary parts as
in Eq. B.14. This yields two dynamical equations for the phase and amplitude:

φ̇p =
(ω2
c − ω2

p)

2ωp
− Ap

2ωpA
M(t) cos(φp − ψ(t))

Ȧ =
1

2

(
ρ− 3

4
λ(ωpA)2

)
− Ap

2ωp
M(t) sin(φp − ψ(t))

(C.22)

where the (time dependent) correction, due to the finite adaptation time τa
are:

M(t) =

√[
1− τa

t

(
1− e−t/τa

)(2 + (2τaωp)2

1 + (2τaωp)2

)]2

+

[
τa
t

(
1− e−t/τa

)( 2τaωp
1 + (2τaωp)2

)]2

ψ(t) = arctan

 τa
t

(
1− e−t/τa

) ( 2ωpτa
1+(2ωpτa)2

)
1− τa

t

(
1− e−t/τa

) ( 2+(2ωpτa)2

1+(2ωpτa)2

)


(C.23)

Note that if we take ωpτa � 1 (since experiments suggest that the adaptation
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Figure 2: An example of the time dependent, normalized phase φp (solid) and

its time derivative φ̇p (dashed), as a function of reduced time t∗ = ∆ωt. Here
Q = 2, and colors correspond to different values of the scaled adaptation time
τ∗a = ∆ωτa with τ∗a = 10 (blue), τ∗a = 50 (orange) and τ∗a = 100 (green).

time is of the order of minutes, and the frequency is of the order of seconds),
we can expand the corrections in the small parameter (ωpτa)−1and simplify:

M(t) ≈ 1− τa
t

(
1− e−t/τa

)

ψ(t) ≈ arctan

((
1

2ωpτa

) τa
t

(
1− e−t/τa

)
1− τa

t

(
1− e−t/τa

)) (C.24)

For small values of probe amplitude Ap, the steady-state amplitude of the
paced cell does not vary much from that of the spontaneously beating cell. If the
amplitude reaches its steady-state value faster than the phase, the two equations
of Eq. C.22 are decoupled, and we are left with a single dynamical equation for
the phase:

φ̇p =
(ω2
c − ω2

p)

2ωp
− fs

(
1− τa

t

(
1− e−t/τa

))
cos(φp − ψ(t)) (C.25)

From Eq. C.24 we see that when the adaptation time is much longer than
the beating time ωpτa � 1, the function ψ(t) drops to zero (from its initial value
of π/2 at t = 0 in a time of order ωp which is much smaller than the adaptation
time. We thus consider times greater than this value and set φp(t) to be zero
in Eq. C.25. For simplicity of notation, we consider the case of small frequency
differences and write:

φ̇p = ∆ω − fs
(

1− τa
t

(
1− e−t/τa

))
cos(φp) (C.26)

which is the modified Adler equation presented in the paper. One can im-
mediately see that for short times t� τa the pacing is effectively zero, and for
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(A) (B)

Figure 3: (A) Numerical estimation of the peak position tc as a function of the
transition time ttr calculated from Eq. C.28, for 10 ≤ τa ≤ 250 and 1.1 ≤ Q ≤ 4.
The line tc = ttr (black, dashed) is also plotted as a guide for the eye. (B)
The ratio of the correction term in Eq. C.28 and the scaling argument of the
transition time tr (i.e. - (τaQ)/(Q − 1) as a function of Q. For Q ∼ 1 the
correction term is negligible (i.e - the ratio goes to zero), while for Q � 1
the ratio approaches -1. This implies that as Q increases, the transition time
becomes shorter.

long times t� τa the pacing is maximal.

In Fig 2 we plot the time evolution of the phase φp and its time derivative

φ̇p (both normalized for convenience) as a function of reduced time t∗ = ∆ωt,
for various values of the scaled adaptation time ∆ωτa. One can see that as τa
increase, the phase relaxes to a constant value at longer and longer times. This
means that the time required to achieve synchronization becomes much longer.
Also, note that in all cases where the cell is eventually synchronized, there is
a slight overshoot (corresponding to a single root for the matching derivative)
followed by a smooth relaxation to the steady-state synchronized phase. This
peak time marks the transition from oscillatory, to relaxation behavior. We
therefore use the peak time tc as a measure of the time required to synchronize
the cell.

In Eq. 2, the transition from oscillatory to relaxation dynamics happens when
the parameter Q changes sign. This suggests that for the analogous Eq. C.26,
the transition would occur at time ttr for which:

(Q− 1)

Q
=
τa
ttr

(
1− e−ttr/τa

)
(C.27)

Eq. C.27 can be solved analytically for all Q > 1, which yields:

ttr =
τaQ

Q− 1
+ w(Q, τa), w(Q, τa) = τaW

(
Q

1−Q
e−

Q
1−Q

)
(C.28)

where W (z) is the Lambert (Product-Log) function. In Fig. 3A we show the
transition time tc estimated numerically, plotted against the (corrected) transi-
tion time ttr evaluated analytically from Eq. C.28, for varying values of Q and
τa. As predicted by our analysis, numerical solutions of the equation collapse
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rather well onto a linear curve of slope 1. In Fig. 3B we plot the ratio of the
correction w(Q, τa) and the scaling argument given in the main text (derived
neglecting w(Q, τa)). For Q ∼ 1 the correction is negligible (the ratio is 0),
showing that the scaling argument is valid. As Q increase, w(Q, τa) becomes
more and more negative, effectively shortening the transition time. For Q� 1
the scaling argument and w(Q, τa) are comparable in size and opposite in sign,
leading to a shortened transition time that scales as ∼ τa/Q.
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D Dynamics of stochastic beating

D.1 Coherence of beating for weak pacing

We start by adding stochastic term to Eq. B.11, describing the intrinsic random
forces within the cell due to various biological processes:

χ̈− ρχ̇+ λχ̇3 + ωcχ = Ap cos(ωpt) + χs(t) (D.29)

Since we are interested in the long-time coherence of beating, we approximate
the short-time noise by a random function χs(t), which is Gaussian noise with
mean 〈χs(t)〉 = 0 and temporal correlation 〈χs(t)χs(t′)〉 ∼ (2D∗)δ(t− t′)) with
D∗ a measure for the magnitude of the noise. If the external pacing force is
weak (Ap � 1), and the noise varies on a time-scale longer than a single period,
we expect that on average the cell will beat with a frequency ωc. To avoid
the mathematical complexities of multiplicative noise, we follow the approach
described by Hanggi & Riseborough, where a rotating frame of reference is
adopted [14]:

χ =yi cos(ωct)− yo sin(ωct)

χ̇ =− ωc(yi sin(ωct) + yo cos(ωct))
(D.30)

where yi and yo are the in-phase and out-of-phase components of the beating
amplitude respectively. Inserting these expressions into Eq. D.29, and averaging
over a single cycle as before yields the two dynamical equations for the amplitude
components:

ẏi =
yi
2

(
ρ− 3

4
λω2

c (y2
i + y2

o)

)
− Apωc

π

sin(π
ωp
ωc

)

(ω2
c − ω2

p)
sin(π

ωp
ωc

)−
¯χs,i(t)

ωc

ẏo =
yo
2

(
ρ− 3

4
λω2

c (y2
i + y2

o)

)
+
Apωp
π

sin(π
ωp
ωc

)

(ω2
c − ω2

p)
cos(π

ωp
ωc

)−
¯χs,o(t)

ωc

(D.31)

with ¯χs,i(t) and ¯χs,o(t) the (time averaged) noise in the in and out of phase
components with the property 〈 ¯χs,j(t) ¯χs,j(t′)〉 = 2D∗/ω2

cδ(t−t′) = 2D′δ(t−t′),
and 〈 ¯χs,j(t) ¯χs,k(t)〉 = 0 if j 6= k. The two coupled Langevin equations above are,
in general, difficult to solve. We therefore go from the Langevin equations, to the
Fokker-Planck (FP) formulation for the probability density P (yi, yo, t; y

0
i , y

0
o , 0),

which is the probability that amplitude components yi, yo at time t have certain
values, given that at time t = 0 those had the values y0

i , y
0
o . In vector form, the

FP equation is derived [15] from probability conservation, and is given by:

Ṗ = −~∇ · (~RP ) +D′ ∇2P (D.32)

with ~R the n-dimensional drift term vector, corresponding to the non-stochastic
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part of each of the Langevin equations. Accordingly, for Eq. D.31 we have:

Ri(yi, yo) =
yi
2

(
ρ− 3

4
λω2

c (y2
i + y2

o)

)
− Apωc

π

sin(π
ωp
ωc

)

(ω2
c − ω2

p)
sin(π

ωp
ωc

)

Ro(yi, yo) =
yo
2

(
ρ− 3

4
λω2

c (y2
i + y2

o)

)
+
Apωp
π

sin(π
ωp
ωc

)

(ω2
c − ω2

p)
cos(π

ωp
ωc

)

(D.33)

We now express these equations in a polar representation where yi = A(t) cos(φc(t)),
yo = A(t) sin(φc(t)). The FP equation in this representation is:

Ṗ = − 1

A

∂

∂A
(A Ra P )− ∂

∂φc
(RφP ) +D′

(
1

A

∂

∂A

(
A
∂P

∂A

)
+

1

A2

∂2P

∂φ2
c

)
(D.34)

where the drift terms become:

Ra(A, φc) = cos(φc)Ri(A, φc) + sin(φc)Ro(A, φc) +
D′

ωcA

Rφ(A, φc) =− sin(φc)

A
Ri(A, φc) +

cos(φc)

A
Ro(A, φc)

(D.35)

Inserting the transformation into Eqs. D.33 and D.35 and re-arranging gives:

Ra(A, φc) =
A

2

(
ρ− 3

4
λω2

cA

)
− α∗ sin(φc − β) +

D′

ωcA

Rφ(A, φc) =
α∗

A
cos(φc − β)

(D.36)

Where we define:

α∗ =
Apωc
π

sin(π
ωp
ωc

)

(ω2
c − ω2

p)

√
sin2(π

ωp
ωc

) +

(
ωp
ωp

)2

cos2(π
ωp
ωc

)

β = arctan

(
ωc
ωp

tan(π
ωp
ωc

)

) (D.37)

Eq. D.34 still contain terms that couple the amplitude A and phase φc. To
further simplify the problem, we consider the case of weak external force Ap � 1,

and examine the limit of weak noise
√
D′/ωcρ � A. For this case, the ampli-

tude has small fluctuations around its steady state value As =
√(

4ρ/3λω2
p

)
.

Applying these simplifications, and defining D = D′/A2
s and α = α∗/As yields

the simplified FP equation described in the main text:

Ṗ = − ∂

∂φc
(α cos(φc − β)P ) +D

∂2P

∂φ2
c

(D.38)
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with steady-state solution:

Ps(φ) =
exp

(
α
D sin(φc − β)

)
2π I0(α/D)

(D.39)

We further expand Eq. D.39 around its peak φc = (β + π/2) to get:

Ps(φ) ≈ e
α
D

(
1− 1

2 (φc−β−π2 )
2
)

2π I0(α/D)
(D.40)

which for small noise (D → 0) yields:

lim
D→0

Ps ≈ lim
D→0

√
α

2πD
e−

α
2D (φc−β−π2 )

2

= δ(φc − (β + π/2)) (D.41)

Thus the steady-state distribution for the case of small noise can be ap-
proximated by a delta-function of the phase around its steady state value of
φc = β + π/2.

D.2 Dynamics and noise for a strongly paced cell

For a strong external field (pacing), we expect the cell to be entrained to the
probe, even in the presence of noise. We therefore use the reference state where
the phase φp(t) is relative to ωpt as in Sec. B (i.e. - χ(t) = A(t) cos(ωpt+φp(t))).
The appropriate FP equation (derived by Hanggi & Riseborough [14] is:

Ṗ = − ∂

∂φp
((∆ω + α sin(φp))P ) +D

∂2P

∂φ2
p

(D.42)

For α ∼ Ap/As a measure of the external pacing strength. For a relatively
large amplitude of external force, the steady state probability density has been
calculated by Hanggi & Riseborough [14]:

Ps(φp) =
1

Z
e−V (φp)/D

∫ φp+2π

φp

eV (φ′)/D d φ′ (D.43)

with Z the normalization and V (φp) = − (∆ωφp − α cos(φp)) a linearly-
biased, periodic potential due to the probe. Eq.D.43 can be further simplified
by defining the transformation ψ = φ′ − φp. Writing Ps in terms of φp and ψ
we have:

Ps(φp) =
1

Z
A(φp)

∫ 2π

0

B(φp, ψ) d ψ

A(φp) =e−
α
D cos(φp)

B(φp, ψ) =e−
∆ω
D ψ+ α

D cos(ψ+φp)

(D.44)
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To proceed, we define the following expansions in terms of the modified
Bessel function In(z) [16]:

ea cos(b) =I0(a) + 2

∞∑
n=1

cos(nb)In(a)

e−a cos(b) =I0(a) + 2

∞∑
n=1

(−1)n cos(nb)In(a)

(D.45)

using the definition of the normalization factor

Z =

∫ 2π

0

A(φp) dφ

∫ 2π

0

B(φp, ψ) dψ (D.46)

we calculate the integrals in Eq. D.44,D.46 analytically [16]. This yields the
steady-state probability distribution:

Ps(φp) =

e−
α
D cos(φp)

((
D

∆ω

)2
I0
(
α
D

)
+ 2

∑∞
n=1

(
cos(nφp)−(Dn∆ω ) sin(nφp)

n2+( D
∆ω )

2

)
In
(
α
D

))
2π

((
D

∆ω

)2
I0
(
α
D

)2
+ 2

∑∞
m=1

Im( αD )
2

m2+( D
∆ω )

2

)
(D.47)

In Fig. 4 we plot Eq. D.47 for various values of the scaled amplitude of
probe α/D and detuning ∆ω/D. The probability distribution has the same
general characteristics as the stationary probability distribution for the phase
of a weakly paced cell presented in Eq. D.39. The distribution is slightly asym-
metric about its peak, and this asymmetry is increasing as the detuning ∆ω
increases, or as the forcing α decreases. The peak of the distribution shifts to-
wards lower values of φp as both α and ∆ω increase. For very weak noise, the
zero order term in Eq. D.47 is negligible, and one can expand all the modified
bessel functions in D � 1, and around φp = π, to yield:

lim
D→0

Ps ≈
e−

α
D cos(φp)(2πα/D)−1/2e−

α
D

∑
n

1
n2

2π(2πα/D)−1e−2 αD
∑
m

1
m2

=

√
α

2πD
e−

α
D (φp−π)2

(D.48)

which is again the definition of a delta-function δ(φp − π). The shift of the
peak from φp = (β − π/2) is a result of our shift of the frame of reference from
φc to φp.

This similarity between the steady-state probability densities allows us to
examine the evolution in time of the probability density P (φ, t) by evaluating
the moments of the distribution. To this end, we modify the method described
by Saito [17], by assuming that the time-dependent probability distribution that

16



π

2
π

3π

2
2π

ϕp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ps(ϕp )

π

2
π

3π

2
2π

ϕp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ps(ϕp )

(A)

(B)

Figure 4: Stationary probability distribution Ps(φp) for the analytic expression
in Eq. D.47, taken up to the 10th term in the sum (1 < n,m < 10). (A) Fixed
detuning ∆ω/D = 1 and increasing forcing fs/D = 2 (blue), fs/D = 3(orange)
and fs/D = 5, (green). (B) Fixed forcing fs/D = 5 and decreasing detuning
∆ω/D = 4 (blue), ∆ω/D = 2 (orange) and ∆ω/D = 1 (green).
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satisfies Eq. D.42 has a general form similar to the steady-state distribution of
Eq. D.39, but with time dependent coefficients:

P (φ, t) =
exp (ν(t) cos(φs − µ(t)))

2π I0(ν(t)
(D.49)

where µ(t) and ν(t) are the two time dependent variables related to peak and
width of the probability distribution. By introducing Eq. D.49 into Eq. D.42,
and integrating over the phase, we get two dynamical equations for the peak
and width:

µ̇ = ∆ω − fs cos(µ)

(
I0(ν)

I1(ν)
− 1

ν

)

ν̇ = −

(
D + fs

sin(µ)
ν

)
2
(
I0(ν)
I1(ν) −

I1(ν)
I0(ν) −

1
ν

)
(D.50)

For small noise, this set of equations yields the steady state expressions:

µs ≈ arccos(∆ω/fs)

νs ≈
fs
D

√
1−

(
∆ω

fs

)2
(D.51)

which, for a strongly paced cell (fs � ∆ω), is identical to the result in
Eq. D.39. This implies that the steady state distribution is mainly determined
by the ratio of the reduced amplitude of the external force fs to the noise D.

In the limit of small noise, µ approaches its steady-state value in Eq. D.51 on
short time scales of order ∼ 1/fs, and the two dynamical equations in D.50 are
decoupled. By expanding For D � 1 we can find the approximate expression
for the width:

ν(t) = νs
efst

efst − 1
(D.52)

This expression is used to estimate the correlation in displacement:

〈x(φ, t)x(φ0, 0)〉 =

∫ 2π

0

x0x(φ, t)P (φ, t) dφ ∼ cos(ωpt+µs)

(
1− D

νs

(
1− e−fst

))
(D.53)

where x0, φ0 are arbitrary initial displacement and phase respectively. Note
that at long times the correlation function decays to steady state, oscillatory
behavior with frequency ωp, and an amplitude smaller than the deterministic
case by a term proportional to the noise, D. This implies that as long as the cell
is paced by an external force, the phase does not become decorrelated in time,
and shows only small fluctuations about its steady-state, oscillatory solution.
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