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Supplementary note

A simple example of bias due to covariate adjustment in genetic association study

Consider four variables, Y a given outcome, C a potential covariate, U an unmeasured variable, and G a genetic
variant. For simplicity all four variables are assumed to be normally distributed with mean 0 and variance 1.
Consider a model where the Y and C are correlated because they are both influenced by U, and G is associated
with C only with effect S (as illustrated in Figure 1d). Under such model Y and C can be written as:

Y=y, X U+ /1—y12 X &y
C=y, XU+ BcXG+ /1—y22—ﬁg X g¢

Consider the case where y; and y, are positives for simplicity, the correlation between Y and C equals y;y5. It
follows that Y adjusted for C equals:

Yadjusted.C =Y —y1y2 XC

=pyxU+ /1—1/12 Xey—h)/z<yz XU+ BeXG+ /1—V22—/>’c2 ><€c>
=y1V2 X (Y1 = V2) XU —y1¥2 X Bc X G — Y1V, X /1—V22_ﬁg X g+ ’1—7/12 X &y

Thus, after the adjustment, the outcome Y, 4y steq.c depends on G with an effect equal to y,y, X fc.

Consider now a slightly different model, where the SNP is associated with both Y and C with effect Sy and £,
respectively (as illustrated in Figure 1c), so that:

Y=y1XU+ﬁny+ ’1_]/22_33ng
C=]/2XU+ ,BCXG-}- ’1_y22_ﬁg XSC

One can similarly show that Y adjusted for C equals:

Yaajustea.c = By = V1¥2 X Bc) X G + &y,

where syadjis a random variable not associated with G. In such case the effect of G on Y would be either

overestimated if S and Sy have opposite direction, and underestimated if S and By have effect in the same
direction.

The above results illustrated the bias induced in a two-step adjustment strategy (i.e. adjusting the outcome for
covariates in a first step, and then testing for association between the residual of the outcome and the
predictor). However a similar bias exists if adjustment and test for association with the predictor are performed
in a single framework. Indeed, we showed in a recent study' that the expected value of the joint least square
estimates of ¥ and ,[?, the effect of C and G on Y, respectively equal:
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Conditional effect estimate of the covariates

For simplicity, we consider all variables in question are standardized to have mean 0 and variance 1. In standard
ordinary least squared, 8, the estimated effect of X on C from the linear model C~&X + € has an expected
value of E[§] = & and a variance 0;? = d?(X'X)™1, were g2 is the variance of €. When the sample size N is

large and & is small, 032 ~ 1/N.

Now consider the more general case assuming C, Y, and X follow a multivariate normal distribution, i.e.

c ot v 6 -
Y|~MVN [|0 ,[y 1 ﬁ] = MVN|0,%]
X olls p 1

The maximum likelihood for X is asymptotically similar to the method-of-moments estimator, so that for a
sample size n, we have the following approximation:

2=—Z<}’i—37[0i—5 Yi—y xi—f])= y 6 PB|==S
n = N n
i=1 \LX; — X 5 B 62

Where S follows a 3 degrees of freedom Wishart distribution, S~W5(Z,n), which has an expected value
E[S] = nX.
The matrix S can be partition as:
PRI 62 y
S = ( 1 12)where.5'11 =n6Z;S,, = n(gg ‘B>;and521 = n(g)

S21 S22 6%

It follows that the distribution of S,; conditional on S,, equals Sy, | Sp»~N(u, A) with u = S,,%5}%,, and
A= 522 ® 211.2, and:

T112 =211 — 2122538 = 1= [y ]1_;[;2 [_13 _1'3] [g]

— 1ol =p0 —pv+a1[}]
_ Y& =P +6(=py+9)
1-p2
Yot 2syp
1-p2



so that:

ﬁ)_(l_y2+62—26yﬁ> <aY2 3)
62) -2 )"\p &

™ R

A=S, QL1 =101, (

and,

u= 52222_21221

=(|% ﬁ)(l 7l 7D

__n —-BB B ﬁUy H
1_ﬂ23 Bog 6% — 8
n [v(ay—ﬁﬁ)+5(b’—ﬂf?y2)
2ly(B - B6z) + 6(6% — BR)

Hence, in the special case where § = § = 0, we have :
o
—n [Y Y]

When sample size is large enough and |y| > 0, we assume that 6% ~ 6% ~ 1 and y = J. It follows that the
mean can be approximated by:

ny
=)

nyp
From above, we have IE[221 | 522] [521 | S2,], so that for the same special case, we have:
y 1 nv > Ao A
E[A|Szz] =—IE[ };;sz’:/’)
6 6:3:0 n Tl6 6=B=0
1 ny a4
~—&["L14]
n Tl5 6:ﬁ:0

In other words:

PN

E(S18), ., ~ 7B

And the variance of né conditional on S,, under the same assumption (67 ~ 1, 62 ~ 1 and y = ¥), and for the
special case where § = § = 0, it follows that:

var(n8|522)5=ﬁ=0 = var(nSl&%,&},E)(s:ﬁ:O
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so that:
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. 1
var(6|,8)5:B:0 ~= ﬁ(l —9)n

Type | error inflation when filtering covariates based on their p-values for association with the predictor
Consider the three standardized variables: an outcome Y, a predictor X and a covariate C. The p-value based
filtering consists in including C as a covariate in the model Y~BX + ¢y only if its p-value for association with X
from the marginal linear model C~8X + & is greater than a threshold «a. Filtering out a covariate based on its p-
value is equivalent to filtering based on )(%, the 1 degree of freedom chi-squared statistic for the test of §, i.e.
pvalue < a (z))((% = t and conversely p > « (:))(g < t. Where t = ¢~ (a) and ¢~ is the inverse of a 1
degree of freedom chi-squared cumulative distribution function.

In parallel, and using the same derivation as in the previous section and assuming 62 ~ 1 and y = 9, one can

show that E([?|8)5=ﬁ=0 ~ 98 and var(ﬁ|5)5zﬁ=0 ~ (1 —9%)/n, where n is the sample size.

When sample size is large so that var(c?) ~ var([?) =~ 1/n, the expected value of )(5, the 1 degree of freedom

chi-squared statistics for the test of B, can be expressed as a function of )(é:

. p? .
E(x216 ~ nE|—= |6

~n [E(3|S)Z=B=0 + var(ﬁ’lg)g:ﬁ:o]

Adding boundaries on &, the expected value of)(é has the following form, which depends on the first moment of

a truncated chi-squared distribution:

+00

E(aglas > ), =1-7+7° f 15 FG3)G = 1= +VE(5) ey
t

where f is the probability distribution function of a 1 degree of freedom central chi-squared distribution.
Although solutions might exists, solving this integral is non-trivial® and of limited interest for the purpose of our

study. However, the monotonicity of f, and the positivity of f and )(32 implies when t € (0, 4+0) :



+00 +oo
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X3€lt+o0]

S S 2
o 1-92+ YZ]E(XS)X§E[L“,+00]

& E(}(él){yf > t)6=ﬁ=0 >1

2
o E ()(E|pvalue3 <a )6=[i’=0 >1
This shows that subset of )(é selected based on pvaluez < a is inflated.

In parallel, we previously demonstrated in Aschard et al* that the estimated effect of X on Y from the adjusted
model, Y~B,q;X + YC + &y, can be approximated by Badj ~ f — 8. It follows that under the same assumption
described above (]y| > 0 so that y = ¥), we have:

E(Baajld);_s_o = E(B=9818),_,_

§=B=0 §=p=0
= B(BI18),_p — 15
= 0

And the variance of 8,4 ; conditional on 8 equals:
Var(.éadﬂg)(s:ﬂ:o ~ var(f — ?8|8)5=ﬂ=0

~ var(ﬁ|3)6=B:0 + 92var(819)

The adjusted model, 2 , the 1 degree of freedom chi-squared statistics for the test of B,4;, has expected
ﬁad] g ]

value:
2 A _ nBczzdj a
E (Xﬁadjlé‘)é’:[f:O ~F <A}g - ?2 |6>6_B—0
n A AN 2 A A
~ % [E(Baa18)s_po + var(Baasl®) ]
_on 1= 92
T1-92| n



=1

So that]E()(é .|3) is independent of §:

adj’ /§=p=0
Hence, the p-value based filtering in a complete null model (6 = 8 = 0) consists in merging chi-squared
statistics from the adjusted test ()(l%adj) which are distributed under the null independently of § with a mean of

1, and chi-squared statistics from the unadjusted test ()(5) which have an expected value that increases with
decreasing a threshold when |y| # 0, being systematically larger than 1 when a > 0.

We verified this result empirically in Supplementary Fig. 2.

The CMS algorithm

We develop an algorithm to select relevant covariates when testing for association between a predictor
X and an outcome Y. For a set of candidate covariates € = (Cy, C,, ... C,,), the filtering is applied on &; and p;,
the estimated marginal effect of the predictor X on C; and its associated p-value, respectively. It uses four major
features: i) 7 the total amount of variance of Y explained by the C ; ii) (yZ, 72, )the estimated effect of each
Cie1._m ONn Y and their joint effect respectively; iii) £, the estimated effect of X on Y from the marginal model
Y~a + [X; and iv) pyuyL, the p-value for the multivariate test of all C;—;_,, and X, which is estimated using a
standard multivariate approach (i.e. MANOVA).

Filtering is applied in two steps using the aforementioned features and additional parameters described
thereafter. Step 1 is an iterative procedure that filters out candidate covariate until pyy, reach a given
threshold. Step 2 is also iterative and uses covariates pre-selected at step 1. It consists in deriving two

confidence intervals Aj cong and Ap un, for the expected distribution of §; conditional on 8 under a complete null
model (§; = 0 and B = 0), and the unconditional distribution of §;, respectively. The unconditional distribution

of &, can be approximated as N'(0,+/1/n), while the conditional distribution equals N (78,/(1 — 72)/n),
where 7 is the estimated correlation between Y and C. The final inclusion area for each §; is defined as the
union of A; .ona and A; ., after applying stringency weights w,, and w,,respecctively.

The proposed multi-step algorithm is defined as follows:

For each predictor X and Y
1.Univariate association

1.1. Standardized all variables (Y, X, C) to have mean 0 and variance 1
1.2.Initialize L = 1 ...m, the list of selected covariates, with all available covariates

1.3.Derive for each | € L, ¥, and 7, the marginal effect estimates from the univariate regression
Y~Ci-1 _m, and multivariate model Y ~C, respectively.

2.Filter 1: multivariate
2.1. Perform a marginal association test between X and each C;—4 _,,
2.1.1. Derive all §; and p; from C~8, + 8; X X
2.2. Set ppy=0



2.3. While PmuL < tMUL

2.3.1.Derive pyy, from € ~X using a multivariate test, where €} is the data matrix € including
only I € L covariates.

2.3.2.Update L by removing the C; that match p;c;, = min(p;¢;) from the set of candidate
covariates

3.if L # O, filter2: univariate
3.1. whileL #0and Ly # L;

3.1.1.Update for each l € L ¥;,,, the effect estimates from the multivariate model Y ~C;.
3.1.2.Derive rZ the variance of Y explained by C;, from the model in 3.1.1

3.1.3.Derive for each lel the stringency of  the inclusion area
wsr = 0.1 X pyyr X (1 =18) X (1 = P8) /T

3.1.4. Derive the specific conditional and unconditional weights using the threshold functions
we = min(Wsr, f:(x3)) and wy, = min(wsr, f,(x3)), where 3 = N x f?/0%:

X3/8 ifxg <16

a fe=92-x4/8 ifxj>16 and yj <32
0 Otherwise
b, f, = {Xg/s ifxp <16
“ 2 Otherwise

3.1.5.Derive the mean p;,, = 0 and standard deviation 0;,, = \/% of the unconditional

distribution of §; and the associated inclusion area: 4; ;n = [U1un — Trun X Wi Hiun +
Orun X Wu]-

of the

. ~ A o 1-92
3.1.6.Derive the mean p;cong =¥ X B and standard deviation o ong = ( Nyl)

conditional null distribution of §,, and the associated inclusion area: A, ona =
[.ul.cond — O.cond X Wer Hicond T Olcond X Wc]

3.1.7.Update L by removing all I which &; is not included in 4; cong YU 4;un

4.Perform the test of association between X and Y, while adjusting for the selected covariates

4.1. Estimate By and derive the associated p-value from the multivariate model including all I € L
covariate from Y~fy + Beus X X+ B X C;,

Extensive simulation models

We simulated series of 10,000 replicates under null models where a predictor of interest —here a single

nucleotide polymorphism (SNP)— is not associated with the primary outcome but is associated with a fraction
of the covariates and under the alternative where the predictor is associated with the primary outcome only. For
the null model we considered m=[0%, 15%, 35%], while we focused on the case m=[0%] for the alternative. We
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generated effects of the predictor on the primary outcome () and on the covariate (§) so that the expected
noncentrality chi-square parameter (ncp, which equals the median y? or the average y? minus 1) goes from
very low to moderately high (ncp = [3,5,10,20]). More precisely, for the SNP effect on the outcome we used

either of the four ncp so that = \/ncp/N . For the SNP effect on the covariates we draw uniformly & from

[0,2 X 1/ncp/N] so that expected effect across replicates equals /ncp/N. We assigned negative effects to &
with a probability of 10%. We considered sample sizes N of 300, 2,000 and 6,000, value of rcz, the variance of Y
explained by C, in [25%, 50%, 75%] and total number of phenotypes in [10, 40, 80]. For the null models we
derived the genomic inflation factor A, while for the alternative model we estimated power at an a threshold of
5x10‘7, to correct for 100,000 tests.

Supplementary Figures 19-45 present the QQplots for these 27 scenarios, each scenario including 16
series of 10,000 replicates and four tests: standard marginal univariate test (LR); the optimally adjusted test
(OPT) that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ; and
a univariate test that include as covariate all outcome with a p-value for association with the predictor above 0.1
(FT). A more succinct summary including type | error rate is presented in Supplementary Tables 2-4

Comparison with alternatives methods

We compared the performances of the CMS algorithm against a range of alternatives approaches. We
first assessed strategies that consist in capturing shared “hidden factors” and use these factors as covariates. In
particular we considered adjustment for principal component and adjustment for PEER factors, both being
derived from the entire dataset (i.e. outcome and covariates). We then considered a penalized regression
approach as it is commonly used for selection of variables and the assessment of their relative importance.
Among many possibilities, we arbitrarily choose to use LASSO® in combination with the Exact post-selection
inference to compute association P-values for each selected predictor.” Finally, Bayesian methods have the
possibility of assessing the true relation between genotype and phenotype in the presence of correlated
covariates. In particular we considered the recent method mvBIMBAM® which, given a single predictor and
multiple outcome, allows to derive posterior probabilities of a genetic variant being either directly, indirectly, or
not associated with each outcome.

We first generated series of 500 replicates of 10,000 individuals under a null model in order to compare
the robustness of the hidden factor adjustment and the LASSO approach. More specifically, for each replicate,
we generated 50 correlated variables from a multivariate normal distribution, with correlation matrix defined so
that pairwise correlation varies in [-0.4; 0.4] and a single genotype randomly drawn from a binomial with a
coded allele frequency in [0.05; 0.95]. We randomly picked one of the variables as the primary outcome, and
considered the remaining as secondary outcomes — and refer further to this variable as covariates. We then
added an effect of the genetic variant on a random subset of the covariates, with effect drawn uniformly from [-
0.07; 0.07], so that variance of the covariates explained by the genetic variant was always smaller than 0.25%.
For PEER and PCs, we tested the association between the genetic variant and the primary outcome while
adjusting for an increasing number of either PCs or PEER factors. For LASSO, we provided the model containing
the genotype plus all the covariates as independent variables, and let the algorithm estimate the relative
importance of each predictor.

First, as shown Supplementary Figure 7, the LASSO approach shows severe type | error rate inflation.
This is partly expected, as the goal of such methods is to build model with improved prediction accuracy,
whether or not the predictors are related or not. Second, concordant with other recent work from our group®,
we observed increasing type | error rates when increasing the number of PCs or PEER factors in the model
(Supplementary Fig. 7a,b,c). The CMS algorithm showed correct type | error rates on the same data. Hence,
while these approaches have the main advantage of being computationally efficient (i.e. the hidden factor are
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derived once for the complete dataset), we found that they induce false positives. While it is possible to learn
factors while adjusting for individual genetic variants’, these approaches do not scale computationally and still
introduced biases in our simulations (Supplementary Fig. 7c).

For mvBIMBAM, we used the same simulation framework, except that we decreased the total number
of variable to 10, as mvBIMBAM was intractable for larger number of variables. Also, as mvBIMBAM is a
Bayesian method, it does not output P-value. To allow for fair comparison we had to use a metric accounting for
type | error rate relative to power. We choose the ROC curves and AUC and derived sensibility and specificity
using p-values for CMS, and posterior probability that the phenotype is not affected by the genetic factor for
mvBIMBAM. Significance in AUC difference was assessed using the approach proposed by A Delong et al.? The
CMS approach was more than 100 fold faster than mvBIMBAM and the two methods showed similar accuracy
when compared using ROC curves (Supplementary Fig. 6). Although we noted a slightly better AUC for
mvBIMBAM (AUCgimpam= 0.834, AUC\s=0.810, P=0.02), the improvement was due to a higher sensitivity at very
low specificity (i.e. for a false discovery rate>0.5), which is of limited interest in the context of association
studies.

Unsuccessful approaches explored

In the process of defining our algorithm we considered a few alternative strategies to those used in the
proposed final version. Below is a brief overview of the major ones we assessed but ended up being
unsuccessful:

1. Instead of trying to decipher type | and type Il covariates (i.e. covariate truly associated with the
predictor, and those independent of a predictor X, respectively), we considered removing the predictor’s effect
from the covariate. While several approaches might be considered, we only explored the most naive one, which
consists in using the residual of the covariate after adjusting it for the predictor X. In brief, in step 1) we fit the
model C;~& X and derive C = C; — 5;X , then in step 2) we performed the test of § from the model
Y~BG + y*C/. While the approach is intuitive in theory, in real data, it faces the problem of finite sample sizes.
Indeed, Sl is only an approximation of §;, and adjusting Y for C; actually results in introducing a major residual
effectsof X onY.

2. The first feature of our algorithm is a multivariate test for association. This test was added to the
algorithm to address bias due to linear combination of covariates —i.e. in cases where multiple covariate have
small association with the predictor, so that univariate test will have very low power. Before using this approach,
we first explored a stepwise selection procedure where 1) all covariates were ranked based on their association
the predictor, 2) the covariate were then added to the model Y~fX + y,C; + y,C, + -+ one by one, and at
each loop, we tested the overall association G~y,(; + y,C, + -+ The selection process stopped when the later
test was significant. As compared to the implemented multivariate approach, this alternative was both time-
consuming and inefficient in selecting type Il covariates.

3. To limit the issue of multicollinearity, we considered first deriving principal components (PCs) of
candidate covariates. The resulting PCs being orthogonal, adding or removing a PCs in the model does not affect
the estimated effect of other PCs. While appealing this approach showed limited performances. The reason is
that PCs are linear combinations of the raw phenotypes, and any genetic effect on a single outcome will tend to
be disseminated on all PCs. It follows that most PCs end up being type I covariates (i.e. are truly associated with
the predictor).
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Leveraging the architecture of genomic data

While the proposed CMS approach can be applied on any type of data, genomic data have several
advantages, one of them being that the underlying structure is relatively well understood®*?. Consider the
example of Supplementary Figure 17 where a phenotype P1 is associated with two genotypes G1 and G2. The
association with G1 and G2 go through two (almost) independent causal pathway pathl and path2 which
involve two different sets of RNAs, proteins, metabolites and environmental exposures. Any other phenotypes
that depend on pathl but not path2 can be used to improve the detection of the association between P1 and
G2, and conversely phenotypes depending on path2 can be leverage to detect G1 (Supplementary Figure 17B).
Also, one can see from this figure that variable downstream on the causal pathway cannot be used to identify
association between upstream variables, i.e. the “end-of-chain” phenotype PO to P4 cannot a priori be used to
improve the detection of the association between the genotype and the metabolites (Supplementary Figure
17C). Accounting for this information, we can identify which set of outcomes would be the most relevant for
CMS. In particular, it allows excluding variables that would be a priori a source of bias.

Supplementary Table 1. Type | error of the conditional and unconditional filtering for a single
covariate

Threshold  Approach %sel a=0001 a=001 a=005 a=01 a=02 a=0.5

UnCond 95.1% 0.0017 0.016 0.068 0.13 0.24 0.53
T=0.05 Cond 94.5% 0.0004 0.004 0.028 0.07 0.17 0.48
Mix 98.6% 0.0013 0.011 0.049 0.10 0.21 0.51
UnCond 90.3% 0.0017 0.017 0.075 0.14 0.25 0.55
T=0.10 Cond 89.3% 0.0003 0.003 0.022 0.06 0.15 0.46
Mix 96.8% 0.0013 0.010 0.048 0.10 0.21 0.51
UnCond 80.4% 0.0016 0.017 0.079 0.15 0.28 0.57
T=0.20 Cond 79.2% 0.0003 0.002 0.019 0.05 0.13 0.43
Mix 92.1% 0.0012 0.010 0.048 0.10 0.21 0.51
UnCond 70.6% 0.0014 0.016 0.078 0.15 0.28 0.59
T=0.30 Cond 69.2% 0.0003 0.003 0.020 0.05 0.12 0.41
Mix 86.2% 0.0010 0.010 0.048 0.10 0.21 0.50

Abbreviation: %sel is the percentage of time the covariate is included in the model.

Type | error rate is derived based on a series of 10,000 simulated datasets. For each dataset, a primary outcome and a secondary outcome
are generated with a correlation of 0.8, and an independently generated predictor is tested for association with the primary outcome
while adding the secondary outcome as a covariate based on its conditional or unconditional distribution.
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Supplementary Table 2. Type | error rate for 300 individuals

Nsamp. Nphe. r? T a=0.05 a=0.001 a=0.0001

LR OPT  CMS FT LR oPT cMmS FT LR oPT cMmS FT
300 10 025 000 0.051 0051 0047 0.064 1.1x10° 1.1x10° 9.2x10° 1.6x10°  7.5x10° 1.5x10°  1.2x10* 2.2x10™
300 10 0.25 0.15 0.052 0051 0.048 0.065 1.1x10° 1.0x10° 1.2x10° 2.2x10°  1.2x10* 1.0x10*  1.5x10% 2.7x10™
300 10 025 035 0.052 0051 0048 0.066 1.0x10° 1.1x10° 1.1x10® 2.1x10° 1.7x10* 1.5x10°  2.5x10* 4.0x10™
300 10 050 0.00 0.052 0.050 0.046 0.080  1.0x10° 1.1x10° 1.1x10® 2.5x10°  1.0x10* 1.0x10*  1.5x10% 3.7x10™
300 10 050 0.15 0.050 0.052 0046 0.086 1.2x10° 1.1x10° 1.8x10° 4.8x10° 1.2x10* 1.5x10°%  2.7x10* 1.4x10°
300 10 050 0.35 0.051 0052 0.048 0.086  13x10° 1.2x10° 1.9x10° 5.4x10° 15x10* 1.0x10°  6.5x10° 1.7x107
300 10 075 000 0.052 0052 0046 0.106 1.0x10° 9.7x10* 1.4x10° 3.7x10° 1.2x10* 1.0x10°*  2.2x10* 4.5x10™
300 10 075 0.15 0.052 0051 0049 0.116 1.2x10° 1.1x10° 1.8x10° 1.5x10° s50x10* 1.7x10°%  3.7x10* 7.0x10°
300 10 075 035 0.049 0050 0046 0.105 1.0x10° 9.2x10* 1.6x10° 1.2x10° 50x10° 7.5x10°  4.7x10* 5.0x10°
300 40 025 000 0.052 0051 0042 0.066 1.5x10° 1.3x10° 8.0x10* 2.0x10°  2.2x10* 1.5x10°  1.2x10* 4.5x10™
300 40 0.25 0.15 0.051 0.050 0.043 0066 1.2x10° 1.1x10° 8.0x10® 2.2x10° 1.7x10* 2.0x10*  1.0x10* 4.2x10"
300 40 025 035 0.051 0050 0044 0.068 7.5x10° 1.2x10° 8.7x10* 2.1x10° 25¢10% 1.2x10°  5.0x10° 1.7x10™
300 40 050 0.00 0.051 0.050 0.040 0.085 13x10° 9.7x10" 1.0x10® 3.1x10° 1.7x10* 1.2x10*  2.5x10° 5.0x10™
300 40 050 0.15  0.050 0.052 0041 0.087 13x10° 1.4x10° 1.0x10° 4.0x10° 2.2x10* 1.0x10*  2.0x10* 8.7x10"
300 40 050 0.35 0.050 0.052 0.044 0.084 1.0x10° 1.1x10° 9.7x10" 4.1x10°  7.5x10* 1.2x10*  3.0x10* 8.5x10"
300 40 075 000 0.051 0052 0041 0.105 1.0x10° 1.0x10° 1.0x10° 4.7x10° 50x10* 7.5x10°  1.2x10* 7.2x10™
300 40 075 0.15 0.051 0050 0.040 0.100 1.1x10° 85x10" 1.1x10° 6.7x10°  2.7x10* 1.2x10°%  1.7x10* 2.1x107
300 40 075 035 0.051 0052 0043 0.091 9.7x10" 8.5x10* 9.2x10" 5.0x10°  7.5¢x10° 7.5x10°  1.7x10* 1.0x10°
300 80 025 0 0.051 0.051 0.036 0.069  1.2x10° 1.3x10° 6.7x10" 1.8x10°  75x10° 1.5x10*  2.5x10° 2.0x10™
300 80 0.25 0.15 0.051 0.051 0.037 0.068 1.3x10°  1.2x10% 6.5x10" 2.3x10°  2.0x10%* 1.5x10% 7.5x10°  4.2x107*
300 80 025 0.35  0.051 0053 0.039 0.070 1.0x10° 1.2x10° 6.0x10* 2.3x10°  1.0x10* 7.5x10°  5.0x10° 2.7x10™
300 80 0.50 0.00 0.050 0.053 0.033 0.086 8.2x10"  7.5x10" 4.2x10* 3.0x10°  1.0x10* 1.5x10™ 1.0x10* 4.5x10™
300 80 050 0.15 0.051 0.051 0036 0.087 1.2x10° 1.0x10% 8.0x10" 3.7x10° 1.0x10* 7.5x10°  1.0x10* 6.5x10"
300 80 050 035 0.048 0051 0037 0.081 85x10" 1.1x10® 5.0x10* 3.0x10° 50x10° 1.7x10°  5.0x10° 5.2x10™
300 80 0.75 0.00 0.051 0.052 0.035 0.099 9.0x10" 1.2x10% 8.0x10" 4.8x10°  1.0x10* 7.5x10° 1.0x10* 8.0x10*
300 80 0.75 0.15 0.050 0.053 0.036 0.094 1.4x10°  1.2x10% 7.2x10" 5.6x10°  2.7x10% 1.7x10% 1.2x10% 1.2x1073
300 80 075 035 0.051 0050 0.039 0.088 1.1x10° 1.2x10° 8.5x10* 3.9x10° 1.2x10* 1.0x10*  7.5x10° 6.7x10™

Abbreviations: r? is the total outcome variance that can be explained by other variables ; T is the proportion of variables associated with the predictor ; LR= standard
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test

that include as covariate all variable with a p-value for association with the predictor above 0.1.
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Supplementary Table 3. Type | error rate for 2000 individuals

Nsamp. Nphe. 12 T a=0.05 a=0.001 a=0.0001
LR OPT  CMS FT LR oPT cMmS FT LR OPT cMmS FT

2000 10 0.25 0.00 0.051 0.051 0.049 0.065 1.0x10° 9.2x10" 1.1x10° 1.6x10° 5.0x10° 5.0x10°  7.5x10°  1.2x10™
2000 10 0.25 0.15 0.052 0.050 0.049 0.067 1.0x10® 9.5x10° 9.5x10” 1.8x10°  1.0x10* 1.0x10* 1.2x10°  2.2x10™
2000 10 0.25 0.35 0.050 0.049 0.049 0.067 9.0x10* 6.5x10" 1.1x10® 2.0x10®  1.5x10" 7.5x10° 1.5x10"  3.2x10"
2000 10 0.50 0.00 0.050 0.053  0.047 0.082 9.0x10" 1.1x10® 1.2x10® 2.7x10®  1.7x10* 1.2x10* 2.0x10*  3.7x10"
2000 10 0.50 0.15 0.051 0.053 0.049 0.088 1.1x10°  9.7x10" 1.6x10° 4.7x10°  1.2x10" 1.0x10”" 3.0x10"  1.0x10™
2000 10 0.50 0.35 0.049 0.052 0.048 0.086 1.3x10°  1.4x10° 1.7x10° 5.1x10°  1.5x10* 1.2x10* 3.7x10°  1.0x10”
2000 10 0.75 0.00 0.051 0.052 0.047 0.107 1.1x10°  1.0x10° 1.3x10° 3.7x10° 1.5x10" 5.0x10° 3.2x10"  5.5x10™
2000 10 0.75 0.15 0.049 0.051 0.046 0.112 1.1x10%  9.7x10" 1.9x10° 1.3x10° 1.2x10* 1.0x10* 5.7x10"  5.9x10°
2000 10 0.75 0.35 0.049 0.048 0.047 0.105 9.0x10* 1.0x10° 1.9x10® 1.2x10%  7.5x10° 1.2x10* 5.7x10*  5.0x10°
2000 40 0.25 0.00 0.048 0.050 0.046 0.063 8.7x10”" 1.1x10® 8.7x10* 1.9x10°  7.5x10° 1.5x10* 1.5x10* 2.0x10"
2000 40 0.25 0.15 0.049 0.051 0.047 0.066 1.0x10°  1.0x10° 9.0x10”" 2.3x10°  7.5x10° 2.5x10°  2.5x10°  1.2x10™
2000 40 0.25 0.35 0.052 0.051 0.050 0.069 1.0x10°  1.2x10° 1.1x10° 2.1x10° 1.2x10* 1.2x10* 2.0x10*  3.2x10"
2000 40 0.50 0.00 0.049 0.049 0.044 0.084 8.2x10" 1.2x10° 9.5x10® 3.0x10°  5.0x10° 5.0x10°  1.5x10"  5.2x10"
2000 40 0.50 0.15 0.049 0.051 0.045 0.084 9.5x10”" 1.3x10° 1.2x10® 3.9x10° 1.7x10* 1.5x10* 3.0x10* 1.0x10°
2000 40 0.50 0.35 0.050 0.049  0.046 0.082 6.0x10*  8.5x10”" 8.0x10" 3.1x10°  2.5x10” 0 1.7x10*  5.0x10"
2000 40 0.75 0.00 0.049 0.049 0.045 0.105 9.2x10" 9.0x10* 9.2x10* 4.3x10® 1.2x10* 1.0x10* 1.0x10* 7.7x10"
2000 40 0.75 0.15 0.050 0.050 0.046 0.097 1.4x10° 1.1x10° 1.4x10° 7.1x10° 0 1.0x10"  2.0x10"  1.6x10°
2000 40 0.75 0.35 0.051 0.051 0.048 0.090 1.3x10%  1.1x10° 1.3x10° 5.2x10°  1.0x10* 1.7x10*  3.7x10"  1.1x10°
2000 80 0.25 0.00 0.052 0.051 0.048 0.067 8.0x10" 1.0x10® 7.5x10* 1.5x10°  7.5x10° 5.0x10°  7.5x10°  1.5x10"
2000 80 0.25 0.15 0.050 0.049  0.047 0.067 9.0x10* 1.2x10° 8.7x10* 1.9x10°  1.0x10* 7.5x10° 5.0x10°  2.5x10"
2000 80 0.25 0.35 0.050 0.052 0.048 0.068 8.7x10”" 1.1x10® 8.2x10* 1.9x10° 5.0x10° 1.5x10* 1.5x10*  3.0x10"
2000 80 0.50 0.00 0.049 0.050 0.043 0.083 7.5x10"  8.7x10” 8.0x10" 3.0x10°  1.0x10" 2.5x10° 1.7x10"  3.2x10™
2000 80 0.50 0.15 0.051 0.050 0.047 0.085 8.5x10"  8x10" 7.5x10* 3.5x10° 5.0x10° 1.2x10* 1.7x10*  4.5x10"
2000 80 0.50 0.35 0.049 0.050 0.046 0.081 1.1x10°  1.2x10° 1.4x10° 3.7x10°  7.5x10° 7.5x10° 3.5x10"  7.7x10"
2000 80 0.75 0.00 0.048 0.050 0.043 0.099 1.1x10° 8.7x10° 9.7x10” 4.6x10°  7.5x10° 1.7x10* 1.0x10°  7.7x10"
2000 80 0.75 0.15 0.048 0.051 0.044 0.091 1.1x10°  9.5x10* 1.1x10° 4.7x10°  2.0x10* 2.0x10”" 2.0x10"  7.7x10™
2000 80 0.75 0.35 0.050 0.051 0.047 0.087 1.3x10°  1.1x10° 1.5x10° 4.3x10° 1.2x10" 5.0x10° 1.7x10"  7.0x10™

Abbreviations: r? is the total outcome variance that can be explained by other variables ; 7t is the proportion of variables associated with the predictor ; LR= standard
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test

that include as covariate all variable with a p-value for association with the predictor above 0.1.
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Supplementary Table 4. Type | error rate for 6000 individuals

Nsamp. Nphe. 12 T a=0.05 a=0.001 a=0.0001
LR OPT  CMS FT LR oPT cMmS FT LR OPT cMmS FT

6000 10 0.25 0.00 0.052 0.051 0.049 0.065 9.2x10* 9.5x10" 9.0x10* 1.6x10°  1.2x10* 1.0x10*  1x10®  2.2x10"
6000 10 0.25 0.15 0.051 0.048 0.049 0.064 7.7x10*  9.7x10*  7.7x10% 1.9x10°  2.5x10° 1.2x10*  1.5x10°  2.2x10™
6000 10 0.25 0.35 0.050 0.050 0.049 0.067 9.2x10* 1.0x10° 9.2x10* 1.9x10°  7.5x10° 7.5x10° 2.0x10®  3.0x10"
6000 10 0.50 0.00 0.050 0.052  0.047 0.082 8.0x10" 9.7x10* 1.3x10® 2.8x10° 1.0x10* 1.2x10* 2.0x10* 4.5x10*
6000 10 0.50 0.15 0.052 0.051 0.049 0.085 1.2x10°  1.3x10° 1.9x10° 5.3x10° 1.5x10" 1.2x10" 5.7x10"  1.3x10°
6000 10 0.50 0.35 0.050 0.049 0.048 0.084 9.7x10* 9.5x10* 1.7x10° 4.8x10°  7.5x10° 1.0x10* 3.0x10*  9.7x10"
6000 10 0.75 0.00 0.050 0.049 0.048 0.103 1.0x10° 8.7x10" 1.5x10° 3.5x10° 1.2x10" 1.0x10" 2.7x10" 6.5x10"
6000 10 0.75 0.15 0.050 0.051 0.047 0.112 9.5x10”" 1.1x10® 1.7x10® 1.4x10% 2.5x10° 1.5x10*  4.5x10* 6.0x10°
6000 10 0.75 0.35 0.048 0.050 0.048 0.105 9.7x10* 8.0x10* 1.9x10® 1.2x10%  1.0x10" 2.5x10° 5.2x10"  5.2x10°
6000 40 0.25 0.00 0.051 0.051 0.050 0.066 1.0x10° 1.1x10° 7.2x10”" 1.8x10° 5.0x10° 1.0x10* 1.0x10° 1.2x10"
6000 40 0.25 0.15 0.051 0.050 0.049 0.066 7.0x10*  8.0x10" 7.7x10° 1.6x10°  2.5x10° 5.0x10° 5.0x10°  1.5x10"
6000 40 0.25 0.35 0.052 0.052 0.051 0.067 1.2x10%  1.1x10° 1.3x10° 2.3x10° 2.2x10* 1.0x10*  2.5x10°  3.7x10™
6000 40 0.50 0.00 0.049 0.050 0.046 0.086 1.1x10° 8.0x10" 9.2x10”" 2.7x10°  1.7x10™ 0 1.2x10*  4.2x10"
6000 40 0.50 0.15 0.050 0.049 0.047 0.083 9.5x10”" 8.0x10* 9.7x10* 4.0x10°  2.5x10° 5.0x10°  1.5x10*  6.0x10"
6000 40 0.50 0.35 0.052 0.051 0.049 0.084 1.3x10°  1.2x10° 1.4x10° 3.9x10° 1.5x10" 7.5x10° 2.7x10"  5.7x10™
6000 40 0.75 0.00 0.052 0.050 0.048 0.108 1.2x10°  1.0x10° 1.0x10° 4.8x10°  1.0x10* 5.0x10° 7.5x10°  5.7x10"
6000 40 0.75 0.15 0.050 0.051 0.046 0.098 1.0x10° 1.0x10° 1.1x10° 6.0x10° 1.2x10" 1.2x10"  2.0x10"  1.3x10°
6000 40 0.75 0.35 0.052 0.051 0.049 0.088 1.0x10®  1.0x10° 1.3x10° 4.8x10°  2.0x10* 1.5x10* 2.7x10"  1.1x10°
6000 80 0.25 0.00 0.049 0.047 0.047 0.065 8.5x10" 9.5x10* 9.0x10* 1.7x10° 5.0x10° 1.0x10*  7.5x10° 1.7x10°
6000 80 0.25 0.15 0.051 0.051 0.048 0.067 9.5x10" 1.1x10% 1.1x10® 2.1x10®  7.5x10° 1.2x10* 1.2x10*  1.7x10"
6000 80 0.25 0.35 0.051 0.052 0.049 0.069 1.1x10°  1.2x10° 1.3x10° 2.4x10° 1.2x10" 1.2x10" 1.7x10"  3.2x10™
6000 80 0.50 0.00 0.050 0.051 0.047 0.087 1.2x10°  8.5x10" 1.2x10° 3.4x10°  1.0x10* 5.0x10° 1.7x10"  7.0x10™
6000 80 0.50 0.15 0.050 0.049 0.047 0.085 9.2x10* 9.7x10* 1.2x10® 3.3x10° 5.0x10° 1.0x10*  7.5x10°  5.5x10"
6000 80 0.50 0.35 0.051 0.050 0.049 0.080 9.7x10”" 9.0x10* 1.1x10® 3.4x10° 7.5x10° 1.0x10* 2.5x10*  6.5x10"
6000 80 0.75 0.00 0.051 0.051 0.047 0.098 8.2x10* 9.5x10" 9.5x10* 4.7x10°  1.5x10" 5.0x10°  7.5x10°  7.0x10"
6000 80 0.75 0.15 0.050 0.047 0.048 0.089 8.5x10”" 1.2x10% 9.5x10* 4.4x10°  2.5x10° 2.5x10°  1.5x10* 1.0x10°
6000 80 0.75 0.35 0.048 0.052 0.046 0.091 8.7x10" 1.1x10° 1.1x10° 3.8x10° 1.3x10* 1.0x10* 2.7x10* 8.0x10"

Abbreviations: 12 is the total outcome variance that can be explained by other variables ; 7 is the proportion of variables associated with the predictor ; LR= standard
(unadjusted) marginal univariate test ; OPT= the optimally adjusted test that includes as covariates only the variables not associated with the predictor ; and FT=a univariate test

that include as covariate all variable with a p-value for association with the predictor above 0.1.
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Supplementary Table 5. Replication of the metabolite results

Discovery KORA+TwinsUK FHS Finnish
SNP Gene Outcome Pr Pcvs Best SNP pval Best SNP pval Best SNP pval
rs477992 PHGDH  serine 6.2x10°  1.4x10" rs1163251  7.0x10°’ rs677277  6.5x10” - -
glycine 4.1x10°° 2.3x10% 1.6x10™ rs7422339 2.4x10™° - -
serine 3.7x10°  6.4x10™ 2.7x10% rs4513234 1.5x10” - -
rs2216405  CPSI creatine 7.6x10°  4.8x10° rs715 9.6x10% rs7422339 2.5x10% - -
acetylglycine  2.2x10°  3.1x107 6.7x10°% - - - -
rs780094  GCKR alanine 6.1x10°  4.0x10° rs1260326  5.6x10™" rs1260326 7.6x10™"° rs1728918 5.7x10™
rs1352844 GC lactose 6.1x107  6.3x10° - - - - - -
7094971 SLClgao  CArMitine 2.9x10"° 1.1x10™"° rs12356193 3.7x10° rs1171617 5.9x107°° - -
acetylcarnitine  1.4x10°  9.4x10™" rs1171614  3.4x10> - - - -
rs2657879 GLS2 glutamine 3.1x10°  4.2x10™° rs2694917  1.6x10™° - - rs2638315 1.1x10
rs6499165 SLC7A6  lysine 2.6x10°  7.5x10™° rs8056893  2.5x10 - - - -

Abbreviations: Py is the p-value for the standard unadjusted univariate test of each single phenotype with each single SNP; Pqy;s is the p-value from the CMS approach.
N equals 8,330, 7,824, and 2,076 for Finnish™, KORA+TwinsUK™*** and FHS™,



Supplementary Table 6. Summary of results when adjusting for PCs of metabolites

#PC SNP Gene Outcome P Pcvs SSincr
rs1352844  GC lactose 7.3x107  7.3x10” 1.00 -
tryptophan 9.6x10°  1.2x10°® 233 FHS®
rs174547 FADS1 o 4 5
creatinine 7.2x10 2.6x10 5.56 -
2916405 CSP1 glycine 9.6x1o‘:6 4.3x1o‘:3 1.75 KORA+TwinsUK12/ FHS™
acetylglycine 1.0x10° 3.8x10° 1.75 KORA+TwinsUK
alanine 1.2x10"  2.4x10°® 2.56  KORA+TwinsUK™ / FHS® / Finnish®®
5PCS 52657879 SPRYDA glutamine 2.3x10"  2.6x10"  2.38  Finnish®?
rs2764886  PHGDH serine 5.1x10°  2.3x10°® 2.13  KORA+TwinsUK'®
rs6499165  SLC7A6 lysine 3.3x10®  3.3x10°® 1.00  KORA+TwinsUK™
004971 slcieag | CATnitine 1.8x10:4 9.5x10':4 1.96 KORA+TwinsUK12/ FHS™
acetylcarnitine 2.4x10 1.3x10 1.72 KORA+TwinsUK
rs780094 GCKR alanine 1.7x10%  6.2x10° 1.79  KORA+TwinsUK™ / FHS" / Finnish™
rs8103135  TPRX2P carnitine 1.6x10°  1.8x10~ 588 -
rs1352844  GC lactose 6.0x10”  6.0x10” 1.00 -
rs17288067 ACO1 urate 2.8x10°  8.3x10°® 500 -
tryptophan 1.3x10°  8.9x107  12.50 FHS®
rs174547 FADS1 creatinine 1.6x10°  4.7x10” 417 -
taurochenodeoxycholic acid 1.8x107 1.4x10” 10.00 -
216405 CSPL glycine z.z;xlo':8 4.4x1o':7 1.69 KORA+TwinsUK12 / FHSllss
creatine 5.6x10 4.4x10 2.33 KORA+TwinsUK™" / FHS
lopcs $2657879  SPRYD4 glutamine 7.0x1o'i2 5.8x10':2 2.38  Finnish®
rs3760776 FUT6 butyrobetaine 6.7x10° 4.2x10° 4.17 -
rs477992 PHGDH serine 9.2x107  9.0x10°® 2.86  KORA+TwinsUK'®
rs6499165 SLC7A6 lysine 2.8x10° 6.1x10” 2.63 KORA+TwinsUK'®
dimethylarginine 9.7x10™ 1.2x10° 2.27 -
rs7094971  SLC16A9  carnitine 1.4x10™° 2.4x10™ 270  KORA+TwinsUK' / FHS™
acetylcarnitine 5.9x10%  2.9x10° 2.94  KORA+TwinsUK'®
alanine 7.6x10°  1.6x10° 2.00  KORA+TwinsUK' / FHS" / Finnish™

rs780094 GCKR ) 8 " .
threonine 2.2x10 7.8x10 1.43 Suhre



rs7855483 ACO1 4-Dimethylaminopyridine 5.4x10° 4.4x10° 3.85 -

Trimethylamine N-oxide 4.4x10° 1.1x10” 400  FHS™
rs10493380  LEPR A 9
alpha-hydroxybutyrate dehydrogenase  4.7x10 5.6x10 3.03 -
rs17277546  TRIM4 allantoin 8.5x10°  5.3x10°® 833 -
tryptophan 7.0x10°  9.0x10” 2.70  FHS®
rs174547 FADS1 o - 5
creatinine 8.7x10 5.1x10 4.00 -
216405 CSPL glycine 1.3x10%° 2.2x10%°  1.75  KORA+TwinsUK™ / FHS™
rs N B
creatine 45x10°  5.3x10™ 213 KORA+TwinsUK' / FHS™
rs2657879  SPRYD4 glutamine 9.0x10"° 2.4x10"  2.63  Finnish®
20PCS 15272889 AC034220.3 2-aminoadipate 5.7x10"  1.5x107 769 -
rs2764886  PHGDH serine 2.9x10°  7.8x10™ 227  KORA+TwinsUK'®/ FHS™
butyrobetaine 1.5x10” 8.5x10° 2.50 -
rs3760776  FUT6 , 3 7
sarcosine 2.0x10 5.0x10 3.85 -
477992 PHGDH serine 2.2x10°  7.4x10™°  4.17  KORA+TwinsUK"
rs - o
aconitate 7.9x10™ 5.2x10~ 2.17 -
rs6499165  SLC7A6 lysine 1.8x10°  1.1x10” 3.33  KORA+TwinsUK™
rs7094971  SLC16A9  carnitine 1.0x107  1.7x10™°  2.63  KORA+TwinsUK' / FHS™
rs780094 GCKR thyroxine 2.6x10*  3.7x10” 244 -

Abbreviation: Pz is the p-value for the standard unadjusted univariate test of each single phenotype with each single SNP; P,sis the p-value from the CMS algorithm; SS;... is the
equivalent sample size increase achieved after adjusting for covariates selected by the CMS algorithm.

There was 79 metabolites tested for association with 668 SNPs, so a total of 52104 tests. P-value threshold accounting for multiple testing is 9.5x10-7. Significant p-values are
indicated in bold.
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Supplementary Table 7. Summary of GEUVADIS results when adjusting for an increasing
number of principal component of expression

No PC 5 PCs 30 PCs
LR 515 (6.2%) 771(6.33%) 2186 (17.6%)
cMSs 996 (12%) 1599 (13.1%) 2420(19.5%)
Overlap 515 (6.2%) 767 (6.3%) 2162 (17.4%)
Combined 996 (12%) 1603 (13.2%) 2444 (19.7%)

Abbreviation: LR= standard (unadjusted) marginal linear regression.

Supplementary Table 8. Replication rate of established Cis-eQTL between existing LCL studies
after excluding European GEUVADIS data

Population Sample

Study ancestry size All SNP-gene pairs Top SNP per gene
#hits replicated (%) #hits replicated (%)
3CL CEU 75 560 283 (51%) 439 215 (49%)
AS CEU 206 26,427 9,928 (38%) 1,793 695 (39%)
EGEUV_YRI YRI 89 19,621 333 (2%) 498 15 (3%)
HA_CEU CEU 30 6,934 4,526 (65%) 353 196 (56%)
HA_CHB CHB 45 6,829 5,095 (75%) 355 215 (61%)
HA_JPT JPT 45 8,266 5,910 (71%) 406 234 (58%)
HA_YRI YRI 30 5,495 2,907 (53%) 451 196 (43%)
HA2_CEU CEU 30 4,453 1,276 (29%) 106 39 (37%)
HA2_YRI YRI 30 5,027 398 (8%) 165 29 (18%)
HRC CEU 60 9,370 911 (10%) 956 18 (2%)
HRY YRI 69 883 150 (17%) 867 149 (17%)
MRC CEU 950 181,065 37,893 (21%) 1,279 233 (18%)
MuTHER_LCL CEU 160 215,407 30,101 (14%) 4,012 406 (10%)

* count of replication count identified cis-eQTL from each single study that replicate in at least one of the other 12 studies listed
in the first column of the table.

Study references: HA™® ASY, 3¢*®, HRC™, HRY?’, MuTHER*, MRC?, E-GEUVZ.

Population ancestry: YRI=Yoruba in Ibadan Nigeria, CEU=Utah Residents with Northern and Western European Ancestry,
CHB=Han Chinese in Beijing, JPT=Japanese in Tokyo.
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Supplementary Figure 1. Genomic inflation factor for p-values-based filtering.
We generated series of 10,000 replicates each including 2 to 200 correlated variables and a predictor
under the complete null —i.e. not associated with any of the correlated variables. We randomly defined
one of those variables as the primary outcome and tested it for association with the predictor while
including other variables as covariates if their association test with the predictor had a p-value above a
threshold T. Upper panel shows the genomic inflation factor A;- of the p-values from this test while
increasing T from 0 to 1. We considered either strong (a), moderate (b) or low (c) correlation between
variables, as measured in the middle panel by r#, the variance of the primary outcome explained by
covariate included in the model. The QQplots of each of these experiments (lower panels) show an
overall inflation of the test without marked outliers at the tail of the distribution.
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Supplementary Figure 2. lllustration of the type | error rate inflation for p-values based
filtering.

We simulated series of 10,000 replicates, each including three variables, Y, C, and X, corresponding to an
outcome, a candidate covariate, and a predictor, respectively. The three variables were generated using
a multivariate normal distribution with mean 0, variance 1, and covariance cov(Y,C) = y = 0.8, while
cov(Y,X) = cov(C,X) = 0. Top histogram plots (red) show the p-value distribution for Y-X association
obtain from standard marginal regression for the subset of replicates where the p-value for association
for C-X is lower than 0.2 (left) or larger or equals than 0.2 (right). Middle plot (blue) show the same
distribution but when Y-X regression are adjusted for C. Bottom plot shows the resulting chi-square (left)
and p-value distribution for the resulting p-value-based filtering approach, that merges top left and
middle right tests.
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Supplementary Figure 3. Conditional mean and variance of the predictor-covariate
regression coefficient.

We simulated series of 10,000 replicates, each including three variables, Y, C, and X, corresponding to an
outcome, a candidate covariate, and a predictor, respectively. The three variables were generated using
a multivariate normal distribution with mean 0, variance 1, and covariance cov(Y,C) =y, cov(Y,X) =
B, and cov(X,C) = &. We explored the special case where § = 8 = 0, while y is relatively large and
equals 0.2 (a, d), 0.5 (b, e), or 0.8 (c, f). For each series we derived and plotted the observed 5 against its
expected value defined either as Sy (black circles) or 87 (red dots) and estimated the regression
coefficient between the 2 terms (i.e. the slope parameter, red dashed line). We also estimated the
variance of § conditional on j3, var((§|ﬁ), defined as § — ]E(S|[§) = var((f - ﬁ)?), which we compared
against its expected value, defined as (1 — y2)/N, where N is the sample size. Upper (a, b, ¢) and lower
(d, e, f) panels correspond to the case where N = 100 and N = 1000, respectively.
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Supplementary Figure 4. QQplots for the predictor-covariate regression coefficient under the
null.

We generated series of 10,000 replicates including 2,000 individuals. For each individual we generated
independently a single predictor X, and 20 (left panel) or 50 variables (right panel) from a multivariate
normal distribution with covariance matrix defined so that the pairwise correlation varies in [-0.4, 0.4].
We randomly defined one of those variables as the primary outcome and tested it for association with
the predictor while including other variables as covariates if §, the estimated effect of X on the
candidate covariate is within the unconditional inclusion interval (orange), the conditional inclusion
interval (blue), or both (i.e. matches either inclusion criteria, red). For simplicity, and to avoid the issue
of outcome-covariate effect estimation, in the presence of multicollinearity we used principal
component of covariates instead of their raw values. Note that we do not apply this transformation in
the final version of the algorithm.
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Supplementary Figure 5. Example of collinearity bias in multivariate analysis

We simulated 1,000 replicates including each 30 correlated variables, one primary outcome and 29
secondary outcomes, and a one predictor across 1,000 individuals. For simplicity, both the outcomes
and the predictor were normally distributed with mean 0 and variance 1. We considered a scenario
where, on average, 75% of the variance of the primary outcome can be explained by the secondary
outcomes. The predictor was associated with 35% of the secondary outcome but not associated with the
primary outcome. We performed three four test of association: a standard (unadjusted) linear
regression (LR), the CMS approach, a standard regression adjusting for all other (29) simulated variables
(ADJall) and a so-called Reverse regression (REV), where the predictor was treated as the outcome and
all outcomes (i.e. primary and secondary) are treated as predictors. For each test we estimated B, the
effect of the predictor on the primary outcome and the associated p-value. The upper and lower panels
shows the distribution of ,5’ and the type | error rate at a = 5% for MR, CMS, REV, and ADJall,
respectively.

<.

=5%

Type | error rate at o

25



Supplementary Figure 6. Comparison between CMS and mvBIMBAM.

We simulated 500 series of datasets including 10,000 individuals. For each individual, we generated
jointly an outcome and 10 covariates from a multivariate normal distribution so that pairwise
correlation varies in [-0.6, 0.6], and a genetic variant with minor allele frequency drawn uniformly in
[0.05, 0.95]. For half of the simulations we added a genetic effect to a random subset of the covariates
but not to the outcome (HO), while in the second half, we added a genetic effect to the outcome but not
to the covariates (HA). We performed a test of association between the outcome and the genetic
variants using CMS and derived the posterior probability of the genetic variant being associated directly
or indirectly with the outcome from mvBIMBAM. Panel a) shows the posterior probabilities for HO and
HA from mvBIMBAM, while panel b) shows the computation time in second for both approach in each
scenario. Panel c) shows the ROC curves derived from the p-value for association for CMS and from the
posterior probabilities for mvBIMBAM.
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Supplementary Figure 7. Limitation of PEER factors and PC adjusted analysis.

We simulated series of datasets including 10,000 individuals. For each individual, we generated jointly
an outcome and 49 covariates from a multivariate normal distribution so that pairwise correlation varies
in [-0.4, 0.4], and a genetic variant with minor allele frequency drawn uniformly in [0.05, 0.95]. We
added an effect of the genetic variant on some of the covariates but not with the outcome. We
performed a test of association between the outcome and the genetic variants using four approaches: i)
CMS, ii) standard linear regression adjusted for principal components (PCs), iii) standard linear
regression adjusted for PEER factors, and iv) a LASSO regression method (Selective Inference). Panel a)
and b) show the p-value for association as a function of the number of principal components (PC) and
PEER factor added to the model, respectively. Panel c) shows the boxplot of p-values for each of the four
approaches. In this simple scenario, only CMS has a correct uniform p-value distribution, while

alternative approaches show deflation of the median p-values.
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Supplementary Figure 8. Power of CMS when used in conjunction with PEER.
We simulated series of datasets including 10,000 individuals. For each individual, we generated jointly a

primary outcome and 49 secondary outcomes from a multivariate normal distribution so that pairwise
correlation varies in [-0.4, 0.4], and a genetic variant with minor allele frequency drawn uniformly in
[0.05, 0.95]. We added an effect of the genetic variant on the primary outcome but not with the
secondary outcomes. We then derived the PEER factors from all outcomes, and derived the residuals of
each outcome after adjusting from 1 to 35 PEER factors, the largest number we could include without
inducing substantial bias in Figure S11. We performed a test of association between the residual of the
primary outcome and the genetic variants using either standard linear regression (LR, red bars) or CMS
(blue bars). The upper panel shows the power for alpha of 0.001 for both approaches while increasing
the number of PEER factors used for the adjustment. The bottom panel shows the corresponding
increase in detection by CMS over LR.
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Supplementary Figure 9. Correlation matrix of metabolites.

Pairwise Pearson correlation between the 79 metabolites collected as part of the NHS, HPFS, PHS and
WHI studies. Positive and negative correlations are highlighted in red and blue, respectively.
Dendrogram were draw based on hierarchical clustering derived from the hclustfun() R function.
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Supplementary Figure 10. QQplot from real data analyses.

Panel a) shows the QQplot from the association screening between 79 metabolites and 668 SNPs using
1,192 individuals from the PanScan study. Observed -log10(p-value) of this screening are plotted against
an expected uniform p-value distribution. Panel b) present the genome-wide cis-eQTL screening in the
gEUVADIS data. 11,694 genes were tested for association with genetic variants in close physical
proximity for a total of 3.4 million tests. Observed -log10(p-value) of this screening are plotted against
an expected uniform p-value distribution.
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Supplementary Figure 11. Comparison of the standard approach and CMS in a quasi-null
experiment

We aimed at mimicking the original genome-wide cis-eQTL mapping performed from in the gt UVADIS
study, but under a quasi-null model of no association. To do so we kept all parameters of the real data
analysis similar but we selected SNPs tested for cis-effects on a different chromosome that the targeted
gene. Most of the tests are expected to be under the null, although some trans effects might be
captured in this experiment. Analysis was performed using standard linear regression (LR, black) and the
CMS (red) approach. Both consisted in running a linear regression adjusted for 10 PEER factors, while
the CMS analysis also included 0 to 50 additional covariates per SNP/gene pair tested. We compared the
—logyo(p-value) of the two approaches against an expected uniform p-value distribution (panel a) and
again each other’s (panel b).
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Supplementary Figure 12. Observed effective fold-increase in sample size

For both real data analysis, we estimated the increase in variance of outcomes explained after adding
covariates selected by the CMS approach. This increase was measured as the difference in adjusted r-
squared between the model including only the SNP tested and confounding factors for the metabolites
analysis, and the PEER factors for the gene expression analysis. We used those estimates to derive the
distribution of equivalent fold increase in sample size for in the gene expression (upper panel) and the
metabolites (lower panel) data.
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Supplementary Figure 13. Rationale for applying CMS — the example of genomic data.

In genomics data the underlying causal pathway is partially understood (A). Such information can be
used to pre-select candidate covariates of interest. In particular, variables from the same structural level
can be leverage to detect association with variables upstream in the causal pathway. For example in (B),
one can test the association between a genotype G1 and an outcome P1 while leveraging other available
phenotypes not on the pathway from G1 to P1 (P2, P3, P4). Conversely it is more difficult to leverage
variables downstream the outcome considered as correlation might be due to a causal relationship and
not by shared risk factors. For example in (C), intermediate variable such as M1, might be on the path
from G1 to P1, and therefore should be excluded a priori, when applying the CMS approach.
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Supplementary Figure 14. Inference of missing values

We generated a series of 10,000 replicates including 2,000 individuals. For each individual we generated
independently a single predictor X, and 50 variables from a multivariate normal distribution with
covariance matrix defined so that the pairwise correlation varies in [-0.4, 0.4]. We randomly defined one
of those variables as the primary outcome and tested it for association with the predictor, and treated
the remaining variables as candidate covariates. To explore the impact of missing values on CMS, we set
either 0% (a), 25% (b and d), or 50% (c and e) of the covariates values as missing and performed a mean-
imputation for the missing values. We considered unstructured missing values (b and c), or structured
missing values, respectively. For the unstructured missingness, we randomly choose missing values,
while for the structure missingness; we arbitrarily define a threshold and set as missing all values being
either above or below the threshold. The left panel shows an example of the resulting distributions after
imputation. The right panels show the QQplot from the CMS approach applied on the imputed data.
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Supplementary Figure 15. Impact of decreasing the transition point in the CMS algorithm.

We simulated data similarly to Figure 4, except we modified CMS so that the transition point for which
we start down-weighting the conditional § interval is two-fold smaller. We simulated series of 100,000
datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels), where a
predictor of interest is not associated with a primary outcome but is associated with either 0%, 15% or
35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the alternative
(lower panels), where the predictor is associated with the primary outcome only. The variance of the
primary outcome that can be explained by the other outcomes was randomly chosen from [25%, 50%,
75%] with equal probability. In each replicate we applied four tests of association between the primary
outcome and the predictor: a standard marginal univariate test (LR); the optimally adjusted test (OPT)
that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ;
and a univariate test that include as covariate all outcomes with a p-value for association with the
predictor above 0.1 (FT). For the null models we derived the genomic inflation factor A;., while for the
alternative model we estimated power at an a threshold of 5x107, to correct for 100,000 tests.
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Supplementary Figure 16. Impact of shrinking the inclusion area.

We simulated data similarly to Figure 4, except we modified CMS so that the maximum conditional and
unconditional § interval equals o/2 instead of our suggestion of 20, where o corresponds to the
standard error of either the conditional or unconditional distribution. We simulated series of 100,000
datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels), where a
predictor of interest is not associated with a primary outcome but is associated with either 0%, 15% or
35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the alternative
(lower panels), where the predictor is associated with the primary outcome only. The variance of the
primary outcome that can be explained by the other outcomes was randomly chosen from [25%, 50%,
75%] with equal probability. In each replicate we applied four tests of association between the primary
outcome and the predictor: a standard marginal univariate test (LR); the optimally adjusted test (OPT)
that includes as covariates only the outcomes not associated with the predictor ; the CMS approach ;
and a univariate test that include as covariate all outcomes with a p-value for association with the
predictor above 0.1 (FT). For the null models we derived the genomic inflation factor A;., while for the
alternative model we estimated power at an « threshold of 5x107, to correct for 100,000 tests.
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Supplementary Figure 17. Impact increasing the multivariate test threshold parameter.

We simulated data similarly to Figure 4, except we modified CMS so that ¢y, the p-value threshold
from the multivariate test equals 0.2, instead of 0.05, as in the final version of CMS. We simulated series
of 100,000 datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null model (upper panels),
where a predictor of interest is not associated with a primary outcome but is associated with either 0%,
15% or 35% of the other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the
alternative (lower panels), where the predictor is associated with the primary outcome only. The
variance of the primary outcome that can be explained by the other outcomes was randomly chosen
from [25%, 50%, 75%] with equal probability. In each replicate we applied four tests of association
between the primary outcome and the predictor: a standard marginal univariate test (LR); the optimally
adjusted test (OPT) that includes as covariates only the outcomes not associated with the predictor ; the
CMS approach ; and a univariate test that include as covariate all outcomes with a p-value for
association with the predictor above 0.1 (FT). For the null models we derived the genomic inflation
factor Ag¢, while for the alternative model we estimated power at an a threshold of 5x107, to correct
for 100,000 tests.
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Supplementary Figure 18. CMS QQplots for 10 phenotypes, 300 individuals and 25% of

outcome variance explained
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Supplementary Figure 19. CMS QQplots for 10 phenotypes, 300 individuals and 50% of
outcome variance explained
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Supplementary Figure 20. CMS QQplots for 10 phenotypes, 300 individuals and 75% of
outcome variance explained
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Supplementary Figure 21. CMS QQplots for 10 phenotypes, 2000 individuals and 25% of
outcome variance explained
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Supplementary Figure 22. CMS QQplots for 10 phenotypes, 2000 individuals and 50% of
outcome variance explained
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Supplementary Figure 23. CMS QQplots for 10 phenotypes, 2000 individuals and 75% of

outcome variance explained

~log1o(observed)

—logyo(expected)

Null + & =0% Null + 7= 15% Null + n=35% Alternative + = 0%
P C-3
ar® >4
o8 8 “ 1
i &>/
< -
Mg =0.986 * Mr=1 * PW, =006 %
® hopr=0985 ® Aopr=1.01 ~ ® PWopr=62%
7 ® Muc=0.984 ® Ayc=0.999 ® PWyc=15%
Apr=1.31 Aer=136 = PWer=39%
& 7 @ = o ©
o, © - 7 g
e g /
< - ,/
Mg =0.991 * Jr=0989 * Ar=101 o PWr=031%
® Aopr=0.997 ® Aopr=0.98 ® Aopr=1.02 o~ ® PWopr=29%
® Ayc=0987 ® Jyc=0988 ® Ayc=1.01 * PWyc=75%
Aer=1.32 Aer=1.28 Aer=1.24 | PWer=17%
- /s & n o
00 / / DO
o
& o
©o - //
® Hr=0971 ® Jr=0996 o = * PWr=29%
® Aopr=1.02 o Aopr=0.986 o PWopr=88%
® Ay =0971 ® Ayc=0996 Sy e PWye=34%
Aer=1.25 Aer=1.18 o b PWer =56 %
7 / / © ; o 0
e _’
* Ar=101 * Wr=102 * A r=0997 o 8 * PWr=29% ~
® Aopr=1.02 ® Aopr=1.01 ® Aopr=0.995 ® PWopr=100%
® Ayc=1 ® Ayc=1.02 ® Ayc=0.997 * PWyc=69%
Aer=1.34 her=1.23 der=1.15 . _/ PWer - 82 %
r T T T T T 1 r T T T T T 1 r T T T T T 1 r T T T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 ] 6 0 1 2 3 4 5 6

3

ncp

5

ncp

ncp=10

ncp =20

43



Supplementary Figure 24. CMS QQplots for 10 phenotypes, 6000 individuals and 25% of

outcome variance explained
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Supplementary Figure 25. CMS QQplots for 10 phenotypes, 6000 individuals and 50% of
outcome variance explained
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Supplementary Figure 26. CMS QQplots for 10 phenotypes, 6000 individuals and 75% of

outcome variance explained
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Supplementary Figure 27. CMS QQplots for 40 phenotypes, 300 individuals and 25% of

outcome variance explained
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Supplementary Figure 28. CMS QQplots for 40 phenotypes, 300 individuals and 50% of

outcome variance explained
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Supplementary Figure 29. CMS QQplots for 40 phenotypes, 300 individuals and 75% of

outcome variance explained

~log1o(observed)

-

—logyo(expected)

Null + ©=0% Null + &= 15% Null + = 35% Alternative + n=0%
4 @A o o
0 o | &
B /
* Ar=1.01 ® Jr=0999 * J5=0993 * PW,r=0.05%
® Aopr=1.01 ® Lopr=0.996 ® hopr=0.981 o~ o - o PWopr=4.3%
® uc=1.01 ® Ayc=0.99 ® yc=0.987 ® PWyc=0.59 %
Aer=1.34 Aer=1.32 Aer=1.26 - A8 PWer=12%
4 i 2 L0
e
@ =
’ /
c o
* hz=0988 * hg=1 AMr=1.02 o PW,:=034%
® dopr=1.02 ® lopr=1.01 ® hopr=0.993 ~ 48 ® PWopr=21%
® Ayc=0983 ® Ayc=1 ® Jye=1.01 o PWyc=3%
Apr=1.28 Apr=1.28 Arr=1.23 o JB PWer=48%
"4 o
° / / &9 °
o o | &
(]
o © -
© -
* Wg=103 * 35=0.988 ¢ PW,r=35%
® Aopr=1.01 o Aopr=0.99 o hopr=0983 T ] * PWopr=79%
® Ayc=1.02 ® iyc=0.995 ® Ayc=0.983 o~ o PWyc=23%
Arr=1.32 Aer=1.19 Aer=1.16 o _/ PWer =26 %
74 2z / Jeio
© -
‘C!_ -
® Lr=101 ® 2x=0.99 ® 3z=0989 / ® PWR=31%
® Aopr=1.01 ® Lopr=0.974 ® Lopr=0.985 b ® PWgopr =100 %
® Ayc=1 ® Jyc=0.981 @ Muc=0.984 g ® PWyc=71%
Arr=1.33 Arr=1.18 Aer=1.11 o JL— PWer=71%
T T T T T 1 r T T T T T 1 r T T T T T 1 r T T T T T 1
1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 &

3

ncp

5

ncp

ncp=10

ncp =20

49



Supplementary Figure 30. CMS QQplots for 40 phenotypes, 2000 individuals and 25% of

outcome variance explained
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Supplementary Figure 31. CMS QQplots for 40 phenotypes, 2000 individuals and 50% of

outcome variance explained
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Supplementary Figure 32. CMS QQplots for 40 phenotypes, 2000 individuals and 75% of
outcome variance explained
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Supplementary Figure 33. CMS QQplots for 40 phenotypes, 6000 individuals and 25% of

outcome variance explained
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Supplementary Figure 34. CMS QQplots for 40 phenotypes, 6000 individuals and 50% of
outcome variance explained
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Supplementary Figure 35. CMS QQplots for 40 phenotypes, 6000 individuals and 75% of
outcome variance explained
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Supplementary Figure 36. CMS QQplots for 80 phenotypes, 300 individuals and 25% of

outcome variance explained
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Supplementary Figure 37. CMS QQplots for 80 phenotypes, 300 individuals and 50% of
outcome variance explained
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Supplementary Figure 38. CMS QQplots for 80 phenotypes, 300 individuals and 75% of
outcome variance explained
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Supplementary Figure 39. CMS QQplots for 80 phenotypes, 2000 individuals and 25% of

outcome variance explained
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Supplementary Figure 40. CMS QQplots for 80 phenotypes, 2000 individuals and 50% of

outcome variance explained
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Supplementary Figure 41. CMS QQplots for 80 phenotypes, 2000 individuals and 75% of

outcome variance explained
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Supplementary Figure 42. CMS QQplots for 80 phenotypes, 6000 individuals and 25% of

outcome variance explained
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Supplementary Figure 43. CMS QQplots for 80 phenotypes, 6000 individuals and 50% of

outcome variance explained

Null + ©=0%
© - 7
w o
o
=7 o
o -
o ® Lr=101
® Aopr=0.995
-7 ® Anc=1
5 d Apr=12
© - s
W =
L)
< - o® ()
o -
o 4 ® r=1
® Jopr=0.993
= = ® Ayc=1.01
? o 7
Qo
=]
% w - o
8’ -« - ¢
._I_ o
o 4
% ® 3 r=00967
® Aopr=0.977
= o ® Ayc=0.967
& o Aer=1.16
© = 74
o =
< 4
© -
& o * Lr=1.01
® lopr=1.02
= ® Anc=1.01
Arr=1.19

Ar=1.01
Aopr=1.03
Auc=1.02
Arr=123

e o

* o

Ar=0986
Aot =0.994
e = 0.986
Aer=1.13

Null + 1= 15%

Ar=0.999
Aopr = 0.993
Aie=1
Arr=1.15

* o

0

10

Alternative + n=0%

o PW. =004 %

e o o

o PWopr=0.36 %
® PWyc=032%

PWer =04 %

o ©

7
PW,r=0.19 %
PWopr=3 %
PWyc=18%
PWer=2.3%

o

PW.r=3.1%
PWopr =29 %
PWyyc=16 %
PWer=17 %

o

PW r=30%

PWopr=90% ~

PWyc =69 %
PWer =66 %

—logyo(expected)

3

ncp

5

ncp

ncp=10

ncp =20

63



Supplementary Figure 44. CMS QQplots for 80 phenotypes, 6000 individuals and 75% of
outcome variance explained
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Supplementary Figure 45. Density plot for the metabolite levels.

Distribution of the 79 metabolites after adjusting for pancreatic cancer case-control status, age at blood
draw, fasting status, self-reported race, and gender, and standardization (mean centered and scaled by
standard deviation).
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