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SI Materials and Methods
Dynamics of the Moving Bar. The dynamics for the position (x”) and
velocity () of the moving-bar stimulus follow the equations for
a stochastic damped harmonic oscillator in the overdamped
regime:

R,y = 41241
Vo, =1 =TAV? — 0xb At + £v/DA.

The parameters are I'=20 s~! and w=2zx (1.5 s7}), gener-
ating dynamics that are slightly overdamped: Without the sto-
chastic kicks &, bar position decays back to the center position.
The time step Ar=1/60 s, matching the frame rate of the movie.
The parameter D = 2.7 x 10°pixel’ /s* was set so that bar position
ranges across the screen extent.

Information Calculation Methods. Word-word internal predictive
information is the information the binary word x; at time ¢ pro-
vides about the word x, at time t'=¢+dt for some temporal
offset dt (1-3):

PX(xt"xt)
I(X:X) = Py(x) P (xrxo)logy st
(t t 4 x (Xt X(tlt ZPX(xt’)

Readout predictive information is the mutual information of
the perceptron activity y, at time ¢ and the word x,,4 at time
t'=t+dt 1(Y;; Xy ). Word-word information is symmetric with dt
[ (Xt; Xrar) =1(X1; Xi—ar)], but perceptron-word information is
not [I(Yy;Xear) #1(Ye;Xi—a)]- The shorthand “predictive in-
formation” is the perceptron-word information for dt=1/60 s
(the temporal bin size). Information was computed using
CDMEntropy, a Bayesian entropy estimator for binary vector
data (4). Information estimated through this method was con-
sistent (within 1%) with the information estimated through
finite-size scaling methods (5, 6), with computation run times
that were significantly less. This was verified for all calculation
types (word and perceptron readouts of internal predictive in-
formation driven by natural-movie stimuli, word and perceptron
readouts of internal predictive information driven by moving-bar
stimulus, and word and perceptron readouts of stimulus in-
formation from ¢ = —100 ms to ¢ = +50 ms in 33-ms increments) on
a subset of sampled sets, in which we also estimated the uncertainty
in the information calculation as the SD of the bootstrapped

samples of half the data divided by /2, following ref. 5. Readout
information estimate error bars were less than 0.001 bits per time
bin (equivalently, 0.06 bits per s) and are generally smaller than
marker size in the figures. Word information estimates were less
than 0.003 bits per time bin (0.18 bits per s) are also smaller than
marker size in the figures.

Definition of Similarity Metric Between Readout Rules. The similarity
between two readouts is the fraction of time bins with one or more
input spikes for which the readout functions produced the same
output. Each readout corresponds to a set of output rules
(L: =L (x")), representing the readout response (0, 1) to each of the
16 possible input words (x™M) =0000;x) =0001; ....x1% =1111)
(Fig. 3D). For each learned readout, similarity between the learned
rules L; and the optimal rules O; is quantified as
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where 61,0, is 1 if L;=0; and otherwise 0 and p(i) is the
probability of observing word i (x®).

Sampling the Space of Possible Readouts of Internal Predictive
Information (Fig. S1). To judge the efficiency of a learned per-
ceptron for a particular set of cells we need to compare the
predictive information encoded by the learned readout function
to that of the set of possible single-bit readout functions. For a
subset of groups of four cells, internal predictive information
during the fish movie was computed exhaustively for each of the
2'5 possible (binary) readout functions (for examples see Fig. S1
A and B). For these groups of four cells we computed the
maximum readout predictive information as a function of read-
out firing rate for the exhaustively sampled set of readout
functions (“exhaustive sampling,” Fig. S1B, purple bound) and
for the perceptron readouts alone (“perceptron hull,” Fig. S1B,
red bound). We noted that while there were places that the hull
computed from the exhaustive sample was higher than the per-
ceptron hull, over most of the firing rate the two hulls are in-
distinguishable, despite there being >32,000 readouts sampled
for one and <150 for the other. We tested how well the bound
could be estimated using samples of randomly drawn readouts,
and we found that it is possible to estimate the upper bound on
readouts with relatively small samples of all possible readouts
(Fig. S1C). The estimate of the bound on predictive information
was better for middle to high firing rates, which is the range over
which the most informative readouts are typically found (see Fig.
S1A4, B, D, and E for examples). At midrange firing rates (half of
the maximum firing rate), a subsample containing a randomly
selected fraction (1%, or 328 of 32,768; Fig. S1C, red) of all
possible readouts produced an estimate of the predictive in-
formation bound that was 98% of the true bound calculated
from the set of exhaustively sampled readouts (Fig. S1C).
(Across sets of four cells, the average SE of the hull estimate
efficiency over repeatedly drawn subsamples was 3%.) Sampling
fewer random readouts (than 1%, or ~300) did not lead to a
good estimate of the bound (Fig. S1C, blue), although sampling
only 149 linear readouts (perceptrons, positive weights only)
rather than random ones did give a good estimate of the bound
(Fig. S1B, red vs. purple).

For sets larger than four cells it is not feasible to sample even
1% of readout functions, and it is possible that a significant gap
between the predictive information of the sampled subset of
readout functions and the optimal readout of predictive in-
formation grows rapidly as the number of cells in the group in-
creases. Thus, another method is needed to estimate the bound on
predictive information of readouts at a given firing rate. An ef-
ficient way to estimate this bound for larger sets is to permit
probabilistic readout functions and optimize over the probability
of responding to a particular word. This reduces the search space
for the optimal rule for a set of N cells from possible readout
functions to parameters that can be learned through gradient
descent on the output-firing-rate-constrained mutual information.
The results of comparing the sampled subset of readout functions
to the optimal hull are shown in Fig. S1B (set of four) and Fig. S1
D-F. For the set of four cells, the probabilistic hull is an upper
bound on the exhaustively sampled readouts’ predictive in-
formation (Fig. S1B). For large sets, we reasoned that, because
sampling perceptrons was more efficient than randomly sampled
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readouts at estimating the readout information hull for sets of
four, perceptrons may get closer to the bound for larger sets as
well. Thus, predictive information was computed for a small
sample of linear readout (perceptron) functions (~1,000 readouts;
black points). From this sample, the perceptron hull (orange) was
calculated. Finally, the probabilistic hull (blue) was optimized
(Fig. S1D, an example set of 7; Fig. S1E, an example set of 10).
The perceptron hull approaches the probabilistic hull over most of
the firing rate regime. We compared the perceptron hull value to
the probabilistic value across the range of firing rates, normalizing
firing rates by the maximum for each set before averaging across
sets. Across sets, the estimated perceptron hull was typically
greater than 95% of the optimized perceptron hull. Note that the
probabilistic readout, which has variable probabilities for each
possible input word, is not easily mapped to a one-step biologically
plausible readout function, which was the focus of our current
work. Therefore, to calculate the efficiency of learned readouts we
compare them to the sampled perceptron hull, which represents
the best possible single-bit readouts and is close (within 5-10%) to
the optimized probabilistic readout function.

S| Results

Learning Under Other Spike-Timing-Dependent Rules (Fig. $2). We
simulated several variations of STDP: pair (see main text) and
triplet-spike rules, as well as homeostatic variations of each rule.

The triplet rule depends on the timing of one presynaptic and
two postsynaptic spikes, such that potentiation is modulated by
the postsynaptic interspike interval Ay :

AWz(i) =& (ytx,(i) €xXp (—AISI / Ty) - aLTD}’t—lxt@) .

In the triplet rule, potentiation only occurs if there was recently
a postsynaptic event at the time of the prepost pairing. We
simulated learning under the triplet rule for 7,=115 ms and
7, =167 ms. This rule was defined following Gjorgjieva et al. (7),
in which equivalent parameters 7,=114 ms and a;7p =0.92.
Here a;7p =0.9, which we found to be where simulation results
usually generated weight vectors with both zero and nonzero
weights.

For homeostatic learning rules, the sum of weights was con-
strained to equal 0.75N, where N is the size of the cell group, at
each learning time step.

For each set of cells we generated a random set of initial
conditions, and for each of those initial conditions four separate
learning simulations were carried out, employing each learning
rule in turn. We then directly compared the readouts learned
under each rule. We visualize this in a matrix, showing for each
initial condition of each cell set which of the four learning rules
led to the readout with the highest predictive information (Fig.
S2A4). Rows are ordered by the predictive information of the full
cell set. Most of the matrix is blue, indicating that the pair rule
generally led to the highest predictive information in the final
readout. For 80% of tested cell sets the pair rule was optimal for
80% (or more) of initial conditions (Fig. S2B). After the pair
rule, the next most common optimal rule was the triplet rule with
homeostasis (purple, Fig. S2 A and B). We next examined the
fraction of recovered predictive information for each simulation
under an optimal learning rule. For each cell set there is a
particular pattern of recovered information across all tested
initial weight patterns. One difficulty in analyzing these patterns
is that the labeling of the four input cells is arbitrary, making
comparisons across groups difficult. We noted that the pattern of
each set was often most strongly coupled to one of the initial
input weights. For each set we identify the dominant initial input
weight based on the correlation of final predictive information
with the initial weight strength, and we then order the initial
conditions for that set by the initial value of the dominant weight
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(Fig. S2C). (The same ordering was adopted in Fig. S24.) The
strong patterning in Fig. S2C induced by this ordering shows that
having high predictive information in the final learned readout is
often dependent on starting with a particular pattern of input
weights, specifically with a strong weight in the “dominant” in-
put. However, there is still variability across the cell sets: For
many other sets, with both small (0.04) and large (0.14) pre-
dictive information, nearly all initial conditions reach the same
final state, rather than being strongly determined by initial condi-
tion. Finally, we examined the distribution of predictive information
learned when each rule was optimal (Fig. S2D). Readouts learned
under the pair rule have higher median predictive information, but
the difference is small: less than 0.01 bits per 16 ms. In summary,
the optimal learning rule depends on details of the cell sets and
initial conditions, but most often the simple, pair-spike learning rule
produced the most efficient readouts.

We observe that a range of reasonable rules find near-optimal
readouts. Interestingly, a simple pair-STDP rule outperforms a
triplet-STDP rule for the majority of cell sets sampled. Triplet-
STDP, implemented as a prepost-post rule (7, 8), only potenti-
ates input synapses in a window following a postsynaptic spike,
which means that the first spiking pattern after a long pattern of
silence will not potentiate the input weights. The observation that
the pair-based rule finds more predictive readouts than the
triplet-based rule suggests that the first spiking pattern after a
long pattern of silence is important for prediction in cells re-
ceiving visual inputs from the retina. This aligns with the ob-
servation that population silent periods in retinal recordings carry
significant amounts of information about the stimulus (9).

Learned Readout and Optimal Readouts: Relationship Between
Structural and Information Efficiency (Fig. $3). In the main text we
show the overall distribution of learned readout efficiency (Fig.
3B) and of the similarity of the structures of learned readouts
and optimal readouts (Fig. 3D). Here we show the relationship
between learned readout efficiency and structure for sets of 4, 7,
and 10 (Fig. S4) cells. While there is a relationship between
structural similarity to the optimal rule and efficiency of the
readout, many readouts have a high degree of predictive in-
formation efficiency with low structural similarity to the optimal
rule, especially for sets of 7 and 10 cells (Fig. S4 B and C). In Fig.
S4 we look at properties of the readout space that explain why
finding the exact structure of the optimal readout was not
necessary for finding highly efficient readouts of predictive
information.

Importance of Perceptron Structure to Perceptron Efficiency (Fig. S4).
Learning the precise structure of the optimal perceptron is only
important if information readout depends on finding that optimal
structure. Based on the learning results for sets of 4-10 cells, this
may not be the case. To see how an efficient readout of pre-
dictive information can be found without exactly matching the
optimal readout structure we examined the relationship between
the range of readout predictive information and predictive in-
formation of the full cell set across many sets of cells (Fig. S4).
The perceptron performance range (Fig. S44) was defined as the
maximum, over all firing rates, of the difference between the best
readout at or below a firing rate and the worst readout at or
above a firing rate. This reflected how important finding the
optimal structure is: If almost all readouts were within a 20%
performance range, then readout structure counted for at most
20% of the readout efficiency. Each set had a particular pattern
of predictive information across readouts, but several trends
emerged across sampled cell sets. The widest ranges of readout
performance were observed when the internal predictive in-
formation of the full cell set was smaller (Fig. S4B). For some of
these cell sets perceptron performance range was 90%: The
difference between the optimal readout and the worst readout
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was 90% of the total readout word—word information. The range
of perceptron performance narrowed to ~20% for word—-word
information of 0.4 bits per bin (24 bits per s). The overall effi-
ciency of readouts was highest for the lowest internal in-
formation: Some sets with 0.1 bits per bin of internal information
had readouts that captured 90% of that information. For sets
with 0.4 bits per bin of internal information, optimal readouts
captured 50% of the information (Fig. S4C). These are most
frequently readouts of sets of 10 cells (blue dots). The difference
between the best and worst perceptrons was smaller for larger
sets, so many perceptrons will tend to have high efficiencies
relative to the optimal readout. This is reflected in our obser-
vations of the learned perceptrons associated with sets of 7 and
10 cells: High readout efficiency occurs without high similarity to
the optimal rule structure. In summary, the decrease in efficiency
means that the total information in the group of 7 (or 10) cells
could not be compressed to a single, perceptron-readable bit,
and that either a nonlinear readout function (i.e., multilayer
perceptrons) or multiple readout channels are required to
transmit the total information in larger groups of cells.
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On the Diversity of Stimulus and Internal Predictive Information Values
Across Sampled Sets. The diversity of predictive information values
encoded by random groups of input cells (and their subsequent
readout perceptrons) reflects the fact that RGCs are responsive to
different spatial locations in the visual scene as well as different
classes of spatiotemporal stimulus features. Combining some of
these cells results in highly predictive groups, while combining
others does not. In the sampled population all cells participated in
at least one group that was highly predictive, and nearly every cell
participated in more than a third of the highly predictive groups
(Fig. S5). Some cells were more predictive than others and par-
ticipated in a larger fraction of highly predictive groups (Fig. S5 A4
and B), but no clear subset of cells emerged as the carrier of the
majority of the predictive information; contributions to highly
predictive groups were spread evenly across all cells. Participating
in a large fraction of groups with high stimulus-predictive in-
formation correlated with participation in a large fraction of
groups encoding a large amount of future activity (internal in-
formation) (Fig. S5C).
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Fig. S1. Sampling the space of possible readouts. (A) An example of the exhaustive sampling of readout function for a single set of four cells. There are
32,768 readouts shown. (B) A second example of exhaustive sampling of readout functions for a set of four cells (black dots), with information bounds overlaid.
The optimized probabilistic hull (blue) is the predictive information for a readout that responds probabilistically to each of the 16 possible words; this function
was optimized at multiple firing rates to find the optimal bound on predictive information, a method that can be used for larger sets of cells as well. The
sampled perceptron hull (red) is the maximum predictive information of any sampled perceptron readout at or a below a fixed firing rate. The exhaustive
sampling hull (purple) is the maximum predictive information of any readout rule, including nonlinear (nonperceptron) readouts, and is occasionally higher
than the perceptron readout hull. (C) Maximum readout information of randomly drawn subsamples vs. firing rate relative to the true maximum calculated for
the exhaustively sampled set. Curves are the average over 200 cell sets from which the predictive information hull was estimated from subsets (0.1%, 1%, and
10%) of all possible readout functions (linear and nonlinear). Sampling 1% (328 readouts, red line) was sufficient to estimate the bound within 5% error across
middle to high firing rates. (D) An example of the efficiency of the perceptron hull calculations from partial sampling of perceptron (linear) readouts for a
single set of seven cells. The perceptron hull calculated from these points (orange) is close to the optimized probabilistic hull (blue). (E) Same as D, for a set of
10 cells. (F) Median (across randomly drawn sets of cells) efficiency of the estimate of the predictive information bound from sampled perceptron readouts
relative to the optimized probabilistic hull for sets of 4 (blue), 7 (red), and 10 (yellow) cells for middle (30% of maximum) to high (100% of maximum) firing
rate readout regime. Shaded region represents the 17th to 83rd percentile of cell sets sampled. The hull estimated from a limited sample of perceptrons is close
to the hull defined by the optimized probabilistic rule, with the values of the firing rate averaged 17th/50th/83rd percentile across sets for each set size as
follows: [0.88, 0.95, 0.98], sets of 4; [0.92, 0.95, 0.97], sets of 7; and [0.93, 0.95, 0.97], sets of 10. The jumps in the curve for sets of four cells come from the
“clumpier” structure of readout predictive information-firing rates (A and B), which tend to smear out for larger sets of cells (D and E). frac, fraction; info,
information; perc, perceptron; pred, predictive; pred-l, predictive information; prob, probability.
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Fig. S2. Best rules for learning efficient readouts. (A) For each set of cells (rows) and each initial condition (columns) we show the rule that led to the readout
function with the highest predictive information, indicated by color. The pair rule without homeostasis (blue) is most often the best rule and was used in the
main text. Rows are ordered by the information of the full cell set, and columns are ordered as described in Supporting Information. (B) For each rule, we
compute the fraction of cell sets for which that rule was optimal for fewer than x% of initial conditions. For example, the pair rule was optimal for fewer than
80% of initial conditions in 20% of cell groups; in the remaining 80% of groups, the pair rule was optimal for 80% or more of the sampled initial conditions.
The triplet rule with homeostasis was optimal for more than 50% of initial conditions in fewer than 10% of cell groups. (C) For each set of cells (rows) and each
initial condition (columns), squares are colored by the internal predictive information of the learned readout as a fraction of total cell set internal predictive
information. (D) Cumulative distribution of the internal predictive information of learned readouts, separated by which learning rule was optimal for that cell
set and initial condition. Predictive information of learned readouts was highest for readouts learned under the pair rule (main text) and next-highest for the
triplet rules. info, information; pred-l, predictive information.
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Fig. 3. Relationship between the efficiency of learned readouts and the similarity of learned readout rule to the optimal perceptron readout. (A-C) Density
plot across sampled cell sets and initial conditions of the efficiency of learned readout internal information relative to the optimal readout vs. the similarity of
learned readouts to optimal readout rules for sets of 4 (A), 7 (B), and 10 (C) cells. Many readouts have a high degree of predictive information efficiency with
low structural similarity to the optimal rule, particularly for sets of 7 and 10 cells.
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Fig. S4. For larger groups, more readouts are near-optimal, but the total readout efficiency decreases. (A) Quantification of the predictive information—firing
rate landscape. We characterize each cell group by the highest perceptron predictive information (the maximum fraction of total internal predictive information
of any readout, solid black line) and by the perceptron performance range (the maximum range of readout predictive information at fixed firing rate, dashed
black line). (B) The largest perceptron performance range decreases as total predictive information of the group increases. This means that for cell groups with the
largest total predictive information readouts are within 0.2 (as a fraction of the group information) of each other. (C) The highest perceptron predictive in-
formation is plotted against the total internal information of the group. Dashed lines show curves of constant readout predictive information. Internal predictive
information of larger groups and of highly informative groups is less compressible onto a single-bit readout. info, information; pred-I, predictive information.
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Fig. S5. Every cell is a member of several highly informative cell groups. (A) For each of the recorded cells (1-53) we plot the inclusion fraction: the fraction of
the randomly sampled 10-cell groups that included this cell that have stimulus-predictive information higher than the median measured over all 10-cell groups.
Bars are ordered by inclusion fraction. (B) Same as A, but for internal predictive information. Bars are ordered by inclusion fraction for internal predictive
information. (C) Cells that contribute to many high-stimulus-information groups are also likely participate in many high-internal-information readouts. info,
information; pred, predictive.
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