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The Web-based Supplementary Materials include the Web Appendix referenced in Section 3.3
and Web Table 1 referenced in Section 4.

Web Appendix: Proofs of Theorems 1 and 2

In this appendix, we will sketch the proofs of Theorems 1 and 2 given in Section 3.3. Denote
a single observation by O = {U, V, Ay =I(T <U), Ay =I(U < T <V), Z}, where U and
V' are two random examination times and Z is the p-dimensional vector of covariates. The
following regularity conditions are needed for proving the theorems:

Condition (C1). There exists n > 0 such that P(V — U > n) = 1. The union of the
supports of U and V' is contained in the interval [o, 7], where 0 < 0 < 7 < 400.

Condition (C2). The distribution of Z has a bounded support and is not concentrated
on any proper subspace of RP. Also E{var(Z|U)} and E{var(Z|V)} are positive definite.

Condition (C3). For r = 1 or 2, the function Ay € M is continuously differentiable up to
order r in [0, 7] with the first derivative being strictly positive, and satisfies a™' < Ag(0) <
Ao(7) < a for some positive constant a. Also & = (), m10, T20) is an interior point of B, a
compact subset of RPT2. Here B and M are defined in Section 3.2.

Condition (C4). The conditional density g(u,v|z) of (u,v) given z has bounded partial
derivatives with respect to u and v, and the bounds of these partial derivatives do not depend
on (u,v, z).

These conditions are commonly used in the studies of interval-censored data (Huang
and Rossini, 1997; Zhang et al., 2010). In the following, we will prove Theorems 1 and 2
under these conditions by employing the empirical process theory and some nonparametric

methods or techniques. Note that under the proposed design, the samples Iy, I; and I, are



independent and each sample consists of iid observations.
Before proving the theorems, we first establish two lemmas. Consider the class of func-
tions £,, = {l(0,0) : 0 € ©,}, where [(0,0O) is the log-likelihood function based on a single

observation O given by

1(0,0) =Aylog(1 —S(U|Z)) 4+ Aglog(S(U|Z) — S(VIZ)) + (1 — Ay — Ag) log S(V'|Z)
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with S(t|z) = exp{—A(t)e?*} being the survival function of T given Z = z and Gy, k =
1,2, given by Gy(u,v,z;5,A) = I(u < a1)(1 — S(ulz)) + I(v < a1)(S(u|z) — S(v|z)) and
Go(u,v,z; 8,A) = I(u > az)(S(u|z) — S(v|z)). Let P, denote the empirical measure. For
any € > 0, define the covering number N (e, £, L1(P,)) as the smallest value of s for which

there exists {#™), ... 0%} such that
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for all @ € ©,,, where {Oy,---,0,} represent the observed data under the ODS design and
for j =1,...,k, 09 = (€W AW) € ©,. If no such k exists, define N(e, L, L1(P,)) = co.

Lemma 1 (Calculation of the covering number). Assume that Conditions (C1) - (C4)

hold. Then the covering number of the class £,, = {l(0,0) : 0 € ©,,} satisfies
N<€7 £n7 Ll (Pn)> < KMT(Lm+1)6*(p+m+3)

for some constant K, where m = o(n”) with v € (0, 1) is the degree of Bernstein polynomials

and M,, = O(n®) with a > 0 controls the size of the sieve space O,,.

Proof of Lemma 1
To investigate the covering number, first note that for any ' = (¢, Al), 02 = (£2,A?) € O,
one can easily obtain that under Conditions (C1) - (C4),

16", 0) = 1(6%,0)| < K*(J|¢" = €| + A" — A*[|<)

for some constant K*, where || f||oc = sup, | f(¢)| for a function f.



Denote ¢/ = ( -, @ )" the Bernstein coefficients corresponding to A/, 7 = 1,2. Then

it is easy to show that
A — A2 0 = Su E ¢1B t,m,o,T) — E ngQB t,m,o,T
|| ” tp £ k k( ) . k k( )

< max [g — dif = [|¢" — ¢°[|oc-

0<k<m

Combining these results, we obtain
1(6%,0) = (6%, 0)] < K™[|¢" = €| + K™]|¢" — ¢ -
It thus follows that for any 6 € O,
—21190 0,00)] < Ko JlE = €9 + K¢ — 69|

By Lemma 2.5 of van de Geer (2000), one can show that {£ € RP2 ||€]| < M} is covered
by (5M/(e/(2K7)))P*? balls with radius ¢/(2K*) and {¢ € R™', 37, |on| < My} is
covered by (5M,,/(e/(2K*)))™*! balls with radius €¢/(2K*). Therefore, the covering number
of L,, satisfies

10K*M>P+2 (10K*Mn

)mH < KM= (rm+s)
B = n

N(e,ﬁle(Pn)) < (

€

This completes the proof of Lemma 1.

Lemma 2 (Uniform convergence). Assume that Conditions (C1) - (C4) hold. Then we

have
sup |P,l(6,0) — Pl(9,0)| — 0, almost surely,
0€O,
where
1 n 1 2 ng
= - 1(0,0;) = — 1(0,0;) and PI(0,0) pr P
- Z (6.0:) = — ];Z (6,0)) Z

with P®)[(6,0) being the expectation of [(f,0) taken under the distribution P*) that

corresponds to the k-th stratum (k£ = 0 corresponds to the whole population).

Proof of Lemma 2
Note that |[(6,0)| is bounded under Conditions (C1) - (C4). Without loss of generality,
we assume supycg |[(6,0)| < 1. Then P®[1(0,0)]? < P® (supyee |1(6,0))? < 1. Let o, =
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n~1/%* 91 (logn)Y/? with v/2 < ¢; < 1/2. Then {a,} is a nonincreasing sequence of positive
numbers. Also for a given € > 0, let ¢, = ea,,. Then for sufficiently large n and any 0 € ©,,,

we have

1/n?) 7 n, PO[I(6,0))? 1 1 1
2 < ( k=0 < = < —.
var(Fl(6, 0))/ (den)” < 16€2a2 16€?na?  16e2n2¢1logn — 2

L at each of the observations

Let P? denote the signed measure that places mass £n~
{O4,...,0,}, with the random + signs being decided independently of the O;’s. Then
from Pollard (1984, p. 31) and var(P,l(#,0))/(4€,)* < 1/2, the following symmetrization
inequality holds

P( sup |P,l(0,0) — Pl(8,0)| > 8¢,) < 4P( sup |P(0,0)] > 2¢,).
0€O,, 0cO,,

Let O = {Oy,---,0,}. Given O, choose 81, ... 0% where k = N(e,/2,L,, L1(P,)), such
that
min _P,[l(6,0) — (89, O)] < /2

je{1,....x}
for all @ € ©,,. For each 6 € ©,,, write 6* for the #U) at which the minimum is achieved. Note
that

n

IP2(U0,0) 16", 0)) = |5 3" +(1(6,0) 0", 0,)
< %i 1(6,0,) — (6%, 0,)| = P,Ji(8,0) — (67, 0)|.

i=1

Then we have

P(sup |P2L(0,0)| > 26,|0) < P(sup [|P2(6",0)] + P.JI(6,0) — 1(6%,0)]] > 26,]0)

0cO, 0O,
< P(max |P21(0Y),0)| > 3¢,/2|0)
J
< N(€/2, L, Li(Py)) max P(|P2L(0Y), O)| > 3e,/2]|0).
J

From the definition of the covering number N (e, /2, L,, L1(P,)), for each §Y) there exists
0U) € O, such that P,|l(89), 0) — (89, 0)| < €, /2. Therefore, we obtain

P(|P2L(OD,0)| > 3¢,/2|0) < P([PuJI(0D,0) —1(69),0)| + | P09, O)|] > 3€,/2|0)
< P(|P21(6Y),0)| > en|(9).



From Hoeffding’s inequality (Pollard, 1984, Appendix B), we have

Z:I:l

< 2exp {—2(716”)2/ Z(Ql(é(j), Oi))Q}

P(]Pgl(é(' 0)| > €n|O ( )|> nen|(9)

< 2exp (—ne,/2) (because 169, 0)| < 1).
Combining the inequalities above together with Lemma 1, we obtain

P( sup |P2L(0,0)| > 2¢,|0) < 2N(€,/2, Ly, L1(P,)) exp(—ne, /2)
GEGTL

< 2K M (¢, /2) =0t exp(—ne2 /2).

Note that the right-hand side does not depend on O, then by taking expectations over O,

we have the following result

P( sup |PJ(0,0)| > 2¢,) < 2K M, (M) (¢, /2)~WFmE) oxp(—ne /2).

0€0,
Combining this result with the symmetrization inequality derived above and also noting that

M, = O(n%), m = o(n”) and ¢, > v/2, we obtain

P( sup |P,l(0,0) — Pl(8,0)| > 8¢,) < 4P( sup |P(0,0)| > 2e,)
0€0, 0€0n

< 8EM" Y (e,,/2)" "™+ exp(—ney, /2)

< 8K exp {(m + Dalogn — (p+ m + 3)[log(en 1?1 (logn)'/?) — log 2] — ne’n~1+%1log n/Q}
< 8K, exp {(p +m+3)[(a+1/2 — ¢1)logn — loglogn/2 — log € + log 2] — €*n**'log n/2}

< 8Ky exp ( — K3n* log n) ,

where K7, K and K3 are constants. Hence Yo" | P(supgee, |Pul(0,0) — PL(0,0)| > 8e,) <
00. By the Borel-Cantelli lemma, we have supyeg_ |Pl(0,0) — Pl(6,0)| — 0 almost surely,

which completes the proof of Lemma 2.
Now we are ready to prove Theorems 1 and 2.

Proof of Theorem 1
We first prove the strong consistency of 0,. Let 1(6,0) denote the log-likelihood function

based on a single observation O and consider the class of functions £, = {{(0,0) : 0 € ©,,}.
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Then based on Lemma 1, the covering number of £,, satisfies
N(e, L, Ll(Pn)> < KM= rm+3)
Furthermore, by Lemma 2, we have
eseuep |Pnl(9, O) — Pl(0, O)| — 0 almost surely. (A.1)
Let M(6,0) = —1(6,0), and define K. = {6 :d(0,0y) > ¢,0 € ©,,} for ¢ > 0 and
Cin = Gseuep |P,M(0,0) — PM(0,0)|, Con = PM(6y,0) — PM(6y,0).

Then one can show that

inf PM(0,0) = inf { PM(6,0) = P,M(0,0) + PuM(6,0) } < G+ inf P,M(9,0). (A2)

€

If én € K., then we have
inf P, M (0,0) = P,M(6,,0) < P,M(0y,0) = Con + PM(6,,0). (A.3)

Define §. = infx, PM(0,0) — PM(6y,0). Then under Condition (C2), using the same
arguments as those in Zhang et al. (2010, p. 352), we can prove J. > 0. It follows from (A.2)
and (A.3) that

ilr(lf PM(0,0) < (in + Con + PM(6y,0) = ¢, + PM(6y,0)

with ¢, = Cin 4 Can, and hence ¢, > 6. This gives {0, € K.} C {¢, > 6.}, and by (A.1) and
the strong law of large numbers, we have both (1, — 0 and (5, — 0 almost surely. Therefore,
U, N, {0, € K.} CUX, N, {¢, > 4.}, which proves that d(6,,0,) — 0 almost surely.

Now we will show the convergence rate of 6, by using Theorem 3.4.1 of van der Vaart
and Wellner (1996). Below we will use K to denote a universal positive constant which may
differ from place to place. First note from Theorem 1.6.2 of Lorentz (1986) that there exists
a Bernstein polynomial A, such that ||Aug — Aglee = O(m™"/2). Define 0,0 = (&, Ano).
Then we have d(6,0,6) = O(n~"/?). For any n > 0, define the class of functions F, =
{U(0,0) = U(00,0) : 0 € ©,,1n/2 < d(0,0,0) < n}. One can easily show that P(l(6y,O) —
1(0,0,0)) < Kd(60y,0,0) < Kn~/2. Also under Condition (C2), using the same arguments
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as those in Zhang et al. (2010, p. 352), we obtain P(I(f,, O) — 1(0,0)) > Kd?(,,6). Thus,
for large n, we have P(1(6,0) — (0,0,0)) = P(1(0,0) — (0, O)) + P(l(6p, O) — (00, 0)) <
—Kn? + Kn~™/? = —Kn?, for any 1(0,0) — (0,9, 0) € F,.

Following the calculations in Shen and Wong (1994, p. 597), we can establish that for
0 <e <, logNy(e, Fy, Lao(P)) < KN log(n/e) with N = m + 1. Moreover, some algebraic
manipulations yield that P(1(6,0) — 1(6,,0))* < Kn? for any 1(6,0) — 1(0,0,0) € F,.
Under Conditions (C1) - (C4), it is easy to see that F; is uniformly bounded. Therefore, by
Lemma 3.4.2 of van der Vaart and Wellner (1996), we obtain

Jy(n, Fy, La(P)) }

n2nl/?

EPHnl/Q(Pn — P)||5, < KJ[](n,fn,Lg(P)){l +

where J)(n, F;, Lo(P)) = [7{1 +log Ny(e, Fyy, Lo(P))}/?de < KNY?1. This yields ¢,(n) =
NY2p4 N/n'/2. 1t is easy to see that ¢, (n)/n is decreasing in 1, and r2¢,,(1/r,) = r, N/ +
r2N/n*/? < Kn'/?, where 1, = N~Y/2p1/2 = n(t=)/2,

Finally note that P, (I(6,,, 0) — (60, 0)) > 0 and d(6,,, 00) < d(0,,0)+d(0p, 0,0) — 0 in
probability. Thus by applying Theorem 3.4.1 of van der Vaart and Wellner (1996), we have
n=724(8,,0,0) = Op(1). This together with d(60,6) = O(n~""/2) yields that d(6,,06y) =
O, (n=(=")/2 4 n=v/2) and the proof is completed.

Proof of Theorem 2
To establish the asymptotic normality of fn, following the proof of Theorem 2 in Zhang et al.
(2010), one can first obtain that

Vi — ) = {Z%mm} {Z\F ( > (e 400 )} + 0,(1),

where hy (€, A; O;) and Ji () are the efficient score and information for £ corresponding to the
k-th stratum (k = 0 corresponds to the whole population), which can be derived similarly as
in Zhang et al. (2010, p. 344) with our parameters (£, A) corresponding to theirs (6, exp(¢)).

Note that ng/n — po > 0 and ni/n — pp >0, k = 1,2, as n — co. Thus, we have
\/ﬁ(én - 50) —d N<Oa E)a
where ¥ = I''WI'! with

2 2
I' = Zpk Je(&o) and W= Zpk varg(hg(&o, Ao; O)).
k=0

k=0



Simulation results under sampling without replacement

We conducted a simulation study under the same setup as in Table 1 of the main paper
by using sampling without replacement and the results are given in Web Table 1. The pro-
posed method under sampling without replacement performs similarly as under independent

Bernoulli sampling (see Table 1 of the main paper).
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Web Table 1: Simulation results for the estimation of 5 when (ng,nq,n2) = (470,40, 40):

the samples are selected by sampling without replacement

B=0 B =1log2
Pr(failure) cutpoints Bias SSD ESE CP RE Bias SSD ESE CP RE
0.1 (20%, 80%) BSRSTLO -0.000 0.145 0.144 0.94 0.90 -0.005 0.172  0.149 0.93 0.82
Bsrs,, 0.004 0.138 0.133 094 1.00 0.001  0.155 0.138 0.94 1.00
Bacce 0.000 0.115 0.112 0.95 1.44 -0.001  0.138 0.131 0.94 1.26
BIPW -0.001  0.125 0.121 094 1.21 -0.004 0.146 0.139 094 1.13
Bp -0.001  0.097 0.098 0.95 2.01 -0.002 0.106 0.122 0.93 2.14
(10%, 90%) BSRSnO -0.003 0.143 0.144 0.96 0.96 -0.008 0.173 0.149 0.93 0.74
Bsrs, -0.005 0.140 0.133 0.94 1.00 0.006  0.149 0.138 0.94 1.00
Bacc 0.001  0.110 0.113 0.96 1.62 -0.003 0.135 0.132 095 1.21
Brpw -0.002 0.130 0.130 0.95 1.17 -0.007 0.163 0.147 0.92 0.84
Bp -0.002 0.102 0.100 0.95 1.89 -0.001  0.102 0.104 0.94 2.12
0.2 (20%,80%)  Bsrs,, -0.000 0.108 0.104 095 0.79 0.007 0.112 0.108 0.95 0.88
Bsrs,, 0.001  0.096 0.095 0.95 1.00 0.009  0.105 0.099 0.94 1.00
Baco -0.005 0.110 0.107 0.94 0.76 0.000 0.112 0.112 0.95 0.88
Brpw 0.001  0.095 0.093 0.94 1.02 0.005  0.097 0.097 0.95 1.17
Bp -0.001  0.086 0.083 0.94 1.24 -0.010 0.084 0.085 0.95 1.54
(10%,90%) PBsrs,, 0001 0106 0103 096 0.88 0.006 0.112 0.108 0.95 0.88
Bsrs,, 0.002  0.099 0.096 0.94 1.00 0.009 0.105 0.099 0.94 1.00
Baoo -0.004 0.107 0.107 0.95 0.86 -0.000 0.112 0.112 095 0.87
Brpw 0.002  0.098 0.097 0.95 1.03 0.007  0.102 0.102 0.95 1.06
Bp 0.000 0.087 0.084 0.95 1.32 -0.002 0.089 0.091 0.94 1.40
0.3 (20%, 80%) BSRSnO 0.001  0.084 0.085 0.95 0.86 0.005 0.093 0.091 0.95 0.83
Bsrs,, -0.004 0.078 0.078 0.95 1.00 0.003 0.084 0.084 0.95 1.00
Baco  -0.004  0.100 0.100 0.95 0.62 0.008 0.110 0.108 0.94 0.58
BIPW 0.001  0.078 0.078 0.94 1.00 0.005 0.084 0.084 0.95 1.00
Bp 0.001  0.075 0.073 0.94 1.10 -0.018 0.079 0.076  0.93 1.13
(10%, 90%) BSRSnO 0.001  0.084 0.085 0.95 0.86 0.005 0.093 0.091 0.95 0.83
BsRs, -0.004 0.078 0.078 0.95 1.00 0.003  0.084 0.084 0.95 1.00
Baco -0.004 0.100 0.100 0.95 0.62 0.008 0.110 0.108 0.94 0.58
B pw 0.001  0.081 0.081 0.94 0.95 0.006 0.089 0.087 0.95 0.89
Bp 0.000 0.075 0.082 0.94 1.08 -0.003 0.080 0.079 0.95 1.09

BSRSnm the sieve MLE based only on the SRS portion of the ODS sample; BSRSW the sieve MLE based on a SRS sample
of the same size as the ODS sample; BGCC\ the estimator based on the generalized case-cohort sample; B[PWv the inverse

probability weighted estimator based on the ODS sample; B p, the proposed estimator based on the ODS sample.



