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SI Notes
Carriers’ Interactions and Transport Properties. To extract the thermoelectric transport properties from the Boltzmann transport equation
(BTE), we need to understand the lifetime of carriers upon their interactions. According to Fermi’s golden rule and under the re-
laxation time approximation (RTA), the scattering rates of electron and phonon due to the e-ph interactions are given by (1)
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respectively, whereMmk+q
nk,pq is the coupling matrix of one e-ph scattering process, which informs the transition of an electron from band n

and wave vector k to band m and wave vector k + q participated by a phonon with mode p and wave vector q. The amplitude of the
coupling matrix indicates how strong the scattering channel of a given material is. «nk and fnk are electron energy and Fermi–Dirac
occupation, and ωpq and npq are phonon frequency and Bose–Einstein occupation. ge is the degeneracy of the electron. The first term in
the brackets in Eq. S1 corresponds to the phonon-absorption process, and the second term corresponds to the phonon-emission
process. The coupling matrix is the key in studying such transition problems. Technically we can treat the variation of crystal potential
induced by collective atomic vibrations as a perturbation to the system, and thus the matrix element can be evaluated by (1)
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Here nk andmk+ q denote the Bloch states, andm0 is a convenient reference mass. δVpq is the perturbation of self-consistent potential
induced by a phonon at state pq, which is usually called the “phonon perturbation.” The right-hand sides of Eqs. S1 and S2 are related
to the linewidth (imaginary part of self-energy, Σ″

nk) of a particle involved in the e-ph interactions. The linewidth determines the time
that the system can persist in its original state. For example, when an electron is added into a system, the probability amplitude of the
system at state nk will exponentially decay by the factor of Σ″

nkðΔtÞ=Z after a time period Δt (2). Therefore, one can evaluate the
average lifetime for the electron in terms of the imaginary part of the self-energy by τe-phnk = Z=2jΣ″

nkj and do the same for the phonon
lifetime.
The phonon scattering rate due to the ph-ph interaction is given by (1)
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where Vp″q″
pq,+p′q′ and Vp″q″

pq,−p′q′ are the coupling matrices for three-phonon processes satisfying the momentum conservation relation
of q± q′= q″+G. Here G represents an arbitrary reciprocal lattice vector and, when G ≠ 0, is called the umklapp process; other-
wise, it is the normal process. The first term in the brackets in Eq. S4 is the transition possibility of the process that two phonons merge
to create another phonon and the second term is vice versa. Harmonic vibrations will not generate resistance to heat flow, and
therefore the ph-ph interaction arising from lattice anharmonicity acts as the major source to scatter phonons. In this point of view, the
matrix element of ph-ph coupling can be evaluated by (1)
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where Ψαβγ
ijk is the tensor of the third-order force constant that describes the strength of the anharmonic term in the strain-energy

response. The indexes i, j, and k loop over atomic sites in the unit cell, and α, β, and γ represent the directions in Cartesian coordinates.
mi is the atomic mass, and ξαi,pq is the normalized phonon eigenmode which can be obtained by solving the dynamical matrix. In this
study, the ph-e and ph-ph interactions are taken into account, as given by Eqs. S2 and S4, respectively, to calculate the phonon
scattering rate. A convenient way to evaluate the total scattering rate is by using the Matthiessen’s rule, 1=τtotpq = 1=τph-phpq + 1=τph-epq ,
which is based on the assumption that the two scattering channels are independent of each other.
In this work, we neglect the scatterings arising from impurity; however, the doping effect is characterized by the position of the Fermi

level, which can be calculated by a given carrier concentration and temperature. Once the electron and phonon scattering rates are
obtained, the electron transport properties can be calculated according to the Onsager reciprocal relations: S = L12/L11, σ = −L11, and κe =
L11−L21L12/L11, where the coefficients are given by (3)
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Here «f is the Fermi energy, vαnk is the electron group velocity, and Nk is the number of sampled k-point grids in the Brillouin zone. The
lattice thermal conductivity can be calculated by (3)
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where vαpq is the phonon group velocity, and Nq is the number of sampled q-point grids. Based on the RTA, the electron and phonon
MFPs are calculated by λenk = jvnkjτe-phnk and λphpq = jvpqjτtotpq , respectively. Note that the electron and phonon properties are tensors with
dimensions α × β; the scalar transport properties can be obtained by averaging the diagonal elements since the electron and phonon
transports are isotropic in SnTe.

Simulation Details. To obtain the coupling matrices of the e-ph and ph-ph interactions as shown by Eqs. S3 and S5, the electronic
Hamiltonian, phonon perturbation, and interatomic force constants should be determined in the first place. In this work, these
quantities are computed by using the Quantum ESPRESSO package (4). A fully relativistic norm-conserving pseudopotential with
Becke–Perdew parameterization of exchange-correlation functional including generalized gradient approximation (GGA) is employed
to calculate the electronic Hamiltonian and phonon perturbation, while a fully relativistic norm-conserving pseudopotential with
Perdew–Zunger parameterization of exchange-correlation functional including local density approximation (LDA) is employed to
calculate the second- and third-order interatomic force constants. We use the different pseudopotentials to treat the electron and
phonon parts, because the GGA functional can characterize the V-shape band structure as well as give a better band offset between
the first and second valence bands. On the other hand, the LDA functional can provide a more accurate optimized lattice constant and
thus avoid imaginary phonon frequency particularly near the Brillouin zone center. A 16 × 16 × 16 and a 6 × 6 × 6 Monkhorst–Pack
k-point mesh are employed in the self-consistent and nonself-consistent field calculations, respectively. The cutoff energy of the plane
wave is 70 Ry, and the convergence threshold for energy is set to be 10−12 Ry for both pseudopotentials. In the density-functional
perturbation theory (DFPT) calculation, a 6 × 6 × 6 q-point mesh is employed to compute the dynamical matrices (second-order force
constant can be obtained through its Fourier transform) and phonon perturbations. The threshold for DFPT calculation is chosen as
10−21 Ry to achieve the better convergence especially to the phonon perturbation. For the calculation of third-order force constant, a
4 × 4 × 4 supercell associated with a 2 × 2 × 2 k-point mesh is used to compute the atomic stresses. The cutoff distance of the force
constant is 6 Å to improve the computational efficiency.
Once these quantities are obtained, in this study, the EPW (5) and ShengBTE (6) packages are employed to compute the coupling

matrices and the self-energies of e-ph and ph-ph interactions, respectively. Our in-house code, an iterative solver of the linearized BTE
integrated with the EPW and ShengBTE packages, is developed to compute the thermoelectric properties and their MFP spectrum.
The e-ph scattering rates are computed on a 200 × 200 × 200 k-point mesh associated with a 100 × 100 × 100 q-point mesh, and the
ph-e scattering rates are computed on a 30 × 30 × 30 q-point mesh associated with a 60 × 60 × 60 k-point mesh. The computation of
ph-ph scattering rate is performed on a 30 × 30 × 30 q-point mesh. With these fine-mesh ab initio scattering rates, the thermoelectric
properties and MFP spectrum can be calculated by Eqs. S6–S10.

Comparisons for ab Initio Results with Experiments. Here, we provide the discussion on the discrepancies in the crystal structure and
transport properties between the pristine and stoichiometric SnTe.
Cell parameter and electronic band structure. The optimized cell parameter from our ab initio calculation is 6.209 Å, which is close to the
experimental measurement (6.327 Å) on a SnTe sample with 1.5% Sn vacancies. The calculated energy gap is about 0.09 eV, and we
have expanded it to match the experimental bandgap, 0.18 eV (7)—a rigid band approximation. The underestimation of cell parameter
and the bandgap is commonly expected as a result of the inherent approximation in the exchange-correlation functional used in ab
initio calculation (8). Furthermore, a first-principles study (9) has shown that the effect of Sn vacancy on the valence band is only a
slight increase of the electron density of states. These discrepancies in crystal structure and band dispersion are not significant, and
therefore the rigid band approximation is justified in our calculations.
Mobility and Seebeck coefficient. The ab initio mobilities of the pristine SnTe (Fig. S1D) show good agreement with the experimental
measurements in the low-carrier concentration regime. The deviation can be found when the sample is heavily doped, which could
result from the electron ionized-impurity interactions that are not taken into account in the calculation. For the Seebeck coefficient,
the positions of local minimum and maximum take place at lower carrier concentrations compared with experiments. This is because
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the energy offset between the first and second valence bands from our ab initio calculation (0.25 eV, Fig. S1A) is slightly smaller than
the suggested value (0.31 eV) fitted from experimental Seebeck coefficients (7, 10).
Lattice and electronic thermal conductivities. Previous experimental studies report room-temperature lattice and electronic thermal con-
ductivities of 2.0∼3.1 W/mK and 5.0∼6.3 W/mK, respectively, at carrier concentrations between 1.0 × 1020 cm−3 and 4.5 × 1020 cm−3

(10‒14). Our simulation results of lattice and electronic thermal conductivities are about 5.3 W/mK and 8.0 W/mK, respectively, in
reasonable agreement with the experimental values. The discrepancy can be attributed to the existence of Sn vacancies, which leads to
defect scatterings.

Model for Studying Electron MFP Filtering. When the change of lattice constant is small, and the crystal potential in the strained lattice
depends only on the local displacement, the perturbed potential due to lattice vibration can be expressed as U =Mpqupq, where upq is the
Fourier component of the phonon at mode p and wavevector q, and Mpq is the coupling matrix of the e-ph interaction. The piezo-
electric interaction will not occur in SnTe due to the existence of inversion symmetry (15). The e-ph coupling matrices of acoustic-
deformation potential, optical-deformation potential and polar-optical-phonon interactions are, respectively, given by (16)
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Here DADP and DODP are the deformation potentials of acoustic and optical phonons, respectively. ωpq is the phonon frequency, ρ is
the mass density, and e0 is the vacuum permittivity. The e-ph scattering rate is the key factor in evaluating electron transport properties
in semiconductors and insulators. Based on Fermi’s golden rule, the scattering rate of the electron at band n and wavevector k is given
by (16)
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Here «nk is the electron energy, and Ω is the volume of the unit cell. The Debye model is employed to describe the dispersion relation
of acoustic phonons, while optical phonons are assumed to be dispersionless. In this work, we investigate the electron MFP filtering
effect in the two types of electronic band structures: the Dirac band and the nonparabolic Kane band, of which the dispersion relations
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ratio of the optimal power factor, σoptS2opt=σbulkS
2
bulk, by solving the Boltzmann transport equation (Carriers’ Interactions and Transport

Properties), where σoptS2opt is the highest power factor given by an optimal cutoff of electron MFP λopt in the spectrum. For example, in
Fig. 3B (main text), λopt ∼ 20 nm is obtained when the carrier concentration is 1.0 × 1020 cm3. The results of enhancement of the power
factor are shown in Fig. S5.
With this model, we can study the effect of band shape and dielectric screening on the enhancement of power factor by varying the

band nonparabolicity δ, Fermi velocity vf, and factor of strength of phonon-induced dipole e−1∞ − e−1s . A smaller e−1∞ − e−1s is relevant to
weaker polar-optical-phonon interaction basically due to stronger dielectric screening. The parameters used in this work are given as
follows. For the Dirac band model, the Fermi velocities are vf,1 = vf,2 = 3.5 × 105 and vf,3 = 5.5 × 105 m/s in transverse and longitudinal
directions, respectively, and the Dirac mass m is set to be 0.09 eV. For the Kane band model, the effective masses of electron are
0.15m0 and 0.06m0 in transverse and longitudinal directions, respectively. The phonon group velocities of transverse- and longitudinal-
acoustic modes are 1,500 and 3,000 m/s, respectively, and the phonon frequencies at the Brillouin zone center of transverse- and
longitudinal-optical modes are 4.0 THz and 5.0 THz, respectively. For the e-ph coupling matrices, the deformation potentials of
acoustic and optical phonons are DADP = 10.0 eV and DODP = 2.0 eV/Å, respectively.
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Fig. S1. Calculated material properties of SnTe. (A) Electron band structure of SnTe. The band structure is calculated by using a pseudopotential with a GGA-BP
functional. The energy offset between the first and second valence bands is 0.25 eV. The band gap has been expanded to 0.18 eV, using a rigid band model. (B)
Phonon band structure of SnTe. The dispersion relation is calculated by using a pseudopotential with an LDA-PZ functional. The optimized lattice constant is 6.209 Å.
(C) The e-ph coupling strength (jMmk+q

nk,pq j) of SnTe. It indicates the strength of an electron at the L point (valence band edge) coupling with phonons along two high-
symmetry lines from Г to X points and Г to L points. The divergent behavior (∼jqj−1) of the LO mode near the Г point is due to the induced long-range dipole field,
exhibiting the importance of considering polar-optical-phonon interaction in constructing the e-ph matrix. (D) Ab initio hole mobility of SnTe at 300 K with different
p-type carrier concentrations. The blue and red circles are, respectively, computed by RTA and the exact solution solving from linearized BTE using an iterative scheme
(1). We found that the iterative procedure will not affect the mobility too much, which averages about 7% within the studied range of carrier concentration. The
computational results are in agreement with the experimental measurements (7, 10) except for very high carrier concentration. This difference mainly comes from the
impurity scattering due to the existence of defects and vacancies, which are introduced in heavily doped material in experiments.
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Fig. S2. Convergence tests for hole mobility and lattice thermal conductivity of SnTe. (A and B) Convergence tests with respect to varying (A) q-point mesh
and (B) k-point mesh. We found that a 200 × 200 × 200 k-point mesh associated with a 100 × 100 × 100 q-point mesh achieves the best balance between
mobility convergence and computational efficiency and is employed to compute electron transport properties throughout this work. (C) Convergence test for
thermal conductivity of SnTe with respect to varying q-point mesh. We found that a 30 × 30 × 30 q-point mesh is sufficient to achieve converged lattice thermal
conductivity. The exact solution solving from linearized BTE is used to obtain more accurate lattice thermal conductivity since it has about 20% variation during
the iterations. The green and orange diamonds are the lattice thermal conductivities with consideration of ph-e scattering rates calculated by a 60 × 60 × 60
k-point mesh and a 30 × 30 × 30 k-point mesh, respectively.
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Fig. S3. Hole scattering rates arising from each phonon mode. (A) Energy-dependent hole scattering rates due to each acoustic mode. (B) Energy-dependent
hole scattering rates due to each optical mode.

Fig. S4. Ab initio normalized Lorenz number of SnTe at 300 K with respect to different carrier concentration. The Lorenz number has been normalized to the
standard value (L0 = 2.45 × 10−8 WΩ/K2). The normalized value of intrinsic SnTe is 4.34 and then rapidly approaches 0.87 as the carrier concentration increases.

Fig. S5. Electron MFP filtering effect for different types of band structures. (A) Enhancement ratio of power factor of the Dirac band with varying Fermi
velocity and e−1∞ − e−1s . The studied range is from 0.8vf to 1.2vf. (B) Enhancement ratio of power factor of the nonparabolic band with varying band non-
parabolicity and e−1∞ − e−1s . A and B, respectively, correspond to Fig. 4 B and C in the main text.
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Fig. S6. Carriers’MFPs limited by boundary scattering due to different characteristic lengths. (A and B) The variation of MFPs of (A) holes and (B) phonons. The
black dots represent bulk MFPs without boundary scattering. The green, red, and blue dots show the reductions of MFPs when the boundaries with char-
acteristic lengths lGB = 100 nm, 30 nm, and 10 nm are applied, respectively. The electron and phonon MFPs are calculated at 300 K and a p-type carrier
concentration of 1.0 × 1020 cm−3.

Liu et al. www.pnas.org/cgi/content/short/1715477115 6 of 6

www.pnas.org/cgi/content/short/1715477115

