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1. Construction of the Initial Condition and Dynamical
Consistency Check
Our procedure requires to specify the statistics of the (complex)
envelope at initial time, u0(x ), whereas the experimental spec-
trum is for the surface elevation η(x ) which is related to u0(x ) as

η(x ) = <
(
u0(x )e ik0x

)
, [S1]

To construct the initial u0(x ), we introduce the auxiliary variable
ζ(x ), 5

ζ(x ) = =
(
u0(x )e ik0x

)
, [S2]

which we treat as a field independent of η(x ), with the same
statistics. It is easy to see from Eqs. S1 and S2 that the envelope
u0(x ) can then be expressed as

u0(x ) =
(
η(x ) + iζ(x )

)
e−ik0x . [S3]

Assuming that both η(x ) and ζ(x ) are independent Gaussian
fields with covariance E(η(x )η(x ′)) = E(ζ(x )ζ(x ′)) = Cη(x −
x ′), the envelope u0(x ) is also Gaussian, with covariance Cu(x −
x ′) = E(u(x )ū(x ′)) given by

Cu(x − x ′) = 2Cη(x − x ′)e−ik0(x−x ′). [S4]

This relation implies that

Ĉu(k) = 2Ĉη(k + k0). [S5]

where we defined

Ĉu(k) =
1

2π

∫
R
e−ikxCu(x )dx ,

Ĉη(k) =
1

2π

∫
R
e−ikxCη(x )dx .

[S6]

Recalling that k0 is defined as the wave vector at which the spec-
trum of η(x ) should be centered, if we take a Gaussian ansatz for
this spectrum, we should pick

Ĉη(k) = Ĉη(0)e−|k−k0|2/(2∆2). [S7]

As a result,

Ĉu(k) = 2Ĉη(0)e−k2/(2∆2). [S8]

The spectrum for u0(x ) used in the work is a discretized version
of the one above, with A = (2π/L)2Ĉη(0).

The results reported in the main text require us to evolve
the field u(t , x ) from its initial condition u0(x ). As explained in
the main text, through this evolution, the probabilities Pt(z ) =
P(maxx |u(t , x )|) change with time t until they converge to some
limit value. It is interesting to ask how much this evolution
changes the prior information we used to construct the initial
u0(x ); that is, it is interesting to look at the spectrum of u(t , x )
and see how much it differs from that of u0(x ). The results
of this calculation are shown in Fig. S1, and they indicate that
the spectrum stays essentially constant in time over 100 min.
This justifies our choice of prior: indeed, from the viewpoint of
this prior, the time evolution of u(t , x ) leads to no significant
changes. Of course, some features of u(t , x ) change, as appar-
ent from the evolution of other observables such as Pt(z ) =
P(maxx |u(t , x )|). Detecting the trace of these changes in the
spectrum requires one to look at much finer energy scales: This
can be seen in Fig. S1, Right, where we plot the energy contained
in modes above k > 0 for increasing values of k .

2. Influence of the Size of the Domain and of the Observation
Window
In this section, we investigate the influence of the size of
the domain and/or that of the observation window on our
results. To this end, we conduct experiments in domains of size
L=L0 = 40π (the domain size used in the main text, which
is L0≈ 4.53 × 103 m in dimensional units), and compare with
L= 2L0, L= 4L0, and L= 8L0. The base domain size L0 was
chosen to be as small as possible for computational efficiency,
but still large enough that the influence of the periodic boundary
conditions be negligible (as checked below). Consequently, the
results below can be interpreted either by thinking of L ≥ L0 as
the actual domain size, or as the size of the observation window
in an even larger domain (including one that could be infinite).
We also stress that our results are numerically converged and
consistent in terms of numerical resolution, in the sense that we
doubled both the number of grid points in the domain and the
number of modes in the initial data each time we doubled the
domain size. In particular, we used 212 grid points and M = 23
initial modes (−11 ≤ n ≤ 11) in the domain of size L, 213 grid
points and M = 47 initial modes (−23 ≤ n ≤ 23) in the domain
of size 2L, etc.

We begin by checking that the domain of size L0 = 40π is
already large enough to render negligible the effect of the bound-
ary conditions. To this end, let us consider a different observ-
able than the one in the main text, namely, the probability that
|u(t , x )| be above a certain threshold at a given location x0 in the
domain,

PL
0 (t , z ) = P(|u(t , x0)| > z ), x0 ∈ [0,L]. [S9]

By translational invariance, PL
0 (t , z ) is independent of x0. As

L→∞ this probability converges to a limiting value, PL
0 (t , z )→

P0(t , z ), which makes it useful to consider here. As can be
seen from Fig. S2, convergence is already achieved for L=L0,
PL0

0 (t , z ) ≈ P0(t , z ). The results shown in Fig. S2 are for t = 15
min, when the probability has converged to that on the invariant
measure already. A similar conclusion can be made at interme-
diate times: Fig. S3 shows that doubling the domain size makes
no significant difference, i.e., P2L0

0 (t , z )≈PL0
0 (t , z ), both in the

results from Monte Carlo sampling and in those from our large
deviation approach. The same invariance is also observed in
the trajectories obtained by optimization in the large deviation
approach (Fig. S4). Note that these results are not surprising
since L0 is already much larger than the correlation length of
the initial field, L0 ' 10Lc—this is in fact why this value of L0

was chosen to begin with.
Coming back to the quantity investigated in the main text, let

us denote

PL
max(t , z ) = P

(
max

x∈[0,L]
|u(t , x )| > z

)
. [S10]

Unlike PL
0 (t , z ), the probability PL

max(t , z ) does depend on L—
the larger L, the higher PL

max(t , z ). We can actually estimate this
growth explicitly. To see how, consider a domain of size NL
that can be partitioned into N ≥ 1 subdomains of size L, each
large enough to be roughly statistically independent of the oth-
ers. Then, we have

1− PNL
max(t , z ) =

(
1− PL

max(t , z )
)N

, N ≥ 1 [S11]

since in order for the maximum of |u| to be less than z in the
larger domain of size NL, it must be less than z in each of
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the (roughly independent) subdomains of size L. Eq. S11 is the
fundamental equation used in extreme value statistics. We con-
firmed its applicability for L = L0 = 40π in our system via direct
estimation of PNL0

max (t , z ) for N = 1, 2, 4, 8 by Monte Carlo sam-
pling. These results are reported in Fig. S5.

Since L0 = 40π is already large enough for Eq. S11 to hold, we
can rewrite this equation as

1− PL
max(t , z ) =

(
1− PL0

max(t , z )
)L/L0

, L ≥ L0 [S12]

Note that this equation implies that, at fixed z , PL
max(t , z ) in-

creases with L since 1 − PL0
max(t , z )< 1 and therefore 1 −

PL
max(t , z ) =

(
1− PL0

max(t , z )
)L/L0

≤ 1 − PL0
max(t , z ) for L≥L0.

Intuitively, this increase in PL
max(t , z ) stems from the fact

that multiple large values of |u| are expected to arise simul-
taneously in different subdomains since they are statistically
independent—this is usually referred to as an entropic effect,
and it can be seen in the typical realizations from the Monte
Carlo sampling shown in Fig. S6 for L = L0 and L = 8L0. Of
course, this effect is properly accounted for by Eq. S11. Indeed,
realizations like those shown in Fig. S6 are those from which the
probabilities shown in Fig. S5 were calculated.

It is also important to stress that this entropic effect can-
not be accounted for directly by our large deviation approach.
The solution obtained by optimization becomes independent
of L for L large enough (which is the case already for
L=L0). This implies that, without correction, the results of
the large deviation approach will deteriorate with increasing
L. Eq. S12 shows that this issue can be easily fixed, how-
ever: Indeed, this formula indicates how the large deviation
results at L=L0 (i.e., in a domain that is large enough to
not be influenced by the boundary condition, but small enough
that the entropic effects remain negligible) can be extended to
larger L.

3. The Case of the NLS and the Role of the Peregrine soliton
For completeness, we redid all of our calculations in the con-
text of the standard NLS equation instead of the MNLS equa-
tion. Using the same nondimensional variables as in MNLS, NLS
reads

∂tu +
i

8
∂xxu +

i

2
u|u|2 = 0. [S13]

Fig. S7 shows the distributions for the spatial maximum of
the envelope |u| at different times calculated by both direct
Monte Carlo sampling and minimization using our large devi-
ation approach, using the same random initial conditions as in
MNLS. As can be seen, here, too, the approach based on LDT
does an excellent job at capturing these PDFs.

The advantage of using NLS is that it permits us to assess the
relevance of the Peregrine soliton (PS), which is an exact solution
of NLS (although not of MNLS) that has been invoked as proto-
type mechanism for rogue waves creation (1–6)—recent experi-
mental results in the context of water waves (7–9), plasmas (10),
and fiber optics (11–13) have lent support to this hypothesis. The
PS reads

u(t , x ) = Uie
−it/Tnl

(
4(1− 2it/Tnl)

1 + 4
(
t/Tnl

)2
+ 4
(
x/Lnl

)2 − 1

)
,

Tnl =
2

U 2
i

, Lnl =
1

4

√
Tnl =

√
2

4Ui
,

[S14]

where Ui > 0 is a free parameter. It can be checked that
this solution reaches its maximal amplitude |u(0, 0)|= 3Ui at

(t , x ) = (0, 0) and decays both forward and backward in time to
limt→±∞|u(t , x )| = Ui .

To compare the PS to our results, we translated t in Eq. S14 to
make the time at which this solution reaches its maximal ampli-
tude coincide with the time at which a prescribed value of the
wave elevation is observed in either our minimization procedure
or in the Monte Carlo sampling. By adjusting Ui so that the
maximal amplitude of the PS also coincides with this prescribed
value of the amplitude, we can then verify how well the PS repro-
duces our instanton as well as the mean and variance of the solu-
tions observed in the Monte Carlo sampling. These results are
reported in Fig. S8. As can be seen, the PS captures the shape
of the instanton at final time (i.e., when the rogue wave occurs)
reasonably well, at least near the location x = 0 where the maxi-
mum amplitude is observed (focusing region). The PS also does a
reasonably good job at tracking the evolution of the solution that
led to this extreme event. In particular, the focusing time scale
of the optimized solutions (which we interpret to also describe
the convergence time of the a priori distribution to the invari-
ant distribution) is in rough agreement with the effective focus-
ing time scale of the PS starting from a pulse of size Li (11, 13).
This time scale is given by τc =

√
TnlTlin, where the nonlinear

time Tnl is defined in Eq. S14, and the linear time Tlin = 8L2
i

is that associated with group velocity dispersion of the initial
pulse—in dimensional units, these are Tnl =

(
1
2
ω0k

2
0U

2
i

)−1 and
Tlin = 8ω−1

0 k2
0L

2
i .

The relative agreement both in shape and timescale between
the optimized solution and the PS suggests that the main physical
phenomenon responsible for the focusing in the NLS equation is
the gradient catastrophe (14), which fosters a very unique evo-
lution pathway as the point of maximum focusing is approached
in space-time. Still, it should be stressed that the discrepancies
between the PS and the actual solution we observe become more
and more pronounced backward in time. These differences can
also be observed in Fig. S9, where we plot the amplitude of u
for a more extreme event that is too rare to be observed by
Monte Carlo sampling. In this figure, we show the optimized
solutions obtained for two different spectral widths ∆, whose
shapes are slightly different from one another: Clearly, these dif-
ferences cannot be captured by the PS since this solution is com-
pletely specified by the final amplitude, which is the same for
both sets.

For completeness, we also compared the PS with the solutions
obtained in the context of MNLS. These results are reported
in Fig. S10 and show similar types of agreement, in particular
in term of the shape of the rogue wave near its maximum and
the time scale of its emergence. Note the discrepancies between
the PS and our solutions is even more pronounced in this case,
which is to be expected since PS is an exact solution of NLS, but
not of MNLS.

To summarize, while the PS can explain some features of the
rogue waves, in particular their shape as well as the focusing time
scale over which these waves evolve from a large initial pulse, it
does not capture the details of the formation of these waves—
indeed, there is no reason why it should, since different sets of
random initial conditions lead to waves with different shapes
(and whose amplitudes have different statistics), and this infor-
mation is not seen by the PS. In particular, the instanton solution
for the initial data chosen here depends on two parameters, the
significant wave height Hs and the BFI, while the PS only allows
a single parameter Ui . Additionally, and more importantly, the
PS does not allow the estimation of the probability of observ-
ing rogue waves of given amplitude since this solution per se is
devoid of a probabilistic framework.
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Fig. S1. Evolution of the spectrum of u(t, x). Upper shows that this spectrum stays essentially constant in time over 100 min, which justifies our choice of
prior: Indeed, from the viewpoint of this prior, the time evolution of u(t, x) leads to no changes. Of course, some features of u(t, x) change, as apparent
from the evolution of other observables such as Pt(z) = P(maxx|u(t, x)|): These changes can be detected in the spectrum, but they require us to look at
much finer energy scales, as shown in Lower, where we plot the energy contained in modes above k > 0 as k increases.
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Fig. S2. Numerical verification of the invariance PL
0(z) = limt→∞PL

0(t, z) for L ≥ L0. The limiting value P0(z) (gray curve) was calculated by propagating 1500

samples up to time of 3000 min in the largest domain with L = 8L0). Note that this also shows that P
L0
0 (t, z) in the Monte Carlo sampling has essentially

converged to the invariant P0(z) after only 15 min.

Fig. S3. (Upper) PL
0(t, z) = P(|u(t, x0)| > z) at a fixed location x0 and different times t in domains of size L = L0 and L = 2L0 obtained by Monte Carlo

sampling. (Lower) Same, obtained by optimization using our large deviation approach and a larger range of values for z (such large values cannot easily be
reached by Monte Carlo). As can be seen, the probability distribution functions (PDFs) essentially lay on top of each other for the two different domains,
confirming that the domain size L0 is large enough for the periodic boundary conditions to not affect the results.
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Fig. S4. Optimal trajectories calculated in the domains of size L = L0 (thick line) and L = 2L0 (thin line). As can be seen, the periodicity of the domain does
not affect significantly the shape of the instanton inside this domain.

Fig. S5. Numerical verification of Eq. S11 for L = L0 = 40π. These results confirm that adjacent boxes of size L0 can be considered statistically independent.

The probability PL
max(z) = limt→∞PL

max(t, z) for L = 8L0, is also shown, indicating that this quantity can be estimated accurately from P
L0
max at 15 min using

Eq. S11.

Fig. S6. Typical realizations from the Monte Carlo sampling such that maxx|u(t, x)| ≥ 3.5 m at t = 15 min in the domains of size L = L0 (Upper) and L = 8L0

(Lower). As can be seen, as the domain size increases, it becomes increasingly likely to observe more than one large value of u(t, x)| in the domain.
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Fig. S7. P(maxx|u(t, x)| ≥ z) for u(t, x) solution of NLS at different times calculated by Monte Carlo sampling using 106 realizations and compared with the
results obtained via optimization in our large deviation approach.

Fig. S8. Comparison of the optimized solution, the mean and SD of the Monte Carlo realizations, and the PS reaching the same maximal surface elevation
at T = 20 min. From bottom to top, the figures are at 0, 10, and 20 minutes respectively, and these results are for NLS.
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Fig. S9. Comparison between the optimized solution for a very extreme surface elevation and the PS reaching the same final height (after T = 10 min).
Comparison with realization from the Monte Carlo sampling is impossible due to the extreme rareness of such event on the ensemble of the initial conditions.
The evolution is shown at times 0, 5, 7.5, and 10 min, respectively. These results are for NLS.

Fig. S10. Same as in Fig. S8 for MNLS.
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Movie S1. Time evolution of the surface elevation of the optimized solution and the PS reaching the same maximal amplitude maxx|u(T , x)| = 5.25 m at
T = 20 min, compared with that of the mean and SD of the trajectories sampled by Monte Carlo that reach maxx|u(T , x)| ≥ 5.25 m. These calculations were
performed in the context of the NLS equation, for which the PS is an exact solution.

Movie S1

Movie S2. Comparison between two instantons and the PS reaching the same maximal amplitude maxx|u(T , x)|m at T = 10 min. The two instantons are
optimized solutions for two statistical states of the sea with a different spectral width ∆. These calculations were performed in the context of the NLS
equation, for which the PS is an exact solution. For the event shown here, the extreme size and rareness make comparison with the Monte Carlo sampling
impossible in practice.

Movie S2
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