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SI Adult Cardiac Fibroblast Isolation and Culture
We euthanized Sprague–Dawley rats (6 wk old, ∼220 g), removed
and minced their ventricles into ∼1-mm3 pieces, and digested the
pieces using Liberase TM Research Grade (Roche). We centri-
fuged successive digestions for 10 min at 400 × g; resuspended the
cells in culture medium containing DMEM (Sigma-Aldrich) with
10% FBS (Atlanta Biologicals), 100 U/mL penicillin, 100 μg/mL
streptomycin, and 2 ng/mL amphotericin B (all Sigma-Aldrich);
and transferred the cells into cell culture flasks incubated at 37 °C
and 5% CO2. After 4 h, we removed the culture media, rinsed the
cells with PBS (Sigma-Aldrich) to remove nonadherent cells, and
resupplied with culture medium. We replaced media every 2–3 d
and harvested cells for experiments at passage 1 (7 d after iso-
lation) or 2 (10–11 d after isolation).

SI Fabrication of Fibroblast-Populated Collagen Hydrogels
We serum-starved the fibroblasts for 18 h before using 0.25%
Trypsin-EDTA (Sigma-Aldrich) to dissociate them from their
flasks and resuspending them in serum-free culture media. We
created collagen solution at a 1:1:8 ratio of 0.2 M Hepes, 10×
MEM (both Sigma-Aldrich), and 3.1 mg/mL type I Bovine
Collagen Solution (PureCol; Advanced Biomatrix) and mixed it
at a 4:1 ratio with the resuspended cells for a final cell concen-
tration of 200,000 cells per 1 mL and collagen concentration of
∼2 mg/mL We placed this cell plus collagen mixture on a rota-
tor in an incubator for 20–30 min to initiate gelation before
pouring it into 100 × 15-mm Petri dishes coated with poly-
dimethylsiloxane (PDMS; Sylgard 184 Silicone Elastomer Kit;
Dow Corning) to prevent adhesion and fitted with negative
cruciform molds with small sponges at the arms (Fig. 1A). After
the gels polymerized for 4 h in an incubator, we either iso-
tropically constrained them for 1 d by pushing two small pins
through each sponge into the PDMS layer or let them float freely
in media and isotropically compact for 1 d. The free-floating gels
were cast from a larger total volume in larger molds to allow for
compaction, so that dimensions of all gels would be matched
after 1 d before transfer to the loading system.

SI Comparison of Cell Alignment with SF Alignment
Our experiments quantified the orientation distribution of pop-
ulations of cells, while most models (including the one used here;
see below) predict distributions of SFs within a single hypothetical
cell. To understand any differences between these two metrics
that might confound interpretation, we imaged 10 cells from each
72-h loading condition (60 total) with a confocal microscope with
a 60× objective, creating z stacks consisting of one image every
0.5 μm through each cell’s thickness. Within each z stack, we
created 2D grayscale projections by manually selecting images
that most clearly showed the cell’s SFs. We measured SF ori-
entation using the custom software MatFiber, a MATLAB
implementation of an intensity–gradient–detection algorithm
originally developed by Karlon et al. (1) and subsequently used
by our group to quantify collagen fiber orientation in histologic
sections (2, 3) and by others to quantify SF alignment within
stretched cells (4, 5). We used the orientations of structures
within 6 × 6-pixel subregions to calculate the strength of align-
ment, MVLSF (ranging from zero, all SFs randomly oriented, to
one, all SFs aligned) and MA, MASF (Eqs. 2–4). Then, the
boundaries of each cell were traced to calculate each cell’s
MAcell and MVLcell as described above for comparison.
The calculated orientation of the cell using its boundary, MAcell,

and its SFs, MASF, correlated closely across most of the 60 cells

analyzed, with an overall regression equation MAcell = 0.88 ×
MASF

– 7.2 and an R2 value of 0.84 (Fig. S1A). The strength
of orientation of the cell using its boundary, MVLcell, and its
SFs, MVLSF, was less tightly correlated on a cell by cell basis,
with an R2 value of 0.65 (Fig. S1B); the relationship between
these two measures (MVLcell = 1.25 × MVLSF + 0.08) sug-
gested that MVL computed from the cell boundary is gener-
ally higher than the MVL computed from SFs imaged in the
same cell.

SI Modified Computational Model
Here, we briefly describe the model of Vigliotti et al. (6) and its
application for the analysis of cells in tissues subjected to dif-
ferent boundary conditions as described in the text. We restrict
attention to a 2D cell in the x1–x2 plane with the out of plane
Cauchy stress Σ33 = 0.

SI Configuration Under Static Loading
The model by Vigliotti et al. (6) describes the kinetics of SF
remodeling for a given set of boundary conditions. The internal
chemical kinetic processes (formation/dissociation of SFs and
diffusion of the unbound SF proteins) are rapid and attain an
equilibrium rapidly compared with the rate at which the cell can
change its morphological configuration (i.e., its shape, size, etc.).
Thus, under static loading conditions, the observed state is well-
approximated by the equilibrium state of the cell. To determine
that equilibrium state for a given set of boundary conditions, we
use the model by Vigliotti et al. (6) to calculate the Gibbs free
energy of the cell as outlined below.
Let b0 be the thickness of the 2D cell in its elastic resting state

and the corresponding volume V0. The reference representa-
tive volume element (RVE) of the SFs within the cell in this
resting configuration is assumed to be a cylinder of volume
VR = πb0ðnRℓ0=2Þ2, where ℓ0 is the length of an SF functional unit
in its ground state and nR is the number of these ground-state
functional units within the undeformed circular cell. The total
number of functional unit packets within the cell is NT

0 , and we
introduce N0 =NT

0 VR=V0 as the average number of functional
unit packets available per RVE; N0 shall serve as a useful nor-
malization parameter. The state of the SFs at location xi within
the cell is described by their angular concentration ηðϕ, xiÞ and
the number nðϕ, xiÞ of the functional units in series along the
length of each SF in the RVE, where ϕ is the angle with respect
to the x1 direction. Vigliotti et al. (6) argue that an applied
stretch is shared equally among all subunits, so that the strain
within each functional unit ~«n is initially equal to the nominal
strain «nðxi,ϕÞ in direction ϕ. Subsequent addition or removal of
subunits modifies the subunit stretch proportionally, so that, at
steady state, the number nss of functional units within the SFs is
given by

n̂ss ≡
nss

nR
=
½1+ «nðxi,ϕÞ�

1+ ~«ssn
, [S1]

where ~«ssn is the strain at steady state within a functional unit of
the SFs. To calculate the steady-state angular concentration of
the SFs, we begin with the chemical potential of the functional
units within the SFs as derived by Vigliotti et al. (6) as
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μssb
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N̂u

π N̂L
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where N̂u is the normalized concentration of the unbound SF
proteins given by N̂u ≡Nu=N0 and η̂≡ ηnR=N0 is the normalized
angular density of SFs. Here, N̂L is the number of available
lattice sites, while the enthalpy of nR bound functional units at
steady state is given in terms of the isometric SF stress σmax and
the internal energy μb0 as

μssb = μb0

�
1+ β

�
~«ssn

�2�
− σmax

�
1+ ~«ssn

�
Ω, [S3]

where Ω is the volume of nR functional units. The chemical
potential of the unbound proteins in terms of the internal energy
μu is

χu =
μu
nR

+ kT   ln

 
N̂u

π   N̂L

!
. [S4]

Equating the chemical potentials (Eqs. S2 and S4) and denoting
the steady-state values of N̂u and η̂ by N̂

ss
u and η̂ss, respectively,

provide the following relation between these quantities:

η̂ssðxi,ϕÞ= N̂
ss
u

π   n̂ssðxi,ϕÞ exp
�
n̂ss  

μu − μssb ðxi,ϕÞ
kT

�
. [S5]

We emphasize that N̂
ss
u is a constant [i.e., independent of xi, as

the chemical potential (Eq. S4) at equilibrium is constant over
the entire cell]. We can now use conservation of the SF proteins
to determine N̂

ss
u . The normalized total number of functional

unit packets N̂T ≡NT=N0 in an RVE located at xi follows from
the above analysis as

N̂TðxiÞ= N̂
ss
u ðxiÞ

h
1+

1
π

Zπ
2

−π
2

exp
�
n̂ss  

μu − μssb ðxi,ϕÞ
kT

�
dϕ

i
, [S6]

with conservation of the proteins then specifying

1
A0

Z
A0

N̂TdA= 1, [S7]

where A0 ≡V0=b0 is the resting area of the cell. Combining Eqs.
S6 and S7,

N̂
ss
u =

1

1+ 1
A0π

R
A0

R π
2
−π
2
exp
h
n̂ss   μu − μssb ðxi ,ϕÞ

kT

i
dϕdA

. [S8]

The cytoskeletal free energy is then

Gcyto =
N0b0
VR

Z
A0

h
N̂

ss
u   χ

ss
u +

Zπ
2

−π
2

η̂n̂χssb dϕ

i
dA= χssu N

T
0 , [S9]

where χssu and χssb are the steady-state values of χu and χb,
respectively.

To complete the description of the cell, we need to specify the
stress state. Vigliotti et al. (6) showed via a homogenization
analysis that, in 2D, the stress state due to the active stresses
generated by the SFs is given by

�
σ11 σ12
σ12 σ22

�
= f0σmax

Zπ=2
−π=2

η̂ss½1+ «nðϕÞ�

2
664
cos2ϕp sin  2ϕp

2
sin  2ϕp

2
sin2ϕp

3
775dϕ,
[S10]

where ϕp is the angle of the SF measured with respect to xi and
is related to ϕ by the rotation of the base vectors ei from the
reference configuration; f0 is the volume fraction of SF pro-
teins under reference conditions. The total Cauchy stress Σij
follows from an additive decomposition of σij and the passive
stress σ p

ij as

Σij = σij + σ p
ij . [S11]

The passive response is assumed to follow a compressible neo-
Hookean relation of the form

W =
E

4ð1+ νÞ

"
J−2=3

X3
j=1

λ2j − 3

#
+

E
6ð1− 2νÞ½J − 1�2, [S12]

where E and ν are the Young’s modulus and Poisson’s ratio,
respectively; λj indicates the three principal stretches, and
J ≡ λ1λ2λ3. The principal components of the passive Cauchy stress
are given as

σpi ≡
λi
J
∂W
∂λi

  . [S13]

The specification is complete by requiring mechanical equilib-
rium; that is,

∂Σij

∂xj
= 0, [S14]

subject to the appropriate boundary conditions. The total free en-
ergy of the cell is then

G=Gcyto + b0

Z
A0

WdA, [S15]

which reduces to the expression

g≡ gcyto + gelas = ρ0χ
ss
u +

1
A0

Z
A0

WdA [S16]

for the free energy of the cell per unit volume. Here, ρ0 ≡NT
0 =V0 is

the volumetric concentration of the SF proteins, with gcyto ≡ ρ0χ
ss
u

as the cytoskeletal free energy per unit volume and gelas as the
corresponding elastic energy per unit volume.
Now consider the case of a low density of fibroblasts seeded in

the gels or on 2D flat substrates, such that the cells do not
directly interact with each other. The cells adhere to the collagen
or other fibers in the gel or ligands on the substrate and remodel
their shape and size so as to minimize their free energy. In the
2D context being analyzed here, we model the cells lying in the
x1–x2 plane with Σ33 = 0. The gel is a weak, plastically deforming
medium and thus, can only sustain stresses exerted by the cell
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that are balanced by the applied boundary conditions. Fur-
thermore, the local plastic deformation of the gel near each
individual cell is unknown. We simplify the problem by mod-
eling the cells to be spatially uniform, described by a single set
of nominal strains E11,E22 and E12. The above analysis to
calculate the free energy of the cell then simplifies consider-
ably with

N̂
ss
u =

1

1+ 1
π

R π
2
−π
2
exp
h
n̂ss   μu − μssb ðxi ,ϕÞ

kT

i
dϕ

[S17]

and

g= ρ0

"
μu
nR

+ kT   ln

 
N̂

ss
u

π   N̂L

!#
+ gelas, [S18]

where in this simplified setting, gelas =W. The simulations were
performed with the following set of parameters taken from Vig-
liotti et al. (6). All simulations are reported for cells at a tem-
perature T = 310 K. The passive elastic parameters are taken to
be E= 5.0  kPa and ν= 0.45, while the maximum contractile
stress σmax = 240  kPa and volume fraction f0 = 0.032. The internal
energies of the unbound and bound proteins are μu = 8  kBT0 and
μb0 = 9  kBT0, where T0 = 310 K with β= 1.2, while the reference
volume of nR functional units is taken to be Ω= 10−7.1μm3.
The volumetric concentration ρ0 of the proteins was not speci-
fied in the work by Vigliotti et al. (6), as the free energy was
not explicitly calculated. All simulations reported here use
ρ0 = 1.5× 105μm−3.
We now proceed to detail the analysis for the three cases under

consideration here: (i) biaxial constraint imposed on the gel,
(ii) gels restrained uniaxially in the x1 direction, and (iii) cells on
stiff and flat 2D substrates. For the case of biaxial restraint, the
applied boundary conditions can balance any stresses Σ11 and Σ22
generated by the cell, but the gel cannot sustain a shear stress Σ12
generated by the cell. Thus, we constrain the cells to only assume
states with E12 = 0, so that no elastic shear stresses are generated.
Moreover, the boundary conditions in the x1 and x2 directions
are identical, and thus, it is reasonable to assume that cells as-
sume states with E11 =E22. The cells then spread and remodel
within the gel subject to these constraints to minimize their free
energy g. We define normalized cytoskeletal and total free en-
ergies as

ĝcyto =
gcyto − ρ0μu

.
nR + kTln

�
πN̂L

	
ρ0μu

=
kT
μu

ln
�
N̂

ss
u

�
[S19]

and

ĝ=
g− ρ0μu



nR + kTln
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μu

ln
�
N̂

ss
u

�
+ ĝelas, [S20]

respectively, where ĝelas ≡W=ðρ0μuÞ. Here, we have subtracted
½ρ0μu=nR − kTlnðπN̂LÞ� in defining the normalized energies, as
this term is a constant that does not vary with the state of the
cell. A minimum is seen at Eopt

11 =Eopt
22 = 0.062; this represents the

state that the cell assumes under static loading with this bound-
ary condition (Fig. S1A), and the predicted distribution of as-
sembled actin ξss ≡ η̂ssðϕÞn̂ssðϕÞ is spatially isotropic (Fig. 3I). The
configuration of cells under static loading on 2D flat substrates is
identical to that for the biaxially constrained gel, as the 2D stiff
substrates can support any stresses/tractions generated by the
cell in the x1 and x2 directions.

For the case of uniaxial restraint in the x1 direction, equilibrium
requires that resultant forces in the x2 direction vanish, and
therefore, we only allow the cells to assume states with Σ22 = 0.
As in the biaxial case, we also assume that the gel cannot support
shear stresses Σ12, so that E12 = 0. Thus, the problem reduces to
determining the value of E11 that minimizes ĝ. A minimum is
seen at Eopt

11 = 0.075, Eopt
22 =−0.2107 (Fig. S1 B and C) and is as-

sociated with preferential alignment of SFs along the x1 direction
(Fig. 3 C and F).

SI Analysis of Fibroblast-Populated Gels Under Cyclic
Loading
To simulate cyclic loading of cells (on 2D substrates and in gels), we
separate the strain Eij of the cell into two parts: a static time-
independent component �Eij and a cyclic component ΔEijðtÞ, such
that EijðtÞ= �Eij +ΔEijðtÞ. We assume that, over long timescales,
the cells can remodel, such that they adjust their connection to the
gel or the substrate and adjust �Eij so as to minimize their free
energy subject to the appropriate boundary conditions. Thus, the
calculation of �Eij reduces to the free energy minimization of the
cell under equivalent static boundary conditions as outlined above.
It now remains to specify the response of cells subject to the ad-
ditional time-dependent strains ΔEijðtÞ.
The cyclic analysis of the cells in the gels differed from that for

cells on the 2D substrates. Cells on 2D substrates are adhered to
the substrates, and the cyclic strains ΔeijðtÞ applied to the sub-
strate are directly transmitted to the cell [i.e., ΔEijðtÞ=ΔeijðtÞ].
However, for cells within very soft 3D gels, the majority of
the imposed strains are accommodated within the gel, with
only a small fraction δ transmitted to the cells (7) [i.e., ΔEijðtÞ=
δ ΔeijðtÞ, where 0≤ δ≤ 1].
We analyze the three cyclic loading cases using the full model

by Vigliotti et al. (6) (i.e., the model accounting for transient
evolution of the cytoskeleton and not just the steady-state limit as
described above). The three cyclic loading cases and the asso-
ciated boundary conditions are as follows.

i) Cyclic response of cells on 2D substrates: here, we impose
ΔE11ðtÞ=Δe11ðtÞ with ΔE22ðtÞ= 0.

ii) Strip uniaxial stretch of cells in gels: here, we impose
ΔE11ðtÞ= δΔe11ðtÞ with ΔE22ðtÞ= 0.

iii) Uniaxial stretch of cells in gels: here, we imposeΔE11ðtÞ= δΔe11ðtÞ
with Σ22ðtÞ= 0.

The transient model of Vigliotti et al. (6) requires a few
additional parameters to those specified above. These are taken
from ref. 6, but we list them here for the sake of completeness.
The activation barrier for SF kinetics is taken to be μa = 20  kBT0,
while the time constant for SF formation/dissociation is
ωn = 20 Hz, with the SF remodeling assumed to be slow with a
rate constant α= 0.01 Hz. In addition, we now need to specify
the parameters for the dependence of the stress generated by
the SFs on the SF strain rates, which are assumed to have a
Hill-like form with associated constants _«0 = 0.53  s−1, «p = 0.6,
and «s = 0.3. The cyclic simulations were performed with initial
conditions given by the corresponding static analysis described
above. Finally, the parameter δ that sets the cyclic strain
transmitted into the cells in the gels was set to δ= 0.0125 in all
simulations reported here. Cyclic loading was imposed until a
steady state was attained, which was realized for all boundary
conditions after ∼12 h of cyclic loading. The cyclic steady-state
distributions of ξ≡ ηn as a function of ϕ are presented in Fig. 3
C, F, and I.
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Fig. S1. Modified computational model minimizes free energy (ĝtot = ĝcyto + ĝelas) based on the boundary conditions to determine equilibrium cell strain.
(A) When the x2 direction was constrained (strip uniaxial cases), SFs reached the same minimum free energy and cell strain in all directions (E11 = E22). (B and C)
When the x2 direction was free (uniaxial cases), SFs in x2 (C) reached minimum free energy (yellow diamond) at a cell strain much lower than in x1 (B).
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Fig. S2. Angular histograms of cell orientation for 10% uniaxial cyclic stretch (A–C) and 10% strip uniaxial cyclic stretch (E–G) at 0.5, 2, and 4 Hz after 72 h.
Each data point is representative of five independent experiments (except uniaxial 4 Hz; n = 4) and expressed as the mean ± SD. Angular histograms of SF
orientation simulations for uniaxial (D, Upper) and strip uniaxial (H, Upper) conditions across our range of frequencies (dotted lines, 0.5 Hz; dashed lines, 2 Hz;
solid lines, 4 Hz). D, Lower and H, Lower show circular histogram representations of these SFs.
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Fig. S3. The orientation of SFs within 10 cells from each stretch condition (60 total; symbols correspond with those in Figs. 2 and 3) correlated strongly with
the orientation of the entire cell. (A) Orientation of the SFs (MASF) vs. tracing its boundary (MAcell). (B) Comparison of the strength of alignment of the cell
using its SFs (MVLSF) vs. the alignment of the cell using its boundary (MVLcell).
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(D)(A) (B)

(C) MVLgel = 0.3; MAgel = 0o

Fig. S4. Quantification of cell alignment. (A) A representative 2D projection of F actin-stained adult rat cardiac fibroblasts taken from the core of the tissue.
(Scale bar: 200 μm.) (B) Magnification of the boxed region in A converted into a binary image. (C) Vectors (dashed arrows represent a subset of the 400 vectors
used) drawn from the centroid (dots) to the boundary of the cell were used to calculate the cell’s strength of alignment (MVLcell; ranging from zero, a circular
cell, to one, a highly aligned, spindly cell) and orientation (MAcell; thick black arrows). The top cell, which is longer and more highly aligned, has a higher
MVLcell (MVLcell = 0.85; MAcell = 13°) than the bottom cell (MVLcell = 0.55; MAcell = 43°). (D) The mean vectors of all cells in A are saved and plotted. These
vectors were used to then calculate each gel’s overall MVL (MVLgel; ranging from zero, cells randomly aligned, to one, all cells strongly aligned in the same
direction) and MA (MAgel). In this image, the cells are aligned in the 0° (x1) direction with moderate strength.
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