Supplementary Information

The exchange bias behavior of BiFeO3 nanoparticles with natural core-shell

structure

Fengzhen Huang^{1,2}, Xingyu Xu¹, Xiaomei Lu^{1,2*}, Min Zhou¹, Hai Sang^{1,2} and

Jinsong Zhu^{1,2}

¹National Laboratory of Solid State Microstructures and Physics School, Nanjing University, Nanjing 210093, P. R. China, ²Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P. R. China. Correspondence and requests for materials should be addressed to X.M.L (<u>xiaomeil@nju.edu.cn</u>).

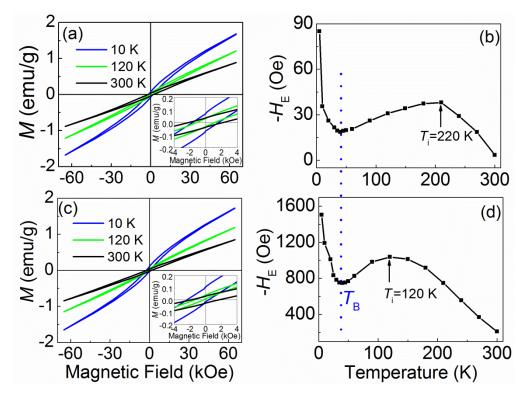


Figure S1. Magnetic measured results of 18 nm BiFeO₃ particles with maximum applied magnetic field of 65 kOe. Magnetic hysteresis (*M*-*H*) loops measured at various temperatures following (a) zero-field cooling (ZFC) and (c) 65 kOe cooling field. Temperature dependent exchange bias field (-*H_E*) under (b) ZFC and (d) 65 kOe cooling field. Insets in (a) and (c) show the local amplification of the corresponding *M*-*H* loops.

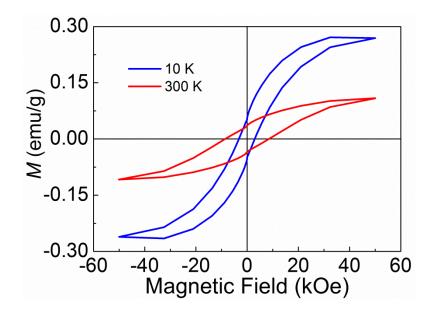


Figure S2. Ferromagnetic parts in the magnetic hysteresis curves of 18 nm BiFeO_3 particles at 10 and 300 K.

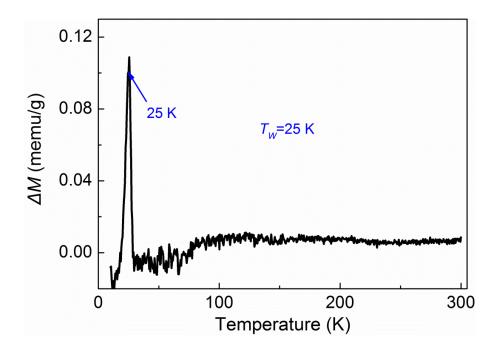


Figure S3. Magnetization difference (ΔM) between the reference and the stop-and-wait ZFC curves of 18 nm BiFeO₃ particles, where $T_w = 25$ K, and the waiting time is 4 h.

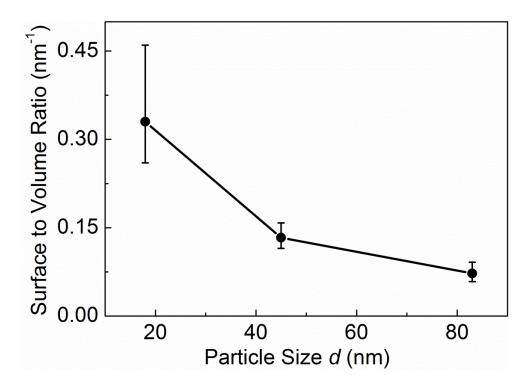


Figure S4. Surface-to-volume ratio of $BiFeO_3$ nanoparticles with various sizes (*d* is the diameter of the particle), which is calculated based on spheroidal particle model.