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Web Appendix: Proofs of Theorems 1 and 2

In this appendix, we will sketch the proofs of Theorems 1 and 2 given in Section 3.3. Denote

a single observation by O = {U, V, ∆1 = I(T ≤ U), ∆2 = I(U < T ≤ V ), Z}, where U and

V are two random examination times and Z is the p-dimensional vector of covariates. The

following regularity conditions are needed for proving the theorems:

Condition (C1). There exists η > 0 such that P (V − U ≥ η) = 1. The union of the

supports of U and V is contained in the interval [σ, τ ], where 0 < σ < τ < +∞.

Condition (C2). The distribution of Z has a bounded support and is not concentrated

on any proper subspace of Rp. Also E{var(Z|U)} and E{var(Z|V )} are positive definite.

Condition (C3). For r = 1 or 2, the function Λ0 ∈M is continuously differentiable up to

order r in [σ, τ ] with the first derivative being strictly positive, and satisfies α−1 < Λ0(σ) <

Λ0(τ) < α for some positive constant α. Also ξ′0 = (β′0, π10, π20) is an interior point of B, a

compact subset of Rp+2. Here B and M are defined in Section 3.2.

Condition (C4). The conditional density g(u, v|z) of (u, v) given z has bounded partial

derivatives with respect to u and v, and the bounds of these partial derivatives do not depend

on (u, v, z).

These conditions are commonly used in the studies of interval-censored data (Huang

and Rossini, 1997; Zhang et al., 2010). In the following, we will prove Theorems 1 and 2

under these conditions by employing the empirical process theory and some nonparametric

methods or techniques. Note that under the proposed design, the samples I0, I1 and I2 are
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independent and each sample consists of iid observations.

Before proving the theorems, we first establish two lemmas. Consider the class of func-

tions Ln = {l(θ, O) : θ ∈ Θn}, where l(θ, O) is the log-likelihood function based on a single

observation O given by

l(θ, O) = ∆1 log(1− S(U |Z)) + ∆2 log(S(U |Z)− S(V |Z)) + (1−∆1 −∆2) logS(V |Z)

− log

{
n0

(
1 +

2∑
k=1

nk
n0πk

Gk(U, V, Z; β,Λ)

)}
−

2∑
k=1

nk
n

log πk,

with S(t|z) = exp{−Λ(t)eβ
′z} being the survival function of T given Z = z and Gk, k =

1, 2, given by G1(u, v, z; β,Λ) = I(u < a1)(1 − S(u|z)) + I(v < a1)(S(u|z) − S(v|z)) and

G2(u, v, z; β,Λ) = I(u > a2)(S(u|z) − S(v|z)). Let Pn denote the empirical measure. For

any ε > 0, define the covering number N(ε,Ln, L1(Pn)) as the smallest value of κ for which

there exists {θ(1), . . . , θ(κ)} such that

min
j∈{1,··· ,κ}

1

n

n∑
i=1

∣∣∣l(θ, Oi)− l(θ(j), Oi)
∣∣∣ < ε

for all θ ∈ Θn, where {O1, · · · , On} represent the observed data under the ODS design and

for j = 1, . . . , κ, θ(j) = (ξ(j),Λ(j)) ∈ Θn. If no such κ exists, define N(ε,Ln, L1(Pn)) =∞.

Lemma 1 (Calculation of the covering number). Assume that Conditions (C1) - (C4)

hold. Then the covering number of the class Ln = {l(θ, O) : θ ∈ Θn} satisfies

N
(
ε,Ln, L1(Pn)

)
≤ KM (m+1)

n ε−(p+m+3)

for some constant K, where m = o(nν) with ν ∈ (0, 1) is the degree of Bernstein polynomials

and Mn = O(na) with a > 0 controls the size of the sieve space Θn.

Proof of Lemma 1

To investigate the covering number, first note that for any θ1 = (ξ1,Λ1), θ2 = (ξ2,Λ2) ∈ Θn,

one can easily obtain that under Conditions (C1) - (C4),

|l(θ1, O)− l(θ2, O)| ≤ K∗(‖ξ1 − ξ2‖+ ‖Λ1 − Λ2‖∞)

for some constant K∗, where ‖f‖∞ = supt |f(t)| for a function f .
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Denote φj = (φj0, · · · , φjm)′ the Bernstein coefficients corresponding to Λj, j = 1, 2. Then

it is easy to show that

‖Λ1 − Λ2‖∞ = sup
t

∣∣∣∣∣
m∑
k=0

φ1
kBk(t,m, σ, τ)−

m∑
k=0

φ2
kBk(t,m, σ, τ)

∣∣∣∣∣
≤ max

0≤k≤m
|φ1
k − φ2

k| ≡ ‖φ1 − φ2‖∞.

Combining these results, we obtain

|l(θ1, O)− l(θ2, O)| ≤ K∗‖ξ1 − ξ2‖+K∗‖φ1 − φ2‖∞ .

It thus follows that for any θ ∈ Θn,

1

n

n∑
i=1

∣∣∣l(θ, Oi)− l(θ(j), Oi)
∣∣∣ ≤ K∗‖ξ − ξ(j)‖+K∗‖φ− φ(j)‖∞.

By Lemma 2.5 of van de Geer (2000), one can show that {ξ ∈ Rp+2, ‖ξ‖ ≤ M} is covered

by (5M/(ε/(2K∗)))p+2 balls with radius ε/(2K∗) and {φ ∈ Rm+1,
∑

0≤k≤m |φk| ≤ Mn} is

covered by (5Mn/(ε/(2K
∗)))m+1 balls with radius ε/(2K∗). Therefore, the covering number

of Ln satisfies

N
(
ε,Ln, L1(Pn)

)
≤
(10K∗M

ε

)p+2

·
(10K∗Mn

ε

)m+1

≤ KM (m+1)
n ε−(p+m+3) .

This completes the proof of Lemma 1.

Lemma 2 (Uniform convergence). Assume that Conditions (C1) - (C4) hold. Then we

have

sup
θ∈Θn

∣∣Pnl(θ, O)− Pl(θ, O)
∣∣→ 0, almost surely,

where

Pnl(θ, O) =
1

n

n∑
i=1

l(θ, Oi) =
1

n

2∑
k=0

nk∑
j=1

l(θ, Oj) and Pl(θ, O) =
2∑

k=0

ρkP
(k)l(θ, O)

with P (k)l(θ, O) being the expectation of l(θ, O) taken under the distribution P (k) that

corresponds to the k-th stratum (k = 0 corresponds to the whole population).

Proof of Lemma 2

Note that |l(θ, O)| is bounded under Conditions (C1) - (C4). Without loss of generality,

we assume supθ∈Θ |l(θ, O)| ≤ 1. Then P (k)[l(θ, O)]2 ≤ P (k)(supθ∈Θ |l(θ, O)|)2 ≤ 1. Let αn =
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n−1/2+φ1(log n)1/2 with ν/2 < φ1 < 1/2. Then {αn} is a nonincreasing sequence of positive

numbers. Also for a given ε > 0, let εn = εαn. Then for sufficiently large n and any θ ∈ Θn,

we have

var(Pnl(θ, O))/(4εn)2 ≤ (1/n2)
∑2

k=0 nkP
(k)[l(θ, O)]2

16ε2α2
n

≤ 1

16ε2nα2
n

=
1

16ε2n2φ1 log n
≤ 1

2
.

Let P o
n denote the signed measure that places mass ±n−1 at each of the observations

{O1, . . . , On}, with the random ± signs being decided independently of the Oi’s. Then

from Pollard (1984, p. 31) and var(Pnl(θ, O))/(4εn)2 ≤ 1/2, the following symmetrization

inequality holds

P
(

sup
θ∈Θn

|Pnl(θ, O)− Pl(θ, O)| > 8εn
)
≤ 4P

(
sup
θ∈Θn

|P o
n l(θ, O)| > 2εn

)
.

Let O = {O1, · · · , On}. Given O, choose θ(1), . . . , θ(κ), where κ = N(εn/2,Ln, L1(Pn)), such

that

min
j∈{1,...,κ}

Pn
∣∣l(θ, O)− l(θ(j), O)

∣∣ < εn/2

for all θ ∈ Θn. For each θ ∈ Θn, write θ∗ for the θ(j) at which the minimum is achieved. Note

that

|P o
n(l(θ, O)− l(θ∗, O))| =

∣∣∣∣∣ 1n
n∑
i=1

±(l(θ, Oi)− l(θ∗, Oi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

|l(θ, Oi)− l(θ∗, Oi)| = Pn|l(θ, O)− l(θ∗, O)|.

Then we have

P
(

sup
θ∈Θn

|P o
n l(θ, O)| > 2εn|O

)
≤ P

(
sup
θ∈Θn

[
|P o
n l(θ

∗, O)|+ Pn|l(θ, O)− l(θ∗, O)|
]
> 2εn|O

)
≤ P

(
max
j
|P o
n l(θ

(j), O)| > 3εn/2|O
)

≤ N(εn/2,Ln, L1(Pn)) max
j
P
(
|P o
n l(θ

(j), O)| > 3εn/2|O
)
.

From the definition of the covering number N(εn/2,Ln, L1(Pn)), for each θ(j), there exists

θ̌(j) ∈ Θn such that Pn|l(θ̌(j), O)− l(θ(j), O)| < εn/2. Therefore, we obtain

P
(
|P o
n l(θ

(j), O)| > 3εn/2|O
)
≤ P

([
Pn|l(θ(j), O)− l(θ̌(j), O)|+ |P o

n l(θ̌
(j), O)|

]
> 3εn/2|O

)
≤ P

(
|P o
n l(θ̌

(j), O)| > εn|O
)
.
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From Hoeffding’s inequality (Pollard, 1984, Appendix B), we have

P
(
|P o
n l(θ̌

(j), O)| > εn|O
)

= P

(∣∣∣∣ n∑
i=1

±l(θ̌(j), Oi)

∣∣∣∣> nεn|O
)

≤ 2 exp

[
−2(nεn)2/

n∑
i=1

(2l(θ̌(j), Oi))
2

]
≤ 2 exp

(
− nε2n/2

)
(because |l(θ̌(j), O)| ≤ 1).

Combining the inequalities above together with Lemma 1, we obtain

P
(

sup
θ∈Θn

|P o
n l(θ, O)| > 2εn|O

)
≤ 2N(εn/2,Ln, L1(Pn)) exp(−nε2n/2)

≤ 2KM (m+1)
n (εn/2)−(p+m+3) exp(−nε2n/2).

Note that the right-hand side does not depend on O, then by taking expectations over O,

we have the following result

P
(

sup
θ∈Θn

|P o
n l(θ, O)| > 2εn

)
≤ 2KM (m+1)

n (εn/2)−(p+m+3) exp(−nε2n/2).

Combining this result with the symmetrization inequality derived above and also noting that

Mn = O(na), m = o(nν) and φ1 > ν/2, we obtain

P
(

sup
θ∈Θn

|Pnl(θ, O)− Pl(θ, O)| > 8εn
)
≤ 4P

(
sup
θ∈Θn

|P o
n l(θ, O)| > 2εn

)
≤ 8KM (m+1)

n (εn/2)−(p+m+3) exp(−nε2n/2)

≤ 8K1 exp
{

(m+ 1)a log n− (p+m+ 3)[log(εn−1/2+φ1(log n)1/2)− log 2]− nε2n−1+2φ1 log n/2
}

≤ 8K2 exp
{

(p+m+ 3)
[
(a+ 1/2− φ1) log n− log log n/2− log ε+ log 2

]
− ε2n2φ1 log n/2

}
≤ 8K2 exp

(
−K3n

2φ1 log n
)
,

where K1, K2 and K3 are constants. Hence
∑∞

n=1 P
(

supθ∈Θn |Pnl(θ, O)−Pl(θ, O)| > 8εn
)
<

∞. By the Borel-Cantelli lemma, we have supθ∈Θn |Pnl(θ, O)− Pl(θ, O)| → 0 almost surely,

which completes the proof of Lemma 2.

Now we are ready to prove Theorems 1 and 2.

Proof of Theorem 1

We first prove the strong consistency of θ̂n. Let l(θ, O) denote the log-likelihood function

based on a single observation O and consider the class of functions Ln = {l(θ, O) : θ ∈ Θn}.
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Then based on Lemma 1, the covering number of Ln satisfies

N
(
ε,Ln, L1(Pn)

)
≤ KM (m+1)

n ε−(p+m+3) .

Furthermore, by Lemma 2, we have

sup
θ∈Θn

∣∣Pnl(θ, O)− Pl(θ, O)
∣∣→ 0 almost surely. (A.1)

Let M(θ, O) = −l(θ, O), and define Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn} for ε > 0 and

ζ1n = sup
θ∈Θn

|PnM(θ, O)− PM(θ, O)|, ζ2n = PnM(θ0, O)− PM(θ0, O).

Then one can show that

inf
Kε
PM(θ, O) = inf

Kε

{
PM(θ, O)− PnM(θ, O) + PnM(θ, O)

}
≤ ζ1n + inf

Kε
PnM(θ, O). (A.2)

If θ̂n ∈ Kε, then we have

inf
Kε
PnM(θ, O) = PnM(θ̂n, O) ≤ PnM(θ0, O) = ζ2n + PM(θ0, O). (A.3)

Define δε = infKε PM(θ, O) − PM(θ0, O). Then under Condition (C2), using the same

arguments as those in Zhang et al. (2010, p. 352), we can prove δε > 0. It follows from (A.2)

and (A.3) that

inf
Kε
PM(θ, O) ≤ ζ1n + ζ2n + PM(θ0, O) = ζn + PM(θ0, O)

with ζn = ζ1n + ζ2n, and hence ζn ≥ δε. This gives {θ̂n ∈ Kε} ⊆ {ζn ≥ δε}, and by (A.1) and

the strong law of large numbers, we have both ζ1n → 0 and ζ2n → 0 almost surely. Therefore,

∪∞k=1 ∩∞n=k {θ̂n ∈ Kε} ⊆ ∪∞k=1 ∩∞n=k {ζn ≥ δε}, which proves that d(θ̂n, θ0)→ 0 almost surely.

Now we will show the convergence rate of θ̂n by using Theorem 3.4.1 of van der Vaart

and Wellner (1996). Below we will use K̃ to denote a universal positive constant which may

differ from place to place. First note from Theorem 1.6.2 of Lorentz (1986) that there exists

a Bernstein polynomial Λn0 such that ‖Λn0 − Λ0‖∞ = O(m−r/2). Define θn0 = (ξ0,Λn0).

Then we have d(θn0, θ0) = O(n−rν/2). For any η > 0, define the class of functions Fη =

{l(θ, O) − l(θn0, O) : θ ∈ Θn, η/2 < d(θ, θn0) ≤ η}. One can easily show that P (l(θ0, O) −

l(θn0, O)) ≤ K̃d(θ0, θn0) ≤ K̃n−rν/2. Also under Condition (C2), using the same arguments
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as those in Zhang et al. (2010, p. 352), we obtain P (l(θ0, O)− l(θ, O)) ≥ K̃d2(θ0, θ). Thus,

for large n, we have P (l(θ, O)− l(θn0, O)) = P (l(θ, O)− l(θ0, O)) +P (l(θ0, O)− l(θn0, O)) ≤

−K̃η2 + K̃n−rν/2 = −K̃η2, for any l(θ, O)− l(θn0, O) ∈ Fη.

Following the calculations in Shen and Wong (1994, p. 597), we can establish that for

0 < ε < η, logN[](ε,Fη, L2(P )) ≤ K̃N log(η/ε) with N = m + 1. Moreover, some algebraic

manipulations yield that P (l(θ, O) − l(θn0, O))2 ≤ K̃η2 for any l(θ, O) − l(θn0, O) ∈ Fη.

Under Conditions (C1) - (C4), it is easy to see that Fη is uniformly bounded. Therefore, by

Lemma 3.4.2 of van der Vaart and Wellner (1996), we obtain

EP‖n1/2(Pn − P )‖Fη ≤ K̃J[](η,Fη, L2(P ))

{
1 +

J[](η,Fη, L2(P ))

η2n1/2

}
where J[](η,Fη, L2(P )) =

∫ η
0
{1 + logN[](ε,Fη, L2(P ))}1/2dε ≤ K̃N1/2η. This yields φn(η) =

N1/2η+N/n1/2. It is easy to see that φn(η)/η is decreasing in η, and r2
nφn(1/rn) = rnN

1/2 +

r2
nN/n

1/2 ≤ K̃n1/2, where rn = N−1/2n1/2 = n(1−ν)/2.

Finally note that Pn(l(θ̂n, O)− l(θn0, O)) ≥ 0 and d(θ̂n, θn0) ≤ d(θ̂n, θ0)+d(θ0, θn0)→ 0 in

probability. Thus by applying Theorem 3.4.1 of van der Vaart and Wellner (1996), we have

n(1−ν)/2d(θ̂n, θn0) = OP (1). This together with d(θn0, θ0) = O(n−rν/2) yields that d(θ̂n, θ0) =

Op(n
−(1−ν)/2 + n−rν/2) and the proof is completed.

Proof of Theorem 2

To establish the asymptotic normality of ξ̂n, following the proof of Theorem 2 in Zhang et al.

(2010), one can first obtain that

√
n(ξ̂n − ξ0) =

{
2∑

k=0

nk
n
Jk(ξ0)

}−1 { 2∑
k=0

√
nk
n

(
1
√
nk

nk∑
i=1

hk(ξ0,Λ0;Oi)

)}
+ op(1),

where hk(ξ,Λ;Oi) and Jk(ξ) are the efficient score and information for ξ corresponding to the

k-th stratum (k = 0 corresponds to the whole population), which can be derived similarly as

in Zhang et al. (2010, p. 344) with our parameters (ξ,Λ) corresponding to theirs (θ, exp(φ)).

Note that n0/n→ ρ0 > 0 and nk/n→ ρk ≥ 0, k = 1, 2, as n→∞. Thus, we have

√
n(ξ̂n − ξ0)→d N(0,Σ),

where Σ = Γ−1ΨΓ−1 with

Γ =
2∑

k=0

ρk Jk(ξ0) and Ψ =
2∑

k=0

ρk vark(hk(ξ0,Λ0;O)).
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Simulation results under sampling without replacement

We conducted a simulation study under the same setup as in Table 1 of the main paper

by using sampling without replacement and the results are given in Web Table 1. The pro-

posed method under sampling without replacement performs similarly as under independent

Bernoulli sampling (see Table 1 of the main paper).
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Web Table 1: Simulation results for the estimation of β when (n0, n1, n2) = (470, 40, 40):

the samples are selected by sampling without replacement

β = 0 β = log 2

Pr(failure) cutpoints Bias SSD ESE CP RE Bias SSD ESE CP RE

0.1 (20%, 80%) β̂SRSn0
-0.000 0.145 0.144 0.94 0.90 -0.005 0.172 0.149 0.93 0.82

β̂SRSn 0.004 0.138 0.133 0.94 1.00 0.001 0.155 0.138 0.94 1.00

β̂GCC 0.000 0.115 0.112 0.95 1.44 -0.001 0.138 0.131 0.94 1.26

β̂IPW -0.001 0.125 0.121 0.94 1.21 -0.004 0.146 0.139 0.94 1.13

β̂P -0.001 0.097 0.098 0.95 2.01 -0.002 0.106 0.122 0.93 2.14

(10%, 90%) β̂SRSn0
-0.003 0.143 0.144 0.96 0.96 -0.008 0.173 0.149 0.93 0.74

β̂SRSn -0.005 0.140 0.133 0.94 1.00 0.006 0.149 0.138 0.94 1.00

β̂GCC 0.001 0.110 0.113 0.96 1.62 -0.003 0.135 0.132 0.95 1.21

β̂IPW -0.002 0.130 0.130 0.95 1.17 -0.007 0.163 0.147 0.92 0.84

β̂P -0.002 0.102 0.100 0.95 1.89 -0.001 0.102 0.104 0.94 2.12

0.2 (20%, 80%) β̂SRSn0
-0.000 0.108 0.104 0.95 0.79 0.007 0.112 0.108 0.95 0.88

β̂SRSn 0.001 0.096 0.095 0.95 1.00 0.009 0.105 0.099 0.94 1.00

β̂GCC -0.005 0.110 0.107 0.94 0.76 0.000 0.112 0.112 0.95 0.88

β̂IPW 0.001 0.095 0.093 0.94 1.02 0.005 0.097 0.097 0.95 1.17

β̂P -0.001 0.086 0.083 0.94 1.24 -0.010 0.084 0.085 0.95 1.54

(10%, 90%) β̂SRSn0
0.001 0.106 0.103 0.96 0.88 0.006 0.112 0.108 0.95 0.88

β̂SRSn 0.002 0.099 0.096 0.94 1.00 0.009 0.105 0.099 0.94 1.00

β̂GCC -0.004 0.107 0.107 0.95 0.86 -0.000 0.112 0.112 0.95 0.87

β̂IPW 0.002 0.098 0.097 0.95 1.03 0.007 0.102 0.102 0.95 1.06

β̂P 0.000 0.087 0.084 0.95 1.32 -0.002 0.089 0.091 0.94 1.40

0.3 (20%, 80%) β̂SRSn0
0.001 0.084 0.085 0.95 0.86 0.005 0.093 0.091 0.95 0.83

β̂SRSn -0.004 0.078 0.078 0.95 1.00 0.003 0.084 0.084 0.95 1.00

β̂GCC -0.004 0.100 0.100 0.95 0.62 0.008 0.110 0.108 0.94 0.58

β̂IPW 0.001 0.078 0.078 0.94 1.00 0.005 0.084 0.084 0.95 1.00

β̂P 0.001 0.075 0.073 0.94 1.10 -0.018 0.079 0.076 0.93 1.13

(10%, 90%) β̂SRSn0
0.001 0.084 0.085 0.95 0.86 0.005 0.093 0.091 0.95 0.83

β̂SRSn -0.004 0.078 0.078 0.95 1.00 0.003 0.084 0.084 0.95 1.00

β̂GCC -0.004 0.100 0.100 0.95 0.62 0.008 0.110 0.108 0.94 0.58

β̂IPW 0.001 0.081 0.081 0.94 0.95 0.006 0.089 0.087 0.95 0.89

β̂P 0.000 0.075 0.082 0.94 1.08 -0.003 0.080 0.079 0.95 1.09

β̂SRSn0
, the sieve MLE based only on the SRS portion of the ODS sample; β̂SRSn , the sieve MLE based on a SRS sample

of the same size as the ODS sample; β̂GCC , the estimator based on the generalized case-cohort sample; β̂IPW , the inverse

probability weighted estimator based on the ODS sample; β̂P , the proposed estimator based on the ODS sample.

9


