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Supplementary note 

 

A simple example of bias due to covariate adjustment in genetic association study 
Consider four variables, 𝑌 a given outcome, 𝐶 a potential covariate, 𝑈 an unmeasured variable, and 𝐺 a genetic 
variant. For simplicity all four variables are assumed to be normally distributed with mean 0 and variance 1. 
Consider a model where the 𝑌 and 𝐶 are correlated because they are both influenced by 𝑈, and 𝐺 is associated 
with 𝐶 only with effect 𝛽𝐶  (as illustrated in Figure 1d). Under such model 𝑌 and 𝐶 can be written as: 

𝑌 = 𝛾1 ×  𝑈 +  √1 − 𝛾1
2 × 𝜀𝑌 

𝐶 = 𝛾2 × 𝑈 +  𝛽𝐶 × 𝐺 + √1 − 𝛾2
2 − 𝛽𝐶

2 × 𝜀𝐶  

Consider the case where 𝛾1 and 𝛾2 are positives for simplicity, the correlation between 𝑌 and 𝐶 equals 𝛾1𝛾2. It 
follows that  𝑌 adjusted for 𝐶 equals: 

𝑌𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑.𝐶 = 𝑌 − 𝛾1𝛾2 × 𝐶  

                     =  𝛾1 ×  𝑈 +  √1 − 𝛾1
2 × 𝜀𝑌 − 𝛾1𝛾2 (𝛾2 × 𝑈 +  𝛽𝐶 × 𝐺 + √1 − 𝛾2

2 − 𝛽𝐶
2 × 𝜀𝐶) 

                     = 𝛾1𝛾2 × (𝛾1 − 𝛾2) × 𝑈 − 𝛾1𝛾2 × 𝛽𝐶 × 𝐺 − 𝛾1𝛾2 × √1 − 𝛾2
2 − 𝛽𝐶

2 × 𝜀𝐶 +  √1 − 𝛾1
2 × 𝜀𝑌 

Thus, after the adjustment, the outcome 𝑌𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑.𝐶  depends on 𝐺 with an effect equal to 𝛾1𝛾2 × 𝛽𝐶. 

 

Consider now a slightly different model, where the SNP is associated with both 𝑌 and 𝐶 with effect 𝛽𝑌 and 𝛽𝐶, 
respectively (as illustrated in Figure 1c), so that: 

𝑌 = 𝛾1 ×  𝑈 +  𝛽𝑌 × 𝐺 +  √1 − 𝛾2
2 − 𝛽𝑌

2 × 𝜀𝑌 

𝐶 = 𝛾2 × 𝑈 +  𝛽𝐶 × 𝐺 + √1 − 𝛾2
2 − 𝛽𝐶

2 × 𝜀𝐶  

 One can similarly show that 𝑌 adjusted for 𝐶 equals: 

 𝑌𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑.𝐶 = (𝛽𝑌 − 𝛾1𝛾2 × 𝛽𝐶) × 𝐺 + 𝜀𝑌𝑎𝑑𝑗
  

where 𝜀𝑌𝑎𝑑𝑗
is a random variable not associated with 𝐺. In such case the effect of 𝐺 on 𝑌 would be either 

overestimated if 𝛽𝐶  and 𝛽𝑌 have opposite direction, and underestimated if 𝛽𝐶  and 𝛽𝑌 have effect in the same 
direction. 

 

The above results illustrated the bias induced in a two-step adjustment strategy (i.e. adjusting the outcome for 
covariates in a first step, and then testing for association between the residual of the outcome and the 
predictor). However a similar bias exists if adjustment and test for association with the predictor are performed 
in a single framework. Indeed, we showed in a recent study1 that the expected value of the joint least square 

estimates of 𝛾 and 𝛽̂, the effect of 𝐶 and 𝐺 on 𝑌, respectively equal: 
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𝔼[𝛾] =
1

1 − (𝛽𝐶)
2
(𝛾 − 𝛽𝑌𝛽𝐶) 

𝔼[𝛽̂𝑎𝑑𝑗] =
1

1 − (𝛽𝐶)
2
(𝛽𝑌 − 𝛽𝐶𝛾) 

 

 

Conditional effect estimate of the covariates 
For simplicity, we consider all variables in question are standardized to have mean 0 and variance 1. In standard 

ordinary least squared, 𝛿, the estimated effect of 𝑋 on 𝐶 from the linear model 𝐶~𝛿𝑋 + 𝜀 has an expected 

value of 𝔼[𝛿̂] = 𝛿 and a variance 𝜎
𝛿̂
2 = 𝜎2(𝑿′𝑿)−1, were 𝜎2 is the variance of 𝜀. When the sample size 𝑁 is 

large and 𝛿 is small, 𝜎
𝛿̂
2 ≈ 1 𝑁⁄ . 

 

Now consider the more general case assuming 𝐶, 𝑌, and 𝑋 follow a multivariate normal distribution, i.e.   

[
𝐶
𝑌
𝑋
]~𝑀𝑉𝑁 [[

0
0
0
] , [

1 γ 𝛿
γ 1 𝛽
𝛿 𝛽 1

]] = 𝑀𝑉𝑁[0⃑ , Σ] 

 

The maximum likelihood for Σ is asymptotically similar to the method-of-moments estimator, so that for a 
sample size 𝑛, we have the following approximation: 

Σ̂ =
1

𝑛
∑([

𝑐𝑖 − 𝑐̅
𝑦𝑖 − 𝑦̅
𝑥𝑖 − 𝑥̅

] [𝑐𝑖 − 𝑐̅ 𝑦𝑖 − 𝑦̅ 𝑥𝑖 − 𝑥̅])

𝑁

𝑖=1

= [

𝜎̂𝐶
2 γ̂ 𝛿

γ̂ 𝜎̂𝑌
2 𝛽̂

𝛿̂ 𝛽̂ 𝜎̂𝑋
2

] =
1

𝑛
𝑆 

 

Where 𝑆 follows a 3 degrees of freedom Wishart distribution, 𝑆~𝑊3(Σ, 𝑛), which has an expected value 
𝔼[𝑆] = 𝑛Σ. 

The matrix 𝑆 can be partition as: 

 𝑆 = (
𝑆11 𝑆12

𝑆21 𝑆22
) where 𝑆11 = 𝑛𝜎̂𝐶

2 ; 𝑆22 = 𝑛(
𝜎̂𝑌

2 𝛽̂

𝛽̂ 𝜎̂𝑋
2
) ; and 𝑆21 = 𝑛 (

γ̂

𝛿
) 

 

It follows that the distribution of 𝑆21 conditional on 𝑆22 equals 𝑆21 | 𝑆22~𝑁(𝜇, Λ) with 𝜇 = 𝑆22Σ22
−1Σ21 and 

Λ = 𝑆22 ⊗ Σ11.2, and:   

 

Σ11.2 = Σ11 − Σ12Σ22
−1Σ21 = 1 − [γ 𝛿]

1

1 − 𝛽2 [
1 −𝛽

−𝛽 1
] [

γ
𝛿
] 

           = 1 −
1

1 − 𝛽2
[γ − 𝛽𝛿 −𝛽γ + 𝛿] [

γ
𝛿
] 

           = 1 −
γ(γ − 𝛽𝛿) + 𝛿(−𝛽γ + 𝛿)

1 − 𝛽2
 

           = 1 −
γ2 + 𝛿2 − 2𝛿γ𝛽

1 − 𝛽2
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so that:  

Λ = 𝑆22 ⊗ Σ11.2 = 𝑛Σ11.2 (
𝜎̂𝑌

2 𝛽̂

𝛽̂ 𝜎̂𝑋
2
) = (1 −

γ2 + 𝛿2 − 2𝛿γ𝛽

1 − 𝛽2 )𝑛 (
𝜎̂𝑌

2 𝛽̂

𝛽̂ 𝜎̂𝑋
2
) 

 

and, 

𝜇 = 𝑆22Σ22
−1Σ21 

   = (𝑛 [
𝜎̂𝑌

2 𝛽̂

𝛽̂ 𝜎̂𝑋
2
]) (

1

1 − 𝛽2 [
1 −𝛽

−𝛽 1
]) [

γ
𝛿
] 

   =
𝑛

1 − 𝛽2
[
𝜎̂𝑌

2 − 𝛽𝛽̂ 𝛽̂ − 𝛽𝜎𝑌
2

𝛽̂ − 𝛽𝜎̂𝑋
2 𝜎̂𝑋

2 − 𝛽𝛽̂
] [

γ
𝛿
] 

   =
𝑛

1 − 𝛽2
[
γ(𝜎̂𝑌

2 − 𝛽𝛽̂) + 𝛿(𝛽̂ − 𝛽𝜎̂𝑌
2)

γ(𝛽̂ − 𝛽𝜎̂𝑋
2) + 𝛿(𝜎̂𝑋

2 − 𝛽𝛽̂)
] 

 

Hence, in the special case where 𝛿 = 𝛽 = 0, we have : 

𝜇 = 𝑛 [
γ𝜎̂𝑌

2

γ𝛽̂
] 

 

When sample size is large enough and |γ| ≫ 0, we assume that 𝜎̂𝑌
2 ≈ 𝜎̂𝑋

2 ≈ 1 and γ ≈ γ̂. It follows that the 
mean can be approximated by: 

𝜇 ≈ [
𝑛γ̂

𝑛γ̂𝛽̂
] 

 

From above, we have 𝔼[Σ̂21 | 𝑆22] =
1

𝑛
𝔼[𝑆21 | 𝑆22], so that for the same special case, we have: 

𝔼 [
γ̂

𝛿
 | 𝑆22]

𝛿=𝛽=0

 =
1

𝑛
𝔼 [

𝑛γ̂

𝑛𝛿
 | 𝜎̂𝑌

2, 𝜎̂𝑋
2, 𝛽̂]

𝛿=𝛽=0

 

                                ≈
1

𝑛
𝔼 [

𝑛γ̂

𝑛𝛿
 | 𝛽̂]

𝛿=𝛽=0

 

                                ≈ [
γ̂

γ̂𝛽̂
] 

 

In other words: 

𝔼(𝛿|𝛽̂)
𝛿=𝛽=0

≈ γ̂𝛽̂ 

 

And the variance of 𝑛𝛿 conditional on 𝑆22 under the same assumption (𝜎̂𝑌
2 ≈ 1, 𝜎̂𝑋

2 ≈ 1 and γ ≈ γ̂), and for the 
special case where 𝛿 = 𝛽 = 0, it follows that: 

 

𝑣𝑎𝑟(𝑛𝛿|𝑆22)𝛿=𝛽=0
= 𝑣𝑎𝑟(𝑛𝛿|𝜎̂𝑌

2, 𝜎̂𝑋
2, 𝛽̂)

𝛿=𝛽=0
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                                     =  [(1 −
γ2 + 𝛿2 − 2𝛿γ𝛽

1 − 𝛽2 )𝑛𝜎̂𝑋
2]

𝛿=𝛽=0

 

                                     ≈ (1 − γ̂2)𝑛 

 

so that: 

𝑣𝑎𝑟(𝛿|𝛽̂)
𝛿=𝛽=0

≈=
1

𝑛2
(1 − γ̂2)𝑛 ≈

(1 − γ̂2)

𝑛
 

 

 

Type I error inflation when filtering covariates based on their p-values for association with the predictor 
Consider the three standardized variables: an outcome 𝑌, a predictor 𝑋 and a covariate 𝐶. The p-value based 
filtering consists in including 𝐶 as a covariate in the model 𝑌~𝛽𝑋 + 𝜀𝑌 only if its p-value for association with 𝑋 
from the marginal linear model 𝐶~𝛿𝑋 + 𝜀𝐶  is greater than a threshold 𝛼. Filtering out a covariate based on its p-

value is equivalent to filtering based on 𝜒
𝛿̂
2, the 1 degree of freedom  chi-squared statistic for the test of 𝛿, i.e. 

𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 ⇔ 𝜒
𝛿̂
2 ≥  𝑡 and conversely 𝑝 > 𝛼 ⇔ 𝜒

𝛿̂
2 <  𝑡. Where 𝑡 = ϕ−1(𝛼) and ϕ−1 is the inverse of a 1 

degree of freedom chi-squared cumulative distribution function. 

In parallel, and using the same derivation as in the previous section and assuming 𝜎̂𝑌
2 ≈ 1 and γ ≈ γ̂, one can 

show that 𝔼(𝛽̂|𝛿̂)
𝛿=𝛽=0

≈ γ̂𝛿̂ and  𝑣𝑎𝑟(𝛽̂|𝛿̂)
𝛿=𝛽=0

≈ (1 − γ̂2) 𝑛⁄  , where 𝑛 is the sample size.  

When sample size is large so that 𝑣𝑎𝑟(𝛿) ≈ 𝑣𝑎𝑟(𝛽̂) ≈ 1/𝑛, the expected value of  𝜒
𝛽̂
2, the 1 degree of freedom 

chi-squared statistics for the test of 𝛽̂, can be expressed as a function of 𝜒
𝛿̂
2: 

𝔼(𝜒
𝛽̂
2|𝛿̂)

𝛿=𝛽=0
≈  𝑛𝔼(

𝛽̂2

𝜎̂𝑌
2 |𝛿)

𝛿=𝛽=0

 

                             ≈ 𝑛 [𝔼(𝛽̂|𝛿̂)
𝛿=𝛽=0

2
+ 𝑣𝑎𝑟(𝛽̂|𝛿̂)

𝛿=𝛽=0
] 

                             ≈ 𝑛 [(γ̂𝛿)
2
+

(1 − γ̂2)

𝑛
] 

                             ≈ 1 − γ̂2 + γ̂2𝜒
𝛿̂
2 

Adding boundaries on 𝛿, the expected value of 𝜒
𝛽̂
2 has the following form, which depends on the first moment of 

a truncated chi-squared distribution:  

𝔼(𝜒
𝛽̂
2|𝜒

𝛿̂
2 > 𝑡)

𝛿=𝛽=0
= 1 − γ̂2 + γ̂2 ∫ 𝜒

𝛿̂
2 𝑓(𝜒𝛿̂

2)𝑑𝜒
𝛿̂
2

+∞

t

 = 1 − γ̂2 + γ̂2𝔼(𝜒𝛿̂
2)

𝜒
𝛿̂
2∈[𝑡,+∞]

 

where 𝑓 is the probability distribution function of a 1 degree of freedom central chi-squared distribution. 
Although solutions might exists, solving this integral is non-trivial2 and of limited interest for the purpose of our 

study. However, the monotonicity of 𝑓, and the positivity of 𝑓 and 𝜒
𝛿̂
2 implies when 𝑡 ∈ (0,+∞) : 
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∫ 𝜒
𝛿̂
2 𝑓(𝜒𝛿̂

2)𝑑𝜒
𝛿̂
2

+∞

t

> ∫ 𝜒
𝛿̂
2 𝑓(𝜒𝛿̂

2)𝑑𝜒
𝛿̂
2

+∞

0

 ⇔  𝔼(𝜒𝛿̂
2)

𝜒
𝛿̂
2∈[𝑡,+∞]

> 𝔼(𝜒𝛿̂
2) 

                                                                        ⇔  𝔼(𝜒𝛿̂
2)

𝜒
𝛿̂
2∈[𝑡,+∞]

> 1 

                                                                         ⇔  1 − γ̂2 + γ̂2𝔼(𝜒𝛿̂
2)

𝜒
𝛿̂
2∈[𝑡,+∞]

> 1 − γ̂2 + γ̂2 

                                                                         ⇔  𝔼 (𝜒
𝛽̂
2|𝜒

𝛿̂
2 > 𝑡)

𝛿=𝛽=0
> 1 

                                                                         ⇔  𝔼 (𝜒
𝛽̂
2|𝑝𝑣𝑎𝑙𝑢𝑒𝛿̂ < 𝛼 )

𝛿=𝛽=0
> 1 

 

This shows that subset of  𝜒
𝛽̂
2 selected based on 𝑝𝑣𝑎𝑙𝑢𝑒𝛿̂ < 𝛼 is inflated.  

In parallel, we previously demonstrated in Aschard et al1 that the estimated effect of 𝑋 on 𝑌 from the adjusted 

model, 𝑌~𝛽𝑎𝑑𝑗𝑋 + γ𝐶 + 𝜀𝑌, can be approximated by 𝛽̂𝑎𝑑𝑗 ≈ 𝛽̂ − γ̂𝛿̂. It follows that under the same assumption 

described above (|γ| ≫ 0 so that γ = γ̂), we have: 

𝔼(𝛽̂𝑎𝑑𝑗|𝛿̂)
𝛿=𝛽=0

≈ 𝔼(𝛽̂ − γ̂𝛿|𝛿̂)
𝛿=𝛽=0

 

                                ≈  𝔼(𝛽̂|𝛿̂)
𝛿=𝛽=0

− γ̂𝛿̂ 

                                 ≈  0 

And the variance of 𝛽̂𝑎𝑑𝑗 conditional on 𝛿 equals: 

𝑣𝑎𝑟(𝛽̂𝑎𝑑𝑗|𝛿̂)
𝛿=𝛽=0

≈ 𝑣𝑎𝑟(𝛽̂ − γ̂𝛿|𝛿)
𝛿=𝛽=0

 

                                     ≈ 𝑣𝑎𝑟(𝛽̂|𝛿̂)
𝛿=𝛽=0

+ γ̂2𝑣𝑎𝑟(𝛿|𝛿) 

                                     ≈
(1 − γ̂2)

𝑛
 

The adjusted model, 𝜒
𝛽̂𝑎𝑑𝑗

2 , the 1 degree of freedom chi-squared statistics for the test of 𝛽̂𝑎𝑑𝑗, has expected 

value: 

𝔼 (𝜒
𝛽̂𝑎𝑑𝑗

2 |𝛿)
𝛿=𝛽=0

  ≈ 𝔼(
𝑛𝛽̂𝑎𝑑𝑗

2

𝜎̂𝑌
2 − γ̂2

|𝛿)
𝛿=𝛽=0

 

                                    ≈
𝑛

1 − γ̂2 [𝔼(𝛽̂𝑎𝑑𝑗|𝛿̂)
𝛿=𝛽=0

2
+ 𝑣𝑎𝑟(𝛽̂𝑎𝑑𝑗|𝛿̂)

𝛿=𝛽=0
] 

                                    ≈
𝑛

1 − γ̂2
[
1 − γ̂2

𝑛
] 
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                                    ≈ 1 

So that 𝔼 (𝜒
𝛽̂𝑎𝑑𝑗

2 |𝛿)
𝛿=𝛽=0

 is independent of 𝛿: 

Hence, the p-value based filtering in a complete null model (𝛿 = 𝛽 = 0) consists in merging chi-squared 

statistics from the adjusted test (𝜒
𝛽̂𝑎𝑑𝑗

2 ) which are distributed under the null independently of 𝛿̂ with a mean of 

1, and chi-squared statistics from the unadjusted test (𝜒
𝛽̂
2) which have an expected value that increases with 

decreasing 𝛼 threshold when |γ| ≠ 0, being systematically larger than 1 when 𝛼 > 0. 

We verified this result empirically in Supplementary Fig. 2. 

 

The CMS algorithm 
We develop an algorithm to select relevant covariates when testing for association between a predictor 

𝑋 and an outcome 𝑌. For a set of candidate covariates 𝑪 = (𝐶1, 𝐶2, … 𝐶𝑚), the filtering is applied on 𝛿𝑙  and 𝑝𝑙, 
the estimated marginal effect of the predictor 𝑋 on 𝐶𝑙 and its associated p-value, respectively. It uses four major 

features: i) 𝑟𝐶
2 the total amount of variance of 𝑌 explained by the 𝑪 ; ii) (𝛾̂𝑙𝑢

2 , 𝛾𝑙𝑚
2 )the estimated effect of each 

𝐶𝑙∈1…𝑚 on 𝑌 and their joint effect respectively; iii) 𝛽̂, the estimated effect of 𝑋 on 𝑌 from the marginal model 
𝑌~𝛼 + 𝛽𝑋; and iv) 𝑝MUL, the p-value for the multivariate test of all 𝐶𝑙=1…𝑚 and 𝑋, which is estimated using a 
standard multivariate approach (i.e.  MANOVA). 

Filtering is applied in two steps using the aforementioned features and additional parameters described 
thereafter. Step 1 is an iterative procedure that filters out candidate covariate until 𝑝MUL reach a given 
threshold. Step 2 is also iterative and uses covariates pre-selected at step 1. It consists in deriving two 

confidence intervals Δl.cond and Δl.un, for the expected distribution of 𝛿𝑙  conditional on 𝛽̂ under a complete null 

model (𝛿𝑙 = 0 and 𝛽 = 0), and the unconditional distribution of 𝛿𝑙, respectively. The unconditional distribution 

of 𝛿𝑙  can be approximated as 𝒩(0,√1 𝑛⁄ ), while the conditional distribution equals  𝒩(𝛾𝛽̂, √(1 − 𝛾2) 𝑛⁄ ), 

where 𝛾 is the estimated correlation between 𝑌 and 𝐶. The final inclusion area for each 𝛿𝑙  is defined as the 
union of Δ𝑙.𝑐𝑜𝑛𝑑 and Δ𝑙.𝑢𝑛, after applying stringency weights 𝑤𝑢 and 𝑤𝑐,respecctively.  

 

The proposed multi-step algorithm is defined as follows: 

 

For each predictor 𝑋 and 𝑌 

1. Univariate association 

1.1. Standardized all variables (𝑌, 𝑋, 𝑪) to have mean 0 and variance 1 

1.2. Initialize 𝐿 = 1…𝑚, the list of selected covariates, with all available covariates 

1.3. Derive for each 𝑙 ∈ 𝐿,  𝛾𝑙𝑢and 𝛾𝑙𝑚 the marginal effect estimates from the univariate regression 
𝑌~𝐶𝑙=1…𝑚, and multivariate model 𝑌~𝑪, respectively. 

 

2. Filter 1: multivariate 

2.1.  Perform a marginal association test between 𝑋 and each 𝐶𝑙=1…𝑚 

2.1.1.  Derive all 𝛿𝑙  and 𝑝𝑙  from 𝐶~𝛿0 + 𝛿𝑙 × 𝑋 

2.2.  Set 𝑝𝑀𝑈𝐿=0 
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2.3.  While 𝑝𝑀𝑈𝐿 < 𝑡𝑀𝑈𝐿 

2.3.1. Derive 𝑝𝑀𝑈𝐿 from 𝑪𝐿~𝑋 using a multivariate test, where 𝑪𝐿 is the data matrix 𝑪 including 
only 𝑙 ∈ 𝐿 covariates. 

2.3.2. Update 𝐿 by removing the 𝐶𝑙 that match 𝑝𝑙∈𝐿 = 𝑚𝑖𝑛(𝑝𝑙∈𝐿) from the set of candidate 
covariates  

 

3. if L ≠ 0, filter2: univariate 

3.1. while L ≠ 0 and L𝑡+1 ≠ L𝑡  

3.1.1. Update for each 𝑙 ∈ 𝐿  𝛾𝑙𝑚 the effect estimates from the multivariate model 𝑌~𝑪𝐿. 

3.1.2. Derive 𝑟𝐶
2 the variance of 𝑌 explained by 𝑪𝐿 from the model in 3.1.1 

3.1.3. Derive for each 𝑙 ∈ 𝐿 the stringency of the inclusion area 

𝑤𝑆𝑇 = 0.1 × 𝑝𝑀𝑈𝐿 × (1 − 𝑟𝐶
2) × (1 − 𝛾𝑙𝑢

2 ) 𝛾̂𝑙𝑚
2⁄  

3.1.4.  Derive the specific conditional and unconditional weights using the threshold functions 

𝑤𝑐 = min (𝑤𝑆𝑇 , 𝑓𝑐(𝜒𝛽
2)) and 𝑤𝑢 = min (𝑤𝑆𝑇, 𝑓𝑢(𝜒𝛽

2)), where 𝜒𝛽
2 = 𝑁 × 𝛽̂2 𝜎𝑋

2⁄ : 

a. 𝑓𝑐 = {

𝜒𝛽
2 8⁄                𝑖𝑓𝜒𝛽

2 < 16                            

2 − 𝜒𝛽
2 8⁄        𝑖𝑓𝜒𝛽

2 > 16   and  𝜒𝛽
2 < 32

0                       Otherwise                             

 

b. 𝑓𝑢 = {
𝜒𝛽

2 8⁄                 𝑖𝑓𝜒𝛽
2 < 16   

2                        Otherwise  
 

3.1.5. Derive the mean 𝜇𝑙.𝑢𝑛 = 0 and standard deviation 𝜎𝑙.𝑢𝑛 = √
1

𝑁
 of the unconditional 

distribution of 𝛿𝑙  and the associated inclusion area: 𝛥𝑙.𝑢𝑛 = [𝜇𝑙.𝑢𝑛 − 𝜎𝑙.𝑢𝑛 × 𝑤𝑢, 𝜇𝑙.𝑢𝑛 +
𝜎𝑙.𝑢𝑛 × 𝑤𝑢].  

3.1.6. Derive the mean 𝜇𝑙.𝑐𝑜𝑛𝑑 = 𝛾𝑙 × 𝛽̂ and standard deviation 𝜎𝑙.𝑐𝑜𝑛𝑑 = √(1−𝛾̂𝑙
2)

𝑁
 of the 

conditional null distribution of 𝛿𝑙, and the associated inclusion area: 𝛥𝑙.𝑐𝑜𝑛𝑑 =
[𝜇𝑙.𝑐𝑜𝑛𝑑 − 𝜎𝑙.𝑐𝑜𝑛𝑑 × 𝑤𝑐 , 𝜇𝑙.𝑐𝑜𝑛𝑑 + 𝜎𝑙.𝑐𝑜𝑛𝑑 × 𝑤𝑐] 

3.1.7. Update 𝐿 by removing all 𝑙 which 𝛿𝑙  is not included in 𝛥𝑙.𝑐𝑜𝑛𝑑 ∪ 𝛥𝑙.𝑢𝑛 
 

4. Perform the test of association between 𝑋 and 𝑌, while adjusting for the selected covariates 

4.1. Estimate 𝛽̂𝐶𝑀𝑆 and derive the associated p-value from the multivariate model including all 𝑙 ∈ 𝐿 
covariate from 𝑌~𝛽0 + 𝛽𝐶𝑀𝑆 × X + 𝜷𝑳 × 𝑪𝑳  

 

 

Extensive simulation models 
We simulated series of 10,000 replicates under null models where a predictor of interest –here a single 

nucleotide polymorphism (SNP)– is not associated with the primary outcome but is associated with a fraction 𝜋 
of the covariates and under the alternative where the predictor is associated with the primary outcome only. For 
the null model we considered 𝜋=[0%, 15%, 35%], while we focused on the case 𝜋=[0%] for the alternative. We 
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generated effects of the predictor on the primary outcome (𝛽) and on the covariate (𝛿) so that the expected 
noncentrality chi-square parameter (ncp, which equals the median 𝜒2 or the average 𝜒2 minus 1) goes from 
very low to moderately high (𝑛𝑐𝑝 = [3, 5, 10, 20]). More precisely, for the SNP effect on the outcome we used 

either of the four 𝑛𝑐𝑝 so that = √𝑛𝑐𝑝 𝑁⁄  . For the SNP effect on the covariates we draw uniformly 𝛿 from 

[0, 2 × √𝑛𝑐𝑝 𝑁⁄ ] so that expected effect across replicates equals √𝑛𝑐𝑝 𝑁⁄ . We assigned negative effects to 𝛿 

with a probability of 10%. We considered sample sizes 𝑁 of 300, 2,000 and 6,000, value of 𝑟𝐶
2, the variance of 𝑌 

explained by 𝑪, in [25%, 50%, 75%] and total number of phenotypes in [10, 40, 80]. For the null models we 
derived the genomic inflation factor 𝜆, while for the alternative model we estimated power at an 𝛼 threshold of 
5x10-7, to correct for 100,000 tests. 

Supplementary Figures 19-45 present the QQplots for these 27 scenarios, each scenario including 16 
series of 10,000 replicates and four tests: standard marginal univariate test (LR); the optimally adjusted test 
(OPT) that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ; and 
a univariate test that include as covariate all outcome with a p-value for association with the predictor above 0.1 
(FT). A more succinct summary including type I error rate is presented in Supplementary Tables 2-4 

 

Comparison with alternatives methods 
We compared the performances of the CMS algorithm against a range of alternatives approaches. We 

first assessed strategies that consist in capturing shared “hidden factors” and use these factors as covariates. In 
particular we considered adjustment for principal component and adjustment for PEER factors, both being 
derived from the entire dataset (i.e. outcome and covariates). We then considered a penalized regression 
approach as it is commonly used for selection of variables and the assessment of their relative importance. 
Among many possibilities, we arbitrarily choose to use LASSO3 in combination with the Exact post-selection 
inference to compute association P-values for each selected predictor.4 Finally, Bayesian methods have the 
possibility of assessing the true relation between genotype and phenotype in the presence of correlated 
covariates. In particular we considered the recent method mvBIMBAM5 which, given a single predictor and 
multiple outcome, allows to derive posterior probabilities of a genetic variant being either directly, indirectly, or 
not associated with each outcome. 

We first generated series of 500 replicates of 10,000 individuals under a null model in order to compare 
the robustness of the hidden factor adjustment and the LASSO approach. More specifically, for each replicate, 
we generated 50 correlated variables from a multivariate normal distribution, with correlation matrix defined so 
that pairwise correlation varies in [-0.4; 0.4] and a single genotype randomly drawn from a binomial with a 
coded allele frequency in [0.05; 0.95]. We randomly picked one of the variables as the primary outcome, and 
considered the remaining as secondary outcomes – and refer further to this variable as covariates. We then 
added an effect of the genetic variant on a random subset of the covariates, with effect drawn uniformly from [-
0.07; 0.07], so that variance of the covariates explained by the genetic variant was always smaller than 0.25%. 
For PEER and PCs, we tested the association between the genetic variant and the primary outcome while 
adjusting for an increasing number of either PCs or PEER factors. For LASSO, we provided the model containing 
the genotype plus all the covariates as independent variables, and let the algorithm estimate the relative 
importance of each predictor.  

First, as shown Supplementary Figure 7, the LASSO approach shows severe type I error rate inflation. 
This is partly expected, as the goal of such methods is to build model with improved prediction accuracy, 
whether or not the predictors are related or not. Second, concordant with other recent work from our group6, 
we observed increasing type I error rates when increasing the number of PCs or PEER factors in the model 
(Supplementary Fig. 7a,b,c). The CMS algorithm showed correct type I error rates on the same data. Hence, 
while these approaches have the main advantage of being computationally efficient (i.e. the hidden factor are 
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derived once for the complete dataset), we found that they induce false positives. While it is possible to learn 
factors while adjusting for individual genetic variants7, these approaches do not scale computationally and still 
introduced biases in our simulations (Supplementary Fig. 7c).  

For mvBIMBAM, we used the same simulation framework, except that we decreased the total number 

of variable to 10, as mvBIMBAM was intractable for larger number of variables. Also, as mvBIMBAM is a 

Bayesian method, it does not output P-value. To allow for fair comparison we had to use a metric accounting for 

type I error rate relative to power. We choose the ROC curves and AUC and derived sensibility and specificity 

using p-values for CMS, and posterior probability that the phenotype is not affected by the genetic factor for 

mvBIMBAM. Significance in AUC difference was assessed using the approach proposed by A DeLong et al.8 The 

CMS approach was more than 100 fold faster than mvBIMBAM and the two methods showed similar accuracy 

when compared using ROC curves (Supplementary Fig. 6). Although we noted a slightly better AUC for 

mvBIMBAM (AUCbimbam= 0.834, AUCCMS=0.810, P=0.02), the improvement was due to a higher sensitivity at very 

low specificity (i.e. for a false discovery rate>0.5), which is of limited interest in the context of association 

studies.  

 

Unsuccessful approaches explored   
In the process of defining our algorithm we considered a few alternative strategies to those used in the 

proposed final version. Below is a brief overview of the major ones we assessed but ended up being 
unsuccessful: 

1. Instead of trying to decipher type I and type II covariates (i.e. covariate truly associated with the 
predictor, and those independent of a predictor 𝑋, respectively), we considered removing the predictor’s effect 
from the covariate. While several approaches might be considered, we only explored the most naïve one, which 
consists in using the residual of the covariate after adjusting it for the predictor 𝑋. In brief, in step 1) we fit the 

model 𝐶𝑙~𝛿𝑙𝑋 and derive 𝐶𝑙
∗ = 𝐶𝑙 − 𝛿𝑙𝑋 , then in step 2) we performed the test of 𝛽̂ from the model 

𝑌~𝛽𝐺 + 𝛾∗𝐶𝑙
∗. While the approach is intuitive in theory, in real data, it faces the problem of finite sample sizes. 

Indeed, 𝛿𝑙  is only an approximation of 𝛿𝑙, and adjusting 𝑌 for 𝐶𝑙
∗ actually results in introducing a major residual 

effects of 𝑋 on 𝑌. 
2. The first feature of our algorithm is a multivariate test for association. This test was added to the 

algorithm to address bias due to linear combination of covariates –i.e. in cases where multiple covariate have 
small association with the predictor, so that univariate test will have very low power. Before using this approach, 
we first explored a stepwise selection procedure where 1) all covariates were ranked based on their association 
the predictor, 2) the covariate were then added to the model 𝑌~𝛽𝑋 + 𝛾1𝐶1 + 𝛾2𝐶2 + ⋯ one by one, and at 
each loop, we tested the overall association 𝐺~𝛾1𝐶1 + 𝛾2𝐶2 + ⋯  The selection  process stopped when the later 
test was significant. As compared to the implemented multivariate approach, this alternative was both time-
consuming and inefficient in selecting type II covariates. 

3. To limit the issue of multicollinearity, we considered first deriving principal components (PCs) of 
candidate covariates. The resulting PCs being orthogonal, adding or removing a PCs in the model does not affect 
the estimated effect of other PCs. While appealing this approach showed limited performances. The reason is 
that PCs are linear combinations of the raw phenotypes, and any genetic effect on a single outcome will tend to 
be disseminated on all PCs. It follows that most PCs end up being type I covariates (i.e. are truly associated with 
the predictor). 
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Leveraging the architecture of genomic data 

While the proposed CMS approach can be applied on any type of data, genomic data have several 
advantages, one of them being that the underlying structure is relatively well understood9-12. Consider the 
example of Supplementary Figure 17 where a phenotype P1 is associated with two genotypes G1 and G2. The 
association with G1 and G2 go through two (almost) independent causal pathway path1 and path2 which 
involve two different sets of RNAs, proteins, metabolites and environmental exposures. Any other phenotypes 
that depend on path1 but not path2 can be used to improve the detection of the association between P1 and 
G2, and conversely phenotypes depending on path2 can be leverage to detect G1 (Supplementary Figure 17B). 
Also, one can see from this figure that variable downstream on the causal pathway cannot be used to identify 
association between upstream variables, i.e. the “end-of-chain” phenotype P0 to P4 cannot a priori be used to 
improve the detection of the association between the genotype and the metabolites (Supplementary Figure 
17C). Accounting for this information, we can identify which set of outcomes would be the most relevant for 
CMS. In particular, it allows excluding variables that would be a priori a source of bias. 

 

 

Supplementary Table 1. Type I error of the conditional and unconditional filtering for a single 
covariate 

Threshold Approach %sel 𝜶 = 𝟎. 𝟎𝟎𝟏 𝜶 = 𝟎. 𝟎𝟏 𝜶 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟐 𝜶 = 𝟎. 𝟓 

T=0.05 

UnCond 95.1% 0.0017 0.016 0.068 0.13 0.24 0.53 
Cond 94.5% 0.0004 0.004 0.028 0.07 0.17 0.48 
Mix 98.6% 0.0013 0.011 0.049 0.10 0.21 0.51 

T=0.10 

UnCond 90.3% 0.0017 0.017 0.075 0.14 0.25 0.55 
Cond 89.3% 0.0003 0.003 0.022 0.06 0.15 0.46 
Mix 96.8% 0.0013 0.010 0.048 0.10 0.21 0.51 

T=0.20 

UnCond 80.4% 0.0016 0.017 0.079 0.15 0.28 0.57 
Cond 79.2% 0.0003 0.002 0.019 0.05 0.13 0.43 
Mix 92.1% 0.0012 0.010 0.048 0.10 0.21 0.51 

T=0.30 

UnCond 70.6% 0.0014 0.016 0.078 0.15 0.28 0.59 
Cond 69.2% 0.0003 0.003 0.020 0.05 0.12 0.41 
Mix 86.2% 0.0010 0.010 0.048 0.10 0.21 0.50 

Abbreviation: %sel is the percentage of time the covariate is included in the model. 
Type I error rate is derived based on a series of 10,000 simulated datasets. For each dataset, a primary outcome and a secondary outcome 
are generated with a correlation of 0.8, and an independently generated predictor is tested for association with the primary outcome 
while adding the secondary outcome as a covariate based on its conditional or unconditional distribution. 
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Supplementary Table 2. Type I error rate for 300 individuals 

  Abbreviations: 𝑟2 is the total outcome variance that can be explained by other variables ; 𝜋 is the proportion of variables associated with the predictor ; LR= standard 
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test 
that include as covariate all variable with a p-value for association with the predictor above 0.1. 

Nsamp. Nphe. 𝒓𝟐 𝝅  𝒂=0.05  𝒂=0.001  𝒂=0.0001 

     LR OPT CMS FT  LR OPT CMS FT  LR OPT CMS FT 

300 10 0.25 0.00  0.051 0.051 0.047 0.064  1.1x10
-3

 1.1x10
-3

 9.2x10
-4

 1.6x10
-3

  7.5x10
-5

 1.5x10
-4

 1.2x10
-4

 2.2x10
-4

 
300 10 0.25 0.15  0.052 0.051 0.048 0.065  1.1x10

-3
 1.0x10

-3
 1.2x10

-3
 2.2x10

-3
  1.2x10

-4
 1.0x10

-4
 1.5x10

-4
 2.7x10

-4
 

300 10 0.25 0.35  0.052 0.051 0.048 0.066  1.0x10
-3

 1.1x10
-3

 1.1x10
-3

 2.1x10
-3

  1.7x10
-4

 1.5x10
-4

 2.5x10
-4

 4.0x10
-4

 
300 10 0.50 0.00  0.052 0.050 0.046 0.080  1.0x10

-3
 1.1x10

-3
 1.1x10

-3
 2.5x10

-3
  1.0x10

-4
 1.0x10

-4
 1.5x10

-4
 3.7x10

-4
 

300 10 0.50 0.15  0.050 0.052 0.046 0.086  1.2x10
-3

 1.1x10
-3

 1.8x10
-3

 4.8x10
-3

  1.2x10
-4

 1.5x10
-4

 2.7x10
-4

 1.4x10
-3

 
300 10 0.50 0.35  0.051 0.052 0.048 0.086  1.3x10

-3
 1.2x10

-3
 1.9x10

-3
 5.4x10

-3
  1.5x10

-4
 1.0x10

-4
 6.5x10

-4
 1.7x10

-3
 

300 10 0.75 0.00  0.052 0.052 0.046 0.106  1.0x10
-3

 9.7x10
-4

 1.4x10
-3

 3.7x10
-3

  1.2x10
-4

 1.0x10
-4

 2.2x10
-4

 4.5x10
-4

 
300 10 0.75 0.15  0.052 0.051 0.049 0.116  1.2x10

-3
 1.1x10

-3
 1.8x10

-3
 1.5x10

-2
  5.0x10

-4
 1.7x10

-4
 3.7x10

-4
 7.0x10

-3
 

300 10 0.75 0.35  0.049 0.050 0.046 0.105  1.0x10
-3

 9.2x10
-4

 1.6x10
-3

 1.2x10
-2

  5.0x10
-5

 7.5x10
-5

 4.7x10
-4

 5.0x10
-3

 
                   

300 40 0.25 0.00  0.052 0.051 0.042 0.066  1.5x10
-3

 1.3x10
-3

 8.0x10
-4

 2.0x10
-3

  2.2x10
-4

 1.5x10
-4

 1.2x10
-4

 4.5x10
-4

 
300 40 0.25 0.15  0.051 0.050 0.043 0.066  1.2x10

-3
 1.1x10

-3
 8.0x10

-4
 2.2x10

-3
  1.7x10

-4
 2.0x10

-4
 1.0x10

-4
 4.2x10

-4
 

300 40 0.25 0.35  0.051 0.050 0.044 0.068  7.5x10
-4

 1.2x10
-3

 8.7x10
-4

 2.1x10
-3

  2.5x10
-4

 1.2x10
-4

 5.0x10
-5

 1.7x10
-4

 
300 40 0.50 0.00  0.051 0.050 0.040 0.085  1.3x10

-3
 9.7x10

-4
 1.0x10

-4
 3.1x10

-3
  1.7x10

-4
 1.2x10

-4
 2.5x10

-5
 5.0x10

-4
 

300 40 0.50 0.15  0.050 0.052 0.041 0.087  1.3x10
-3

 1.4x10
-3

 1.0x10
-3

 4.0x10
-3

  2.2x10
-4

 1.0x10
-4

 2.0x10
-4

 8.7x10
-4

 
300 40 0.50 0.35  0.050 0.052 0.044 0.084  1.0x10

-3
 1.1x10

-3
 9.7x10

-4
 4.1x10

-3
  7.5x10

-4
 1.2x10

-4
 3.0x10

-4
 8.5x10

-4
 

300 40 0.75 0.00  0.051 0.052 0.041 0.105  1.0x10
-3

 1.0x10
-3

 1.0x10
-3

 4.7x10
-3

  5.0x10
-4

 7.5x10
-5

 1.2x10
-4

 7.2x10
-4

 
300 40 0.75 0.15  0.051 0.050 0.040 0.100  1.1x10

-3
 8.5x10

-4
 1.1x10

-3
 6.7x10

-3
  2.7x10

-4
 1.2x10

-4
 1.7x10

-4
 2.1x10

-3
 

300 40 0.75 0.35  0.051 0.052 0.043 0.091  9.7x10
-4

 8.5x10
-4

 9.2x10
-4

 5.0x10
-3

  7.5x10
-5 7.5x10

-5
 1.7x10

-4
 1.0x10

-3
 

                   

300 80 0.25 0  0.051 0.051 0.036 0.069  1.2x10
-3

 1.3x10
-3

 6.7x10
-4

 1.8x10
-3

  7.5x10
-5

 1.5x10
-4

 2.5x10
-5

 2.0x10
-4

 
300 80 0.25 0.15  0.051 0.051 0.037 0.068  1.3x10

-3
 1.2x10

-3
 6.5x10

-4
 2.3x10

-3
  2.0x10

-4
 1.5x10

-4
 7.5x10

-5
 4.2x10

-4
 

300 80 0.25 0.35  0.051 0.053 0.039 0.070  1.0x10
-3

 1.2x10
-3

 6.0x10
-4

 2.3x10
-3

  1.0x10
-4

 7.5x10
-5

 5.0x10
-5

 2.7x10
-4

 
300 80 0.50 0.00  0.050 0.053 0.033 0.086  8.2x10

-4
 7.5x10

-4
 4.2x10

-4
 3.0x10

-3
  1.0x10

-4
 1.5x10

-4
 1.0x10

-4
 4.5x10

-4
 

300 80 0.50 0.15  0.051 0.051 0.036 0.087  1.2x10
-3

 1.0x10
-3

 8.0x10
-4

 3.7x10
-3

  1.0x10
-4

 7.5x10
-5

 1.0x10
-4

 6.5x10
-4

 
300 80 0.50 0.35  0.048 0.051 0.037 0.081  8.5x10

-4
 1.1x10

-3
 5.0x10

-4
 3.0x10

-3
  5.0x10

-5
 1.7x10

-4
 5.0x10

-5
 5.2x10

-4
 

300 80 0.75 0.00  0.051 0.052 0.035 0.099  9.0x10
-4

 1.2x10
-3

 8.0x10
-4

 4.8x10
-3

  1.0x10
-4

 7.5x10
-5

 1.0x10
-4

 8.0x10
-4

 
300 80 0.75 0.15  0.050 0.053 0.036 0.094  1.4x10

-3
 1.2x10

-3
 7.2x10

-4
 5.6x10

-3
  2.7x10

-4
 1.7x10

-4
 1.2x10

-4
 1.2x10

-3
 

300 80 0.75 0.35  0.051 0.050 0.039 0.088  1.1x10
-3

 1.2x10
-3

 8.5x10
-4

 3.9x10
-3

  1.2x10
-4

 1.0x10
-4

 7.5x10
-5

 6.7x10
-4
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Supplementary Table 3. Type I error rate for 2000 individuals 

Abbreviations: 𝑟2 is the total outcome variance that can be explained by other variables ; 𝜋 is the proportion of variables associated with the predictor ; LR= standard 
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test 
that include as covariate all variable with a p-value for association with the predictor above 0.1. 

Nsamp. Nphe. 𝒓𝟐 𝝅  𝒂=0.05  𝒂=0.001  𝒂=0.0001 

     LR OPT CMS FT  LR OPT CMS FT  LR OPT CMS FT 

2000 10 0.25 0.00  0.051 0.051 0.049 0.065  1.0x10
-3

 9.2x10
-4

 1.1x10
-3

 1.6x10
-3

  5.0x10
-5

 5.0x10
-5

 7.5x10
-5

 1.2x10
-4

 

2000 10 0.25 0.15  0.052 0.050 0.049 0.067  1.0x10
-3

 9.5x10
-4

 9.5x10
-4

 1.8x10
-3

  1.0x10
-4

 1.0x10
-4

 1.2x10
-4

 2.2x10
-4

 

2000 10 0.25 0.35  0.050 0.049 0.049 0.067  9.0x10
-4

 6.5x10
-4

 1.1x10
-3

 2.0x10
-3

  1.5x10
-4

 7.5x10
-5

 1.5x10
-4

 3.2x10
-4

 

2000 10 0.50 0.00  0.050 0.053 0.047 0.082  9.0x10
-4

 1.1x10
-3

 1.2x10
-3

 2.7x10
-3

  1.7x10
-4

 1.2x10
-4

 2.0x10
-4

 3.7x10
-4

 

2000 10 0.50 0.15  0.051 0.053 0.049 0.088  1.1x10
-3

 9.7x10
-4

 1.6x10
-3

 4.7x10
-3

  1.2x10
-4

 1.0x10
-4

 3.0x10
-4

 1.0x10
-4

 

2000 10 0.50 0.35  0.049 0.052 0.048 0.086  1.3x10
-3

 1.4x10
-3

 1.7x10
-3

 5.1x10
-3

  1.5x10
-4

 1.2x10
-4

 3.7x10
-4

 1.0x10
-3

 

2000 10 0.75 0.00  0.051 0.052 0.047 0.107  1.1x10
-3

 1.0x10
-3

 1.3x10
-3

 3.7x10
-3

  1.5x10
-4

 5.0x10
-5

 3.2x10
-4

 5.5x10
-4

 

2000 10 0.75 0.15  0.049 0.051 0.046 0.112  1.1x10
-3

 9.7x10
-4

 1.9x10
-3

 1.3x10
-2

  1.2x10
-4

 1.0x10
-4

 5.7x10
-4

 5.9x10
-3

 

2000 10 0.75 0.35  0.049 0.048 0.047 0.105  9.0x10
-4

 1.0x10
-3

 1.9x10
-3

 1.2x10
-2

  7.5x10
-5

 1.2x10
-4

 5.7x10
-4

 5.0x10
-3

 
                   

2000 40 0.25 0.00  0.048 0.050 0.046 0.063  8.7x10
-4

 1.1x10
-3

 8.7x10
-4

 1.9x10
-3

  7.5x10
-5

 1.5x10
-4

 1.5x10
-4

 2.0x10
-4

 

2000 40 0.25 0.15  0.049 0.051 0.047 0.066  1.0x10
-3

 1.0x10
-3

 9.0x10
-4

 2.3x10
-3

  7.5x10
-5

 2.5x10
-5

 2.5x10
-5

 1.2x10
-4

 

2000 40 0.25 0.35  0.052 0.051 0.050 0.069  1.0x10
-3

 1.2x10
-3

 1.1x10
-3

 2.1x10
-3

  1.2x10
-4

 1.2x10
-4

 2.0x10
-4

 3.2x10
-4

 

2000 40 0.50 0.00  0.049 0.049 0.044 0.084  8.2x10
-4

 1.2x10
-3

 9.5x10
-4

 3.0x10
-3

  5.0x10
-5

 5.0x10
-5

 1.5x10
-4

 5.2x10
-4

 

2000 40 0.50 0.15  0.049 0.051 0.045 0.084  9.5x10
-4

 1.3x10
-3

 1.2x10
-3

 3.9x10
-3

  1.7x10
-4

 1.5x10
-4

 3.0x10
-4

 1.0x10
-3

 

2000 40 0.50 0.35  0.050 0.049 0.046 0.082  6.0x10
-4

 8.5x10
-4

 8.0x10
-4

 3.1x10
-3

  2.5x10
-5

 0 1.7x10
-4

 5.0x10
-4

 

2000 40 0.75 0.00  0.049 0.049 0.045 0.105  9.2x10
-4

 9.0x10
-4

 9.2x10
-4

 4.3x10
-3

  1.2x10
-4

 1.0x10
-4

 1.0x10
-4

 7.7x10
-4

 

2000 40 0.75 0.15  0.050 0.050 0.046 0.097  1.4x10
-3

 1.1x10
-3

 1.4x10
-3

 7.1x10
-3

  0 1.0x10
-4

 2.0x10
-4

 1.6x10
-3

 

2000 40 0.75 0.35  0.051 0.051 0.048 0.090  1.3x10
-3

 1.1x10
-3

 1.3x10
-3

 5.2x10
-3

  1.0x10
-4

 1.7x10
-4

 3.7x10
-4

 1.1x10
-3

 
                   

2000 80 0.25 0.00  0.052 0.051 0.048 0.067  8.0x10
-4

 1.0x10
-3

 7.5x10
-4

 1.5x10
-3

  7.5x10
-5

 5.0x10
-5

 7.5x10
-5

 1.5x10
-4

 

2000 80 0.25 0.15  0.050 0.049 0.047 0.067  9.0x10
-4

 1.2x10
-3

 8.7x10
-4

 1.9x10
-3

  1.0x10
-4

 7.5x10
-5

 5.0x10
-5

 2.5x10
-4

 

2000 80 0.25 0.35  0.050 0.052 0.048 0.068  8.7x10
-4

 1.1x10
-3

 8.2x10
-4

 1.9x10
-3

  5.0x10
-5

 1.5x10
-4

 1.5x10
-4

 3.0x10
-4

 

2000 80 0.50 0.00  0.049 0.050 0.043 0.083  7.5x10
-4

 8.7x10
-4

 8.0x10
-4

 3.0x10
-3

  1.0x10
-4

 2.5x10
-5

 1.7x10
-4

 3.2x10
-4

 

2000 80 0.50 0.15  0.051 0.050 0.047 0.085  8.5x10
-4

 8.x10
-4

 7.5x10
-4

 3.5x10
-3

  5.0x10
-5

 1.2x10
-4

 1.7x10
-4

 4.5x10
-4

 

2000 80 0.50 0.35  0.049 0.050 0.046 0.081  1.1x10
-3

 1.2x10
-3

 1.4x10
-3

 3.7x10
-3

  7.5x10
-5

 7.5x10
-5

 3.5x10
-4

 7.7x10
-4

 

2000 80 0.75 0.00  0.048 0.050 0.043 0.099  1.1x10
-3

 8.7x10
-3

 9.7x10
-4

 4.6x10
-3

  7.5x10
-5

 1.7x10
-4

 1.0x10
-4

 7.7x10
-4

 

2000 80 0.75 0.15  0.048 0.051 0.044 0.091  1.1x10
-3

 9.5x10
-4

 1.1x10
-3

 4.7x10
-3

  2.0x10
-4

 2.0x10
-4

 2.0x10
-4

 7.7x10
-4

 

2000 80 0.75 0.35  0.050 0.051 0.047 0.087  1.3x10
-3

 1.1x10
-3

 1.5x10
-3

 4.3x10
-3

  1.2x10
-4

 5.0x10
-5

 1.7x10
-4

 7.0x10
-4

 



 

16 
 

Supplementary Table 4. Type I error rate for 6000 individuals 

Abbreviations: 𝑟2 is the total outcome variance that can be explained by other variables ; 𝜋 is the proportion of variables associated with the predictor ; LR= standard 
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test 
that include as covariate all variable with a p-value for association with the predictor above 0.1. 

Nsamp. Nphe. 𝒓𝟐 𝝅  𝒂=0.05  𝒂=0.001  𝒂=0.0001 

     LR OPT CMS FT  LR OPT CMS FT  LR OPT CMS FT 

6000 10 0.25 0.00  0.052 0.051 0.049 0.065  9.2x10
-4

 9.5x10
-4

 9.0x10
-4

 1.6x10
-3

  1.2x10
-4

 1.0x10
-4

 1.x10
-4

 2.2x10
-4

 

6000 10 0.25 0.15  0.051 0.048 0.049 0.064  7.7x10
-4

 9.7x10
-4

 7.7x10
-4

 1.9x10
-3

  2.5x10
-5

 1.2x10
-4

 1.5x10
-4

 2.2x10
-4

 

6000 10 0.25 0.35  0.050 0.050 0.049 0.067  9.2x10
-4

 1.0x10
-3

 9.2x10
-4

 1.9x10
-3

  7.5x10
-5

 7.5x10
-5

 2.0x10
-4

 3.0x10
-4

 

6000 10 0.50 0.00  0.050 0.052 0.047 0.082  8.0x10
-4

 9.7x10
-4

 1.3x10
-3

 2.8x10
-3

  1.0x10
-4

 1.2x10
-4

 2.0x10
-4

 4.5x10
-4

 

6000 10 0.50 0.15  0.052 0.051 0.049 0.085  1.2x10
-3

 1.3x10
-3

 1.9x10
-3

 5.3x10
-3

  1.5x10
-4

 1.2x10
-4

 5.7x10
-4

 1.3x10
-3

 

6000 10 0.50 0.35  0.050 0.049 0.048 0.084  9.7x10
-4

 9.5x10
-4

 1.7x10
-3

 4.8x10
-3

  7.5x10
-5

 1.0x10
-4

 3.0x10
-4

 9.7x10
-4

 

6000 10 0.75 0.00  0.050 0.049 0.048 0.103  1.0x10
-3

 8.7x10
-4

 1.5x10
-3

 3.5x10
-3

  1.2x10
-4

 1.0x10
-4

 2.7x10
-4

 6.5x10
-4

 

6000 10 0.75 0.15  0.050 0.051 0.047 0.112  9.5x10
-4

 1.1x10
-3

 1.7x10
-3

 1.4x10
-2

  2.5x10
-5

 1.5x10
-4

 4.5x10
-4

 6.0x10
-3

 

6000 10 0.75 0.35  0.048 0.050 0.048 0.105  9.7x10
-4

 8.0x10
-4

 1.9x10
-3

 1.2x10
-2

  1.0x10
-4

 2.5x10
-5

 5.2x10
-4

 5.2x10
-3

 
                   

6000 40 0.25 0.00  0.051 0.051 0.050 0.066  1.0x10
-3

 1.1x10
-3

 7.2x10
-4

 1.8x10
-3

  5.0x10
-5

 1.0x10
-4

 1.0x10
-4

 1.2x10
-4

 

6000 40 0.25 0.15  0.051 0.050 0.049 0.066  7.0x10
-4

 8.0x10
-4

 7.7x10
-
 1.6x10

-3
  2.5x10

-5
 5.0x10

-5
 5.0x10

-5
 1.5x10

-4
 

6000 40 0.25 0.35  0.052 0.052 0.051 0.067  1.2x10
-3

 1.1x10
-3

 1.3x10
-3

 2.3x10
-3

  2.2x10
-4

 1.0x10
-4

 2.5x10
-4

 3.7x10
-4

 

6000 40 0.50 0.00  0.049 0.050 0.046 0.086  1.1x10
-3

 8.0x10
-4

 9.2x10
-4

 2.7x10
-3

  1.7x10
-4

 0 1.2x10
-4

 4.2x10
-4

 

6000 40 0.50 0.15  0.050 0.049 0.047 0.083  9.5x10
-4

 8.0x10
-4

 9.7x10
-4

 4.0x10
-3

  2.5x10
-5

 5.0x10
-5

 1.5x10
-4

 6.0x10
-4

 

6000 40 0.50 0.35  0.052 0.051 0.049 0.084  1.3x10
-3

 1.2x10
-3

 1.4x10
-3

 3.9x10
-3

  1.5x10
-4

 7.5x10
-5

 2.7x10
-4

 5.7x10
-4

 

6000 40 0.75 0.00  0.052 0.050 0.048 0.108  1.2x10
-3

 1.0x10
-3

 1.0x10
-3

 4.8x10
-3

  1.0x10
-4

 5.0x10
-5

 7.5x10
-5

 5.7x10
-4

 

6000 40 0.75 0.15  0.050 0.051 0.046 0.098  1.0x10
-3

 1.0x10
-3

 1.1x10
-3

 6.0x10
-3

  1.2x10
-4

 1.2x10
-4

 2.0x10
-4

 1.3x10
-3

 

6000 40 0.75 0.35  0.052 0.051 0.049 0.088  1.0x10
-3

 1.0x10
-3

 1.3x10
-3

 4.8x10
-3

  2.0x10
-4

 1.5x10
-4

 2.7x10
-4

 1.1x10
-3

 
6000 80 0.25 0.00  0.049 0.047 0.047 0.065  8.5x10

-4
 9.5x10

-4
 9.0x10

-4
 1.7x10

-3
  5.0x10

-5
 1.0x10

-4
 7.5x10

-5
 1.7x10

-3
 

                   

6000 80 0.25 0.15  0.051 0.051 0.048 0.067  9.5x10
-4

 1.1x10
-3

 1.1x10
-3

 2.1x10
-3

  7.5x10
-5

 1.2x10
-4

 1.2x10
-4

 1.7x10
-4

 

6000 80 0.25 0.35  0.051 0.052 0.049 0.069  1.1x10
-3

 1.2x10
-3

 1.3x10
-3

 2.4x10
-3

  1.2x10
-4

 1.2x10
-4

 1.7x10
-4

 3.2x10
-4

 

6000 80 0.50 0.00  0.050 0.051 0.047 0.087  1.2x10
-3

 8.5x10
-4

 1.2x10
-3

 3.4x10
-3

  1.0x10
-4

 5.0x10
-5

 1.7x10
-4

 7.0x10
-4

 

6000 80 0.50 0.15  0.050 0.049 0.047 0.085  9.2x10
-4

 9.7x10
-4

 1.2x10
-3

 3.3x10
-3

  5.0x10
-5

 1.0x10
-4

 7.5x10
-5

 5.5x10
-4

 

6000 80 0.50 0.35  0.051 0.050 0.049 0.080  9.7x10
-4

 9.0x10
-4

 1.1x10
-3

 3.4x10
-3

  7.5x10
-5

 1.0x10
-4

 2.5x10
-4

 6.5x10
-4

 

6000 80 0.75 0.00  0.051 0.051 0.047 0.098  8.2x10
-4

 9.5x10
-4

 9.5x10
-4

 4.7x10
-3

  1.5x10
-4

 5.0x10
-5

 7.5x10
-5

 7.0x10
-4

 

6000 80 0.75 0.15  0.050 0.047 0.048 0.089  8.5x10
-4

 1.2x10
-3

 9.5x10
-4

 4.4x10
-3

  2.5x10
-5

 2.5x10
-5

 1.5x10
-4

 1.0x10
-3

 

6000 80 0.75 0.35  0.048 0.052 0.046 0.091  8.7x10
-4

 1.1x10
-3

 1.1x10
-3

 3.8x10
-3

  1.3x10
-4

 1.0x10
-4

 2.7x10
-4

 8.0x10
-4
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Supplementary Table 5. Replication of the metabolite results 

Discovery 
 

KORA+TwinsUK 
 

FHS 
 

Finnish 

SNP Gene Outcome PLR PCMS   Best SNP pval  Best SNP pval  Best SNP pval 

rs477992 PHGDH serine 6.2x10
-5

 1.4x10
-7

  rs1163251 7.0x10
-27

  rs677277 6.5x10
-5

  - - 

rs2216405 CPS1 

glycine 4.1x10
-26

 2.3x10
-33

  

rs715 

1.6x10
-147

  rs7422339 2.4x10
-58

  - - 

serine 3.7x10
-5

 6.4x10
-10

  2.7x10
-21

  rs4513234 1.5x10
-5

  - - 

creatine 7.6x10
-8

 4.8x10
-9

  9.6x10
-25

  rs7422339 2.5x10
-11

  - - 

acetylglycine 2.2x10
-8

 3.1x10
-9

  6.7x10
-58

  - -  - - 

rs780094 GCKR alanine 6.1x10
-5

 4.0x10
-8

  rs1260326 5.6x10
-14

  rs1260326 7.6x10
-12

  rs1728918 5.7x10
-11

 

rs1352844 GC lactose 6.1x10
-7

 6.3x10
-6

  - -  - -  - - 

rs7094971 SLC16A9 
carnitine 2.9x10

-10
 1.1x10

-15
  rs12356193 3.7x10

-63
  rs1171617 5.9x10

-26
  - - 

acetylcarnitine 1.4x10
-6

 9.4x10
-13

  rs1171614 3.4x10
-23

  - -  - - 
rs2657879 GLS2 glutamine 3.1x10

-5
 4.2x10

-10
  rs2694917 1.6x10

-29
  - -  rs2638315 1.1x10

-32
 

rs6499165 SLC7A6 lysine 2.6x10
-5

 7.5x10
-10

  rs8056893 2.5x10
-39

  - -  - - 

Abbreviations: PLR is the p-value for the standard unadjusted univariate test of each single phenotype with each single SNP; PCMS  is the p-value from the CMS approach. 

𝑁 equals 8,330, 7,824, and 2,076 for Finnish
13

, KORA+TwinsUK
10,14

, and FHS
15

,  
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Supplementary Table 6. Summary of results when adjusting for PCs of metabolites 

#PC  SNP Gene Outcome PLR PCMS  SSincr 
 

       
 

5PCS 

rs1352844 GC lactose 7.3x10
-7

 7.3x10
-7

 1.00 - 

rs174547 FADS1 
tryptophan 9.6x10

-5
 1.2x10

-8
 2.33 FHS

15
 

creatinine 7.2x10
-7

 2.6x10
-8

 5.56 - 

rs2216405 CSP1 
glycine 9.6x10

-26
 4.3x10

-23
 1.75 KORA+TwinsUK

10
 / FHS

15
 

acetylglycine 1.0x10
-7

 3.8x10
-5

 1.75 KORA+TwinsUK
10

 

rs2657879 SPRYD4 
alanine 1.2x10

-4
 2.4x10

-8
 2.56 KORA+TwinsUK

10
 / FHS

15
 / Finnish

13
  

glutamine 2.3x10
-11

 2.6x10
-13

 2.38 Finnish
13

  

rs2764886 PHGDH serine 5.1x10
-3

 2.3x10
-8

 2.13 KORA+TwinsUK
10

 

rs6499165 SLC7A6 lysine 3.3x10
-8

 3.3x10
-8

 1.00 KORA+TwinsUK
10

 

rs7094971 SLC16A9 
carnitine 1.8x10

-14
 9.5x10

-14
 1.96 KORA+TwinsUK

10
 / FHS

15
 

acetylcarnitine 2.4x10
-7

 1.3x10
-9

 1.72 KORA+TwinsUK
10

 

rs780094 GCKR alanine 1.7x10
-8

 6.2x10
-6

 1.79 KORA+TwinsUK
10

 / FHS
15

 / Finnish
13

  

rs8103135 TPRX2P carnitine 1.6x10
-5

 1.8x10
-7

 5.88 - 
       

 

 
      

 

10 PCS 

rs1352844 GC lactose 6.0x10
-7

 6.0x10
-7

 1.00 - 

rs17288067 ACO1 urate 2.8x10
-3

 8.3x10
-8

 5.00 - 

rs174547 FADS1 

tryptophan 1.3x10
-5

 8.9x10
-7

 12.50 FHS
15

 

creatinine 1.6x10
-8

 4.7x10
-7

 4.17 - 

taurochenodeoxycholic acid 1.8x10
-2

 1.4x10
-7

 10.00 - 

rs2216405 CSP1 
glycine 2.8x10

-28
 4.4x10

-27
 1.69 KORA+TwinsUK

10
 / FHS

15
 

creatine 5.6x10
-8

 4.4x10
-9

 2.33 KORA+TwinsUK
10

  / FHS
15

 

rs2657879 SPRYD4 glutamine 7.0x10
-12

 5.8x10
-12

 2.38 Finnish
13

  

rs3760776 FUT6 butyrobetaine 6.7x10
-7

 4.2x10
-8

 4.17 - 

rs477992 PHGDH serine 9.2x10
-7

 9.0x10
-8

 2.86 KORA+TwinsUK
10

 

rs6499165 SLC7A6 lysine 2.8x10
-9

 6.1x10
-7

 2.63 KORA+TwinsUK
10

 

rs7094971 SLC16A9 

dimethylarginine  9.7x10
-4

 1.2x10
-9

 2.27 - 

carnitine 1.4x10
-10

 2.4x10
-13

 2.70 KORA+TwinsUK
10

 / FHS
15

 

acetylcarnitine 5.9x10
-8

 2.9x10
-6

 2.94 KORA+TwinsUK
10

 

rs780094 GCKR 
alanine 7.6x10

-8
 1.6x10

-3
 2.00 KORA+TwinsUK

10
 / FHS

15
 / Finnish

13
  

threonine 2.2x10
-6

 7.8x10
-8

 1.43 Suhre
14
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rs7855483 ACO1 4-Dimethylaminopyridine 5.4x10
-3

 4.4x10
-9

 3.85 - 
       

 

 
      

 

20 PCS 

rs10493380 LEPR 
Trimethylamine N-oxide 4.4x10

-3
 1.1x10

-7
 4.00 FHS

15
 

alpha-hydroxybutyrate dehydrogenase 4.7x10
-4

 5.6x10
-9

 3.03 - 

rs17277546 TRIM4 allantoin 8.5x10
-3

 5.3x10
-8

 8.33 - 

rs174547 FADS1 
tryptophan 7.0x10

-6
 9.0x10

-7
 2.70 FHS

15
 

creatinine 8.7x10
-8

 5.1x10
-8

 4.00 - 

rs2216405 CSP1 
glycine 1.3x10

-20
 2.2x10

-20
 1.75 KORA+TwinsUK

10
 / FHS

15
 

creatine 4.5x10
-5

 5.3x10
-11

 2.13 KORA+TwinsUK
10

  / FHS
15

 

rs2657879 SPRYD4 glutamine 9.0x10
-10

 2.4x10
-13

 2.63 Finnish
13

  

rs272889 AC034220.3 2-aminoadipate 5.7x10
-4

 1.5x10
-7

 7.69 - 

rs2764886 PHGDH serine 2.9x10
-5

 7.8x10
-11

 2.27 KORA+TwinsUK
10

 / FHS
15

  

rs3760776 FUT6 
butyrobetaine 1.5x10

-5
 8.5x10

-8
 2.50 - 

sarcosine 2.0x10
-3

 5.0x10
-7

 3.85 - 

rs477992 PHGDH 
serine 2.2x10

-6
 7.4x10

-10
 4.17 KORA+TwinsUK

10
 

aconitate 7.9x10
-4

 5.2x10
-7

 2.17 - 

rs6499165 SLC7A6 lysine 1.8x10
-9

 1.1x10
-7

 3.33 KORA+TwinsUK
10

 

rs7094971 SLC16A9 carnitine 1.0x10
-7

 1.7x10
-10

 2.63 KORA+TwinsUK
10

 / FHS
15

 

rs780094 GCKR thyroxine 2.6x10
-4

 3.7x10
-7

 2.44 - 
       

 

Abbreviation: PLR is the p-value for the standard unadjusted univariate test of each single phenotype with each single SNP; PCMS is the p-value from the CMS algorithm; SSincr is the 
equivalent sample size increase achieved after adjusting for covariates selected by the CMS algorithm. 

There was 79 metabolites tested for association with 668 SNPs, so a total of 52104 tests. P-value threshold accounting for multiple testing is 9.5x10-7. Significant p-values are 
indicated in bold. 
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Supplementary Table 7. Summary of GEUVADIS results when adjusting for an increasing 
number of principal component of expression 

 
No PC 5 PCs 30 PCs 

LR 515 (6.2%) 771 (6.33%) 2186 (17.6%) 

CMS  996 (12%) 1599 (13.1%) 2420 (19.5%) 

Overlap 515 (6.2%) 767 (6.3%) 2162 (17.4%) 

Combined 996 (12%) 1603 (13.2%) 2444 (19.7%) 

Abbreviation: LR= standard (unadjusted) marginal linear regression. 

 

Supplementary Table 8. Replication rate of established Cis-eQTL between existing LCL studies 
after excluding European GEUVADIS data 

Study 
Population 
ancestry 

Sample 
size 

All SNP-gene pairs Top SNP per gene 

   #hits replicated (%) #hits replicated (%) 

3CL CEU 75 560 283 (51%) 439 215 (49%) 

AS CEU 206 26,427 9,928 (38%) 1,793 695 (39%) 

EGEUV_YRI YRI 89 19,621 333 (2%) 498 15 (3%) 

HA_CEU CEU 30 6,934 4,526 (65%) 353 196 (56%) 

HA_CHB CHB 45 6,829 5,095 (75%) 355 215 (61%) 

HA_JPT JPT 45 8,266 5,910 (71%) 406 234 (58%) 

HA_YRI YRI 30 5,495 2,907 (53%) 451 196 (43%) 

HA2_CEU CEU 30 4,453 1,276 (29%) 106 39 (37%) 

HA2_YRI YRI 30 5,027 398 (8%) 165 29 (18%) 

HRC CEU 60 9,370 911 (10%) 956 18 (2%) 

HRY YRI 69 883 150 (17%) 867 149 (17%) 

MRC CEU 950 181,065 37,893 (21%) 1,279 233 (18%) 

MuTHER_LCL CEU 160 215,407 30,101 (14%) 4,012 406 (10%) 

* count of replication count identified cis-eQTL from each single study that replicate in at least one of the other 12 studies listed 
in the first column of the table. 
Study references: HA

16
, AS

17
, 3C

18
, HRC

19
, HRY

20
, MuTHER

21
, MRC

22
, E-GEUV

23
. 

Population ancestry: YRI=Yoruba in Ibadan Nigeria, CEU=Utah Residents with Northern and Western European Ancestry, 
CHB=Han Chinese in Beijing, JPT=Japanese in Tokyo. 
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Supplementary Figure 1.  Genomic inflation factor for p-values-based filtering. 
We generated series of 10,000 replicates each including 2 to 200 correlated variables and a predictor 
under the complete null –i.e. not associated with any of the correlated variables. We randomly defined 
one of those variables as the primary outcome and tested it for association with the predictor while 
including other variables as covariates if their association test with the predictor had a p-value above a 
threshold 𝑇. Upper panel shows the genomic inflation factor 𝜆𝐺𝐶 of the p-values from this test while 
increasing 𝑇 from 0 to 1. We considered either strong (a), moderate (b) or low (c) correlation between 
variables, as measured in the middle panel by 𝑟𝐶

2, the variance of the primary outcome explained by 
covariate included in the model. The QQplots of each of these experiments (lower panels) show an 
overall inflation of the test without marked outliers at the tail of the distribution.  

 

 

  



 

22 
 

Supplementary Figure 2.  Illustration of the type I error rate inflation for p-values based 
filtering. 
We simulated series of 10,000 replicates, each including three variables, Y, C, and X, corresponding to an 
outcome, a candidate covariate, and a predictor, respectively. The three variables were generated using 
a multivariate normal distribution with mean 0, variance 1, and covariance 𝑐𝑜𝑣(𝑌, 𝐶) = 𝛾 = 0.8, while 
𝑐𝑜𝑣(𝑌, 𝑋) = 𝑐𝑜𝑣(𝐶, 𝑋) = 0. Top histogram plots (red) show the p-value distribution for Y-X association 
obtain from standard marginal regression for the subset of replicates where the p-value for association 
for C-X is lower than 0.2 (left) or larger or equals than 0.2 (right). Middle plot (blue) show the same 
distribution but when Y-X regression are adjusted for C. Bottom plot shows the resulting chi-square (left) 
and p-value distribution for the resulting p-value-based filtering approach, that merges top left and 
middle right tests. 
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Supplementary Figure 3.  Conditional mean and variance of the predictor-covariate 
regression coefficient. 
We simulated series of 10,000 replicates, each including three variables, Y, C, and X, corresponding to an 
outcome, a candidate covariate, and a predictor, respectively. The three variables were generated using 
a multivariate normal distribution with mean 0, variance 1, and covariance 𝑐𝑜𝑣(𝑌, 𝐶) = 𝛾, 𝑐𝑜𝑣(𝑌, 𝑋) =
𝛽, and 𝑐𝑜𝑣(𝑋, 𝐶) = 𝛿. We explored the special case where 𝛿 = 𝛽 = 0, while 𝛾 is relatively large and 

equals 0.2 (a, d), 0.5 (b, e), or 0.8 (c, f). For each series we derived and plotted the observed 𝛿 against its 

expected value defined either as 𝛽̂𝛾 (black circles) or 𝛽̂𝛾 (red dots) and estimated the regression 
coefficient between the 2 terms (i.e. the slope parameter, red dashed line). We also estimated the 

variance of 𝛿̂ conditional on 𝛽̂, 𝑣𝑎𝑟(𝛿|𝛽̂), defined as  𝛿 − 𝔼(𝛿|𝛽̂) = 𝑣𝑎𝑟(𝛿 − 𝛽̂𝛾), which we compared 

against its expected value, defined as (1 − 𝛾2) 𝑁⁄ , where 𝑁 is the sample size. Upper (a, b, c) and lower 
(d, e, f) panels correspond to the case where 𝑁 = 100 and 𝑁 = 1000, respectively.  
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Supplementary Figure 4.  QQplots for the predictor-covariate regression coefficient under the 
null. 
We generated series of 10,000 replicates including 2,000 individuals. For each individual we generated 
independently a single predictor 𝑋, and 20 (left panel) or 50 variables (right panel) from a multivariate 
normal distribution with covariance matrix defined so that the pairwise correlation varies in [-0.4, 0.4]. 
We randomly defined one of those variables as the primary outcome and tested it for association with 

the predictor while including other variables as covariates if 𝛿, the estimated effect of 𝑋 on the 
candidate covariate is within the unconditional inclusion interval (orange), the conditional  inclusion 
interval (blue), or both (i.e. matches either inclusion criteria, red). For simplicity, and to avoid the issue 
of outcome-covariate effect estimation, in the presence of multicollinearity we used principal 
component of covariates instead of their raw values. Note that we do not apply this transformation in 
the final version of the algorithm. 
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Supplementary Figure 5.  Example of collinearity bias in multivariate analysis 
We simulated 1,000 replicates including each 30 correlated variables, one primary outcome and 29 
secondary outcomes, and a one predictor across 1,000 individuals. For simplicity, both the outcomes 
and the predictor were normally distributed with mean 0 and variance 1. We considered a scenario 
where, on average, 75% of the variance of the primary outcome can be explained by the secondary 
outcomes. The predictor was associated with 35% of the secondary outcome but not associated with the 
primary outcome. We performed three four test of association: a standard (unadjusted) linear 
regression (LR), the CMS approach, a standard regression adjusting for all other (29) simulated variables 
(ADJall) and a so-called Reverse regression (REV), where the predictor was treated as the outcome and 

all outcomes (i.e. primary and secondary) are treated as predictors. For each test we estimated 𝛽̂, the 
effect of the predictor on the primary outcome and the associated p-value. The upper and lower panels 

shows the distribution of 𝛽̂ and the type I error rate at 𝛼 = 5% for MR, CMS, REV, and ADJall, 
respectively. 
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Supplementary Figure 6.  Comparison between CMS and mvBIMBAM. 
We simulated 500 series of datasets including 10,000 individuals. For each individual, we generated 
jointly an outcome and 10 covariates from a multivariate normal distribution so that pairwise 
correlation varies in [-0.6, 0.6], and a genetic variant with minor allele frequency drawn uniformly in 
[0.05, 0.95]. For half of the simulations we added a genetic effect to a random subset of the covariates 
but not to the outcome (H0), while in the second half, we added a genetic effect to the outcome but not 
to the covariates (HA). We performed a test of association between the outcome and the genetic 
variants using CMS and derived the posterior probability of the genetic variant being associated directly 
or indirectly with the outcome from mvBIMBAM. Panel a) shows the posterior probabilities for H0 and 
HA from mvBIMBAM, while panel b) shows the computation time in second for both approach in each 
scenario. Panel c) shows the ROC curves derived from the p-value for association for CMS and from the 
posterior probabilities for mvBIMBAM. 
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Supplementary Figure 7.  Limitation of PEER factors and PC adjusted analysis.  
We simulated series of datasets including 10,000 individuals. For each individual, we generated jointly 
an outcome and 49 covariates from a multivariate normal distribution so that pairwise correlation varies 
in [-0.4, 0.4], and a genetic variant with minor allele frequency drawn uniformly in [0.05, 0.95]. We 
added an effect of the genetic variant on some of the covariates but not with the outcome. We 
performed a test of association between the outcome and the genetic variants using four approaches: i) 
CMS, ii) standard linear regression adjusted for principal components (PCs), iii) standard linear 
regression adjusted for PEER factors, and iv) a LASSO regression method (Selective Inference). Panel a) 
and b) show the p-value for association as a function of the number of principal components (PC) and 
PEER factor added to the model, respectively. Panel c) shows the boxplot of p-values for each of the four 
approaches. In this simple scenario, only CMS has a correct uniform p-value distribution, while 
alternative approaches show deflation of the median p-values. 
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Supplementary Figure 8.  Power of CMS when used in conjunction with PEER. 
We simulated series of datasets including 10,000 individuals. For each individual, we generated jointly a 

primary outcome and 49 secondary outcomes from a multivariate normal distribution so that pairwise 

correlation varies in [-0.4, 0.4], and a genetic variant with minor allele frequency drawn uniformly in 

[0.05, 0.95]. We added an effect of the genetic variant on the primary outcome but not with the 

secondary outcomes. We then derived the PEER factors from all outcomes, and derived the residuals of 

each outcome after adjusting from 1 to 35 PEER factors, the largest number we could include without 

inducing substantial bias in Figure S11. We performed a test of association between the residual of the 

primary outcome and the genetic variants using either standard linear regression (LR, red bars) or CMS 

(blue bars). The upper panel shows the power for alpha of 0.001 for both approaches while increasing 

the number of PEER factors used for the adjustment. The bottom panel shows the corresponding 

increase in detection by CMS over LR. 
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Supplementary Figure 9.  Correlation matrix of metabolites. 
Pairwise Pearson correlation between the 79 metabolites collected as part of the NHS, HPFS, PHS and 
WHI studies. Positive and negative correlations are highlighted in red and blue, respectively. 
Dendrogram were draw based on hierarchical clustering derived from the hclustfun() R function. 
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Supplementary Figure 10.  QQplot from real data analyses. 
Panel a) shows the QQplot from the association screening between 79 metabolites and 668 SNPs using 
1,192 individuals from the PanScan study. Observed -log10(p-value) of this screening are plotted against 
an expected uniform p-value distribution. Panel b) present the genome-wide cis-eQTL screening in the 
gEUVADIS data. 11,694 genes were tested for association with genetic variants in close physical 
proximity for a total of 3.4 million tests. Observed -log10(p-value) of this screening are plotted against 
an expected uniform p-value distribution. 

 

 

 

 

  

a)             b) 
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Supplementary Figure 11.  Comparison of the standard approach and CMS in a quasi-null 
experiment 
We aimed at mimicking the original genome-wide cis-eQTL mapping performed from in the gEUVADIS 
study, but under a quasi-null model of no association. To do so we kept all parameters of the real data 
analysis similar but we selected SNPs tested for cis-effects on a different chromosome that the targeted 
gene. Most of the tests are expected to be under the null, although some trans effects might be 
captured in this experiment. Analysis was performed using standard linear regression (LR, black) and the 
CMS (red) approach. Both consisted in running a linear regression adjusted for 10 PEER factors, while 
the CMS analysis also included 0 to 50 additional covariates per SNP/gene pair tested. We compared the 
–log10(p-value) of the two approaches against an expected uniform p-value distribution (panel a) and 
again each other’s (panel b). 

 

   

1. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nature genetics 2014 
2. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011 
3. Rhee, E. P. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell metabolism 2013 

Reference 1:  7,824 subjects 

Reference 2:  2,810 subjects 

Reference 3:  2,076 subjects 

a)             b) 
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Supplementary Figure 12.  Observed effective fold-increase in sample size 
For both real data analysis, we estimated the increase in variance of outcomes explained after adding 
covariates selected by the CMS approach. This increase was measured as the difference in adjusted r-
squared between the model including only the SNP tested and confounding factors for the metabolites 
analysis, and the PEER factors for the gene expression analysis. We used those estimates to derive the 
distribution of equivalent fold increase in sample size for in the gene expression (upper panel) and the 
metabolites (lower panel) data. 

  

4. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nature genetics 2014 
5. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011 
6. Rhee, E. P. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell metabolism 2013 

Reference 1:  7,824 subjects 

Reference 2:  2,810 subjects 

Reference 3:  2,076 subjects 
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Supplementary Figure 13.  Rationale for applying CMS – the example of genomic data.  
In genomics data the underlying causal pathway is partially understood (A). Such information can be 
used to pre-select candidate covariates of interest. In particular, variables from the same structural level 
can be leverage to detect association with variables upstream in the causal pathway. For example in (B), 
one can test the association between a genotype G1 and an outcome P1 while leveraging other available 
phenotypes not on the pathway from G1 to P1 (P2, P3, P4). Conversely it is more difficult to leverage 
variables downstream the outcome considered as correlation might be due to a causal relationship and 
not by shared risk factors. For example in (C), intermediate variable such as M1, might be on the path 
from G1 to P1, and therefore should be excluded a priori, when applying the CMS approach. 
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Supplementary Figure 14.  Inference of missing values  
We generated a series of 10,000 replicates including 2,000 individuals. For each individual we generated 
independently a single predictor 𝑋, and 50 variables from a multivariate normal distribution with 
covariance matrix defined so that the pairwise correlation varies in [-0.4, 0.4]. We randomly defined one 
of those variables as the primary outcome and tested it for association with the predictor, and treated 
the remaining variables as candidate covariates. To explore the impact of missing values on CMS, we set 
either 0% (a), 25% (b and d), or 50% (c and e) of the covariates values as missing and performed a mean-
imputation for the missing values. We considered unstructured missing values (b and c), or structured 
missing values, respectively. For the unstructured missingness, we randomly choose missing values, 
while for the structure missingness; we arbitrarily define a threshold and set as missing all values being 
either above or below the threshold. The left panel shows an example of the resulting distributions after 
imputation. The right panels show the QQplot from the CMS approach applied on the imputed data. 
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Supplementary Figure 15.  Impact of decreasing the transition point in the CMS algorithm.  
We simulated data similarly to Figure 4, except we modified CMS so that the transition point for which 
we start down-weighting the conditional 𝛿 interval is two-fold smaller. We simulated series of 100,000 
datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels), where a 
predictor of interest is not associated with a primary outcome but is associated with either 0%, 15% or 
35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the alternative 
(lower panels), where the predictor is associated with the primary outcome only. The variance of the 
primary outcome that can be explained by the other outcomes was randomly chosen from [25%, 50%, 
75%] with equal probability. In each replicate we applied four tests of association between the primary 
outcome and the predictor: a standard marginal univariate test (LR); the optimally adjusted test (OPT) 
that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ; 
and a univariate test that include as covariate all outcomes with a p-value for association with the 
predictor above 0.1 (FT). For the null models we derived the genomic inflation factor 𝜆𝐺𝐶, while for the 
alternative model we estimated power at an 𝛼 threshold of 5x10-7, to correct for 100,000 tests. 
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Supplementary Figure 16.  Impact of shrinking the inclusion area.  
We simulated data similarly to Figure 4, except we modified CMS so that the maximum conditional and 
unconditional 𝛿 interval equals 𝜎 2⁄  instead of our suggestion of 2𝜎, where 𝜎 corresponds to the 
standard error of either the conditional or unconditional distribution. We simulated series of 100,000 
datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels), where a 
predictor of interest is not associated with a primary outcome but is associated with either 0%, 15% or 
35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the alternative 
(lower panels), where the predictor is associated with the primary outcome only. The variance of the 
primary outcome that can be explained by the other outcomes was randomly chosen from [25%, 50%, 
75%] with equal probability. In each replicate we applied four tests of association between the primary 
outcome and the predictor: a standard marginal univariate test (LR); the optimally adjusted test (OPT) 
that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ; 
and a univariate test that include as covariate all outcomes with a p-value for association with the 
predictor above 0.1 (FT). For the null models we derived the genomic inflation factor 𝜆𝐺𝐶, while for the 
alternative model we estimated power at an 𝛼 threshold of 5x10-7, to correct for 100,000 tests.  
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Supplementary Figure 17.  Impact increasing the multivariate test threshold parameter.  
We simulated data similarly to Figure 4, except we modified CMS so that 𝑡𝑀𝑈𝐿, the p-value threshold 
from the multivariate test equals 0.2, instead of 0.05, as in the final version of CMS. We simulated series 
of 100,000 datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels), 
where a predictor of interest is not associated with a primary outcome but is associated with either 0%, 
15% or 35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the 
alternative (lower panels), where the predictor is associated with the primary outcome only. The 
variance of the primary outcome that can be explained by the other outcomes was randomly chosen 
from [25%, 50%, 75%] with equal probability. In each replicate we applied four tests of association 
between the primary outcome and the predictor: a standard marginal univariate test (LR); the optimally 
adjusted test (OPT) that includes as covariates only the outcomes not associated with the predictor ; the 
CMS approach ; and a univariate test that include as covariate all outcomes with a p-value for 
association with the predictor above 0.1 (FT). For the null models we derived the genomic inflation 
factor 𝜆𝐺𝐶, while for the alternative model we estimated power at an 𝛼 threshold of 5x10-7, to correct 
for 100,000 tests.  
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Supplementary Figure 18.  CMS QQplots for 10 phenotypes, 300 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 19.  CMS QQplots for 10 phenotypes, 300 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 20.  CMS QQplots for 10 phenotypes, 300 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 21.  CMS QQplots for 10 phenotypes, 2000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 22.  CMS QQplots for 10 phenotypes, 2000 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 23.  CMS QQplots for 10 phenotypes, 2000 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 24.  CMS QQplots for 10 phenotypes, 6000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 25.  CMS QQplots for 10 phenotypes, 6000 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 26.  CMS QQplots for 10 phenotypes, 6000 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 27.  CMS QQplots for 40 phenotypes, 300 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 28.  CMS QQplots for 40 phenotypes, 300 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 29.  CMS QQplots for 40 phenotypes, 300 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 30.  CMS QQplots for 40 phenotypes, 2000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 31.  CMS QQplots for 40 phenotypes, 2000 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 32.  CMS QQplots for 40 phenotypes, 2000 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 33.  CMS QQplots for 40 phenotypes, 6000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 34.  CMS QQplots for 40 phenotypes, 6000 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 35.  CMS QQplots for 40 phenotypes, 6000 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 36.  CMS QQplots for 80 phenotypes, 300 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 37.  CMS QQplots for 80 phenotypes, 300 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 38.  CMS QQplots for 80 phenotypes, 300 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 39.  CMS QQplots for 80 phenotypes, 2000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 40.  CMS QQplots for 80 phenotypes, 2000 individuals and 50% of 
outcome variance explained 
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Supplementary Figure 41.  CMS QQplots for 80 phenotypes, 2000 individuals and 75% of 
outcome variance explained 
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Supplementary Figure 42.  CMS QQplots for 80 phenotypes, 6000 individuals and 25% of 
outcome variance explained 
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Supplementary Figure 43.  CMS QQplots for 80 phenotypes, 6000 individuals and 50% of 
outcome variance explained 

 

  



 

64 
 

Supplementary Figure 44.  CMS QQplots for 80 phenotypes, 6000 individuals and 75% of 
outcome variance explained 

 

 

  



 

65 
 

Supplementary Figure 45.  Density plot for the metabolite levels. 
Distribution of the 79 metabolites after adjusting for pancreatic cancer case-control status, age at blood 
draw, fasting status, self-reported race, and gender, and standardization (mean centered and scaled by 
standard deviation). 
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