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Genetic Data
Sequences Sampling. We used 448 HIV-1 genetic sequences
sampled in 2012–2015 from patients of 24 AIDS Centers (52%
males). Overall, there are 79,000 HIV infected individuals who
receive ART in Ukraine (33); 7,000 (10%) of them experience
treatment failure and require a drug-resistance test. Due to a
limited availability of the tests (∼500 per year), physicians decide
who gets to be tested, and this decision is based on the current
state and medical history of a patient: Patients with multiple
changes of drug schemes get a priority. Every region has a quota
of tests per year, based on the HIV prevalence and treatment
coverage in the region. Unfortunately, even though the number
of tests is insufficient to cover the needs of all patients, some
physicians also choose to not use their quota. Thus, some test
systems remain unused, and the actual coverage is <500 tests per
year. All of the available from 2012 to 2015 high-quality (<5% of
ambiguous nucleotides) sequences were used in the analysis.

Alignment. We aligned the sequences using MEGA software
(Version 7.0) (40) and then manually edited the alignment de-
leting all of the codon positions associated with drug resistance
(RT: 41, 65, 67, 69, 70, 74, 75, 77, 100, 101, 103, 106, 115, 116, 151,
179, 181, 184, 188, 190, 210, 215, 219, 225, 230; PR: 23, 24, 30, 32,
46, 47, 48, 50, 53, 54, 73, 76, 82, 83, 84, 85, 88, and 90) (41).

Global Subtype-A Reference Dataset. To explore the position of the
427 Ukrainian sequences (Ukrainian dataset) within the global
subtype-A epidemic, we merged our sequences with a globally
representative subtype-A reference dataset which consisted of
2,199 sequences using Clustal W (44). The dataset consisted of all
available sequences of minimal length of 300 nucleotides from the
pol region of HIV genome (nucleotides 6,225–8,795) accessed in
2011 from the HIV sequence database (sequence names are in
Dataset S1, Table S1C). Sequences came from 36 countries (Afghanistan,
Albania, Azerbaijan, Burkina Faso, Burundi, Benin, Democratic
Republic of Congo, Chad, Congo, Cameroon, Cuba, Cyprus, Czech
Republic, Ethiopia, France, Gabon, Georgia, Ghana, Equatorial
Guinea, Kenya, Kazakhstan, Latvia, Mali, Nigeria, Russia, Rwanda,
Sudan, Slovenia, Senegal, Togo, Tanzania, Ukraine, Uganda, and
Uzbekistan) sampled in 1985–2010. We used RAxML (45) to con-
struct a ML phylogenetic tree of 2,626 sequences (2,199 reference
and 427 Ukrainian) (Fig. 1).

Phylogeography
Combined Dataset for Phylogeographical Analysis. We further se-
lected 36 subtype-AHIV-1 reference sequences sampled in 1987–
2013 publicly available from the Los Alamos database to im-
prove the molecular clock calibration. Sequences were selected
to ensure the best geographical and temporal representation.
These reference sequences come from the following countries:
Afghanistan, Armenia, Belarus, Benin, Burundi, Cameroon,
Cuba, Cyprus, Ethiopia, Georgia, Kazakhstan, Kenya, Kyrgyzstan,
Mali, Russian Federation, Rwanda, Senegal, South Africa,
Sudan, Tanzania, Uganda, and Zambia. We aligned these ref-
erence sequences (n = 36) to the Ukrainian dataset (n = 427) in
a combined dataset using Clustal W. We further constructed a
ML phylogenetic tree in RAxML with these 463 sequences (Fig.
S1). We have tested the temporal signal of the combined dataset
with the Tempest program (55): The observed root-to-tip cor-
relation coefficient was 0.5, which is sufficient signal for our
analysis. This combined dataset was further used to produce the
posterior tree distribution for the phylogeographic analysis. The

ggtree package in R was used to visualize the phylogenetic trees
in Fig. 2 and Fig. S1 (56).

Sensitivity Analysis.We explored estimates of among-location viral
lineage movement under condition of equal representation of
locations in the analysis. Specifically, we randomly down-sampled
sequences in each location to match the number of sequences in
the third smallest location (Odessa; n = 57). This resulted in five
locations with the same number of sequences (Center, East,
Kyiv, Odessa, and South) and two locations with a smaller
number of sequences (Crimea and West; n = 10 and n = 22,
respectively), which were unlikely to be significant contributors
to virus gene flow, based on the preceding analyses. We did not
reduce the number of sequences to the smallest sample size (n =
10) to ensure acceptable statistical power.
We conducted 10 replicate analyses with different random

subsamples of the dataset. We found that East was the main viral
lineage export location in 70% of the analyses (7 of 10 subsam-
ples). In those replicate analyses, where East was the main ex-
porter of the viral lineages, it accounted on average for 91% of
migration events. In the other three subsamples, Center, Kyiv,
and South were the main exporters each, respectively. For the
number of migration events observed in each subsample, see
Dataset S1, Table S3.

Epoch Analysis. We compared a time-homogenous model (single
epoch), which assumed nomajor change in viral lineage migration
pattern within the dataset, and time-heterogeneous (two epoch),
which assumed a change at some point within the sampled dates.
For the purposes of this analysis, we specified two epochs for the
two-epoch model, before and after December 31, 2013. We were
not able to specify the official date of the beginning of war (April
6, 2014) as the transition time, because the dates in our analysis
were not resolved at amonthly scale; only sampling year data were
available. To define which model fit the data best, we applied
path-sampling (PS) (53) and steppingstone sampling (SS) (54)
marginal likelihood estimator (MLE) techniques. We assumed that
the BF >20 was enough statistical support to favor one of the models.
We first compared the two models as implemented in our

primary discrete trait analysis: grouping the data into seven
discrete locations. Both PS and SS MLE were higher for the
single-epoch model, but with a very low statistical support (BF =
3) (Dataset S1, Table S4). Since we tested the time heterogeneity
over a very short period of time (4 and 2 y in each epoch), we
decided to reduce the number of locations in the analysis to
avoid the overparameterization of the analysis. For this purpose,
we created 10 subsets of data where the sequences were grouped
into two locations: East and Other. For each of the subsets, we
included all of the sequences from East and the same number of
sequences subsampled from all of the other locations. Compar-
ison of the two models with two locations resulted in a very
strong support for the time-heterogeneous model (BF > 30) for
both PS and SS methods. We followed the standard terminology
in BF interpretation: The strength of evidence for a particular
model is substantial when BF > 3, strong if BF > 10, very strong
if BF > 30, and decisive if BF > 100 (23).

Correlation Analysis
IBBS Data. Data on risky injecting behaviors came from the IBBS
of PWID (n = 9,002) implemented in Ukraine in 2013. IBBS has
a cross-sectional survey design and was conducted via respondent-
driven sampling. We conducted the secondary analysis of data
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collected in 25 regional capital cities of Ukraine (only data corre-
sponding to the 24 administrative units for which genetic sequences
were available were used). Only PWID in regional capitals were
surveyed, since Ukraine has a highly urbanized HIV epidemic:
77% of all HIV cases in 2013 were registered among the urban
population (57). The cities, selected as the study sites for the IBBS,
represent all geographical areas of Ukraine. These areas represent
varying HIV-prevalence rates among PWID and varying PWID
population sizes (58, 59). Sample size was calculated for each study
site by combining group size estimation and HIV-prevalence level
from the previous IBBS study conducted in 2011 (60). The in-
clusion criteria for study participants included: (i) injection drug
use in the last 30 d before the study, (ii) 14 y old or older; and (iii)
permanent resident of the city where IBBS was conducted.

Epidemiological Data. We accessed per-region statistics from
publicly available sources as follows:

(i) The number of IDP was available from the website of the
CEDOS analytical center (www.cedos.org.ua/). This web-
site summarizes data delivered by the United Nations High
Commissioner for Refugees and the Ukrainian Ministry of
Social Policy (61);

(ii) HIV prevalence estimates (cases per 100,000 population) in
the general population were available from the website of
the Ministry of Health of Ukraine (62);

(iii) The number of HIV-positive IDP registered with an AIDS
center at the place of their current residence was available
from the National AIDS Center website (ucdc.gov.ua/); and

(iv) The population size of every region as of 2016 was available
from the website of the State Statistics Service of Ukraine (63).

Construction of Behavioral and Epidemiological Variables. For each
of the seven locations, we calculated values of a set of behavioral
and epidemiological variables. For every variable, we present
summary values of this variable for each of the administrative
regions in the respective location. As mentioned in the main text,
for continuous variables, we used mean and median values, and
for the categorical variables we used a proportion of positive
answers. The list of explanatory variables includes:

(i) Injecting practices that might increase the HIV transmis-
sion risk (“Risky injecting practices”):

- Median frequency of injections per week in regions that
are part of a location (i.e., for East, median duration of
drug use for PWID in Donetsk and Lugansk);

- Median number of PWID that PWID used drugs with
at the same place;

- Proportion of PWID who sometimes gave used syringes
to other injectors.

(ii) Injecting practices that might protect against HIV transmis-
sion (“Safe injecting practices”):

- Proportion of PWID who used sterile syringe at the last
injection.

(iii) Sexual practices that might increase the HIV transmission
risk (“Risky sexual practices”):

- Mean number of casual sexual partners per injector;

- Mean number of commercial partners per injector;

- Mean number of all sexual partners (overall number of
sexual partners);

- A proportion of PWID who participated in group sex.

(iv) Sexual practices that might protect against HIV (“Safe sexual
practices”):

- Proportion of PWID who always used condoms with
casual partners;

- Proportion of PWID who always used condoms with
commercial partners;

- Proportion of PWID who used condoms at the last
sexual intercourse.

(v) Regional level epidemiological characteristics:

- HIV prevalence in PWID as measured in the IBBS-2013;

- Number of IDP relocated to and registered in a location;

- Number of HIV-positive IDP relocated to and registered
in a location;

- Cumulative number of HIV-diagnosed people in a loca-
tion (HIV prevalence in general population) as of 2013;

- Population size (number of residents) in a location
(combined number of residents of all of the regions in
this location) as of 2013.

The behavioral variables were constructed as following:

(i) For continuous variables, we looked at mean and median
values per location. For example, mean number of commer-
cial partners per an injector. The list of all of the variables is
given above and in Dataset S1, Table S5.

(ii) For categorical variables, we looked at the percent of re-
spondents who answered “Yes” or “Always” to a question
about a specific behavior. For example, the proportion of
PWID who answered “Always” to the question “How often
did you use someone else’s used syringe?”

Finally, behavioral data were aggregated to the same geo-
graphic locations as those used in the phylogeographic analysis.
Thus, “a median age of PWID” for East is a median for the
combined responses of PWID in Donetsk and Lugansk.

Limitations.While there might be a further variability in behaviors
within a location, we were not able to conduct a more detailed
statistical analysis. It was necessary to group sequences into seven
locations because of the small number of sequences from some
administrative regions. We then had to request the aggregated
behavioral data that correspond to the locations from the phy-
logeographical analysis. This possibly resulted in lessened sta-
tistical power to detect significant correlations between the virus
movement and behaviors and limited our ability to control for
potential bias.

Drug Resistance
We performed a basic drug-resistance analysis on our samples,
but did not observe a change in the frequency of drug-resistance
mutations since the beginning of the war, apart from a small
decrease in L90 mutation (Fig. S2 and Dataset S1, Table S6B).
We found almost no difference in the number of drug-resistance
mutations in the sequence from 2012 to 2013 and those from
2014 to 2015 (Fig. S2 and Dataset S1, Table S6B) for all of the
classes of drugs used in ART in Ukraine in those years: nucleo-
side reverse-transcriptase (RT) inhibitors [azidothymidine, tenofovir
desoproxil fumarate (TDF), lamivudine, emtricitabine, and abaca-
vir], nonnucleoside RT inhibitors (efavirenz and nevirapine), and
protease inhibitors (lopinavir/ritonavir and darunavir/ritonavir). We
observed an increase (albeit nonsignificant) in the proportion of
sequences with a K65R mutation since the initiation of war, which
also coincides with an increased percentage of TDF-based regimens
prescribed in the general HIV population (Dataset S1, Table S6A).
K65R is a signature mutation for TDF resistance associated with
early virological failure (64). However, if we compare the prevalence
of this mutation between the beginning (2012) and the end (2015)
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of our observation period, then the increase is statistically
significant (χ2 test: P = 0.03): K65 was observed in 51 of
152 patients (34%) tested in 2015 and in 2 of 22 patients (9%)
in 2012.
Based on the recent scale-up of TDF in the Ukrainian HIV

population, we would expect the time to treatment failure in our

sample to be ∼12–24 mo, comparable to the time observed in the
early days of highly active ART (65). The increase in patients
with an absence of primary resistance mutations within the
sampling period was insignificant (Dataset S1, Table S6B), sug-
gesting that cases with severe adherence issues were uniformly
distributed before and after war.

Fig. S1. ML phylogenetic tree reconstructed in RaXML from the combined dataset (n = 463). The combined dataset consisted of the Ukrainian dataset (n =
427) and the reference sequences (n = 36); reference sequences were included to improve the temporal signal. Results of the Tempest analysis that indicate the
strength of the signal in the combined dataset are presented in Right.
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Fig. S2. Proportion of patients with drug-resistance-associated mutations in patients before and after the initiation of war.
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