
Supporting Information
Tai et al. 10.1073/pnas.1716887115
SI Materials and Methods
Optical Generation, Manipulation, and Two-Photon Photopolymerization.
The laser tweezers utilize an ytterbium-doped fiber laser (YLR-10-
1064; IPGPhotonics; operating at 1,064 nm) and a phase-only spatial
light modulator (SLM; P512-1064; Boulder Nonlinear Systems) with
512 × 512 pixels, each of size 15 × 15 μm (4, 26). The beam from
the laser is first reflected off the SLM, while slightly overfilling the
active area of the SLM, and then projected to the back aperture of
the objective. The computer-generated holograms are supplied to
the SLM by computer software at a rate of 15 Hz, ensuring real-
time manipulation. The holographic nature of the trapping system
enables generation of arbitrary 3D patterns of laser light with and
without phase singularities within the sample (25, 26), thereby
greatly enriching the laser-induced initial configurations that then
evolve into stabilized 3D solitons.
The two-photon photopolymerization setup is based on a Ti:

Sapphire oscillator (Chameleon Ultra II; Coherent) operating at
780 nm with 140-fs pulses at a repetition rate of 80 MHz, directed
to an IX-81 Olympus inverted microscope with a computer-
guided 3D nanopositioning stage (Nanocube P-611.3SF; Physik
Instrumente) and a computer-controlled fast shutter (model
LS3Z2, 200 Hz; Uniblitz) (26). The 3D nanopositioning stage is
operated by a LabView-based software to follow a predefined
path with nanometer precision. The fast shutter is also controlled
by the same LabView program to switch on or off the laser writing.
The two-photon photopolymerization setup enables photo-
polymerization of 3D patterns with submicrometer resolution,
which allows for fixing the far-field background of our solitons. In
this work, after the initial coaxial solitonic structures (Figs. 3A and
5A) were generated by the laser tweezers, cylindrical-wall exte-
rior to the soliton and pillars passing through the central axis of
the soliton were solidified by the means of two-photon photo-
polymerization. This was enabled by the partially polymerizable
nature of chiral LC mixtures within the initial homeotropic state
and allowed us to establish the patterned homeotropic boundary
conditions in the “outside-of-doughnut-like” exterior of solitons.
Fixing the average molecular alignment in this exterior-of-torus
region, which coincides with the north-pole preimage of an elementary
soliton, fixes the far-field n0. The laser power used for two-photon
photopolymerization was controlled within 20–35 mW and the pixel
dwell time was varied within 10–40 ms.

The 3D Nonlinear Optical Imaging.The nonlinear optical imaging of
n(r) within solitons was performed by using a three-photon ex-
citation fluorescence polarizing microscopy (3PEF-PM) set-up
built around an IX-81 Olympus inverted microscope (26). Mol-
ecules in the partially polymerizable chiral LC mixture were
excited via three-photon absorption by using a Ti-Sapphire os-
cillator (Chameleon Ultra II; Coherent) operating at 870 nm
with 140-fs pulses at a repetition rate of 80 MHz (26). The
fluorescence signal was epidetected by using a 417/60-nm
bandpass filter by a photomultiplier tube (H5784-20; Hama-
matsu). An oil-immersion 100× objective with NA = 1.4 was
used. Imaging artifacts such as beam defocusing and polarization
changes due to the birefringence of the partially polymerizable
chiral LC were mitigated by using the LCs, such as AMLC-
0010 with the relatively low birefringence (Δn = 0.08; Table S2),
as the nematic host of the mixture for both LC and ferromag-
netic host medium of the solitons. The polarization state of the
excitation beam was controlled by using a polarizer and a ro-
tatable half-wave retardation plate or a quarter-wave retarda-
tion plate. The detection channel utilized no polarizers. The

3PEF-PM intensity scales as cos6β, where β is the angle between
n(r) and the polarization of the excitation beam (4, 26). The 3D
3PEF-PM images for different polarizations of the excitation
light were obtained by scanning the excitation beam through the
sample volume and recording the fluorescence intensity as a
function of scanning coordinates. The images were then post-
processed by background subtraction, depth-dependent intensity
normalization, and contrast enhancement. For a given linear
polarization of the beam, each 3PEF-PM image yielded pre-
images of two antipodal points on the equator of S2 for a vector
field, or a preimage of a single point on S

2/Z2 for a director field,
due to the nonpolar response of molecules in LC to the excita-
tion. For a vector field, the preimages were then assigned to n
or −n on the basis of response to the external magnetic field and
by comparing the experimental preimages to preimages obtained
in numerical modeling. Computer simulations of the 3PEF-PM
images were based on the ∝cos6β dependence of the fluores-
cence image intensity on the molecular director orientation
relative to the linear polarization direction of the excitation light.
The 3D nonlinear optical imaging is supplemented by the

conventional polarizing optical microscopy (POM) in the trans-
mission mode by using the same multimodal imaging setup built
around the IX-81 Olympus inverted microscope and a charge-
coupled device camera (Flea; PointGrey). The integration of
nonlinear optical imaging modality, POM modality, laser twee-
zers, and two-photon photopolymerization capabilities in the
same multimodal optical setup allows for fully optical generation,
control, and nondestructive imaging of the topological solitons.
The POM images were computer-simulated based on the Jones
matrix approach (4, 25) and by using the birefringence of the
AMLC-0010 nematic host (Table S2).

Numerical Modeling. For chiral nematic LCs with helical pitch p,
the Frank–Oseen free-energy functional describing the energetic
cost of spatial deformations of n(r) reads
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where q0 = 2π/p characterizes the LC chirality and the Frank
elastic constants K11, K22, K33, and K24 describe the energetic
costs of splay, twist, bend, and saddle-splay deformations, respec-
tively. The surface energy is not included by assuming strong
boundary conditions on the surfaces, which is consistent with
experiments. When an external electric field is applied, addi-
tional coupling terms in the free energy need to be included
due to the dielectric properties of the LCs, so that Eq. S1 is
supplemented with the corresponding electric field coupling
term,
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where E is the applied electric field, D is the electric displace-
ment field in the dielectric LC medium, and e

=
is the dielectric

tensor with components eij = e0ðe⊥δij +ΔeninjÞ, where e0 is the
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vacuum permittivity and dielectric constants and anisotropy of
the used materials are provided in Table S2.
For chiral ferromagnetic LC colloids (CFLCCs) with intrinsic

helicoidal pitch p and mðrÞ=MðrÞ=jMðrÞj unit vector field de-
scribing the coupled molecular alignment and magnetization
fields, the free energy reads (5–8)
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where again q0 = 2π/p characterizes the intrinsic chirality of the
CFLCC, m=M=jMj is the magnetization unit vector, and K11,
K22, K33, and K24 are the Frank elastic constants (5–8). The
coupling between the molecular alignment and magnetization
fields is considered being infinitely strong, since only weak or
no external magnetic fields are applied in this work (8). When
external magnetic fields are present, we supplement the free
energy of the CFLCC system in Eq. S3 with the coupling term
between the magnetic field H and the magnetization M

Fmagnetic =−μ0
Z

d3rðH ·MÞ, [S4]

while disregarding the higher-order diamagnetic coupling term.
In CFLCCs, the magnetization M is determined by both the
average dipole moment of the ferromagnetic nanoplatelets and
the platelet concentration in the nematic LC host. We set in
simulations the dipole moment to be 1.2 × 10−17 A·m2 and the
platelet concentration to be 10 μm−3, based on the values used in
experiments (5, 6, 8).
For topological solitons to be considered stable in chiral LCs

and CFLCCs at various applied fields, the field configurations
need to emerge as local or global minima of the free energy given
by Eqs. S1–S4, respectively. Numerical modeling of the energy-
minimizing n(r) and m(r) structures is performed by using a
variational-method-based relaxation routine (4, 8, 25, 26). For
example, in the case of n(r), at each iteration of the numerical
simulation, n(r) is updated based on an update formula derived
from the Lagrange equation of the system, nnewi = noldi −MSTS

2 ½F�ni,
where the subscript i denotes spatial coordinates, ½F�ni denotes the
functional derivative of F with respect to ni, and MSTS is the
maximum stable time step in the minimization routine, deter-
mined by the values of elastic constants and the spacing of the
computational grid (25). The steady-state stopping condition is
determined by monitoring the change in the spatially averaged
functional derivatives over iterations. When this value approaches
zero, the system is implied to be in a state corresponding to the
energy minimum, and the relaxation routine is terminated.
The Frank elastic constants adopted in the numerical modeling

are based on values for the two nematic hosts used in this study
(Table S2) (4, 8, 25, 26). The saddle-splay elastic constant K24
was assumed to be zero (4, 25). The 3D spatial discretization is
performed on large 3D square-periodic grids, the 128 × 128 ×
32 and 90 × 90 × 43 grids, and the spatial derivatives are cal-
culated by using finite difference methods with second-order
accuracies, allowing us to minimize discretization-related arti-
facts in modeling of the structures of the solitons. The grid

spacing is set to be 1 μm in all mutually orthogonal directions, so
that the cell thickness d values are either 32 or 43 μm. Cylin-
drically patterned boundary conditions are set by enforcing
perpendicular alignment on the top and bottom substrates, as
well as in the region exterior to the cylindrical wall enclosing the
soliton, fixing the far field n0 = (0,0,1) or m0 = (0,0,1). To help
stabilize solitons, a pillar-like region along the central axis can
also be fixed to align director or magnetization along the far
field, producing “doughnut-like” patterned boundary conditions.
Both the analytical ansatz configurations (24) and manipulations
of the stabilized configurations of the analytical ansatz are used
as initial conditions. To construct a preimage of a point on S

2

within the 3D volume of the static topological solitons, we cal-
culate a scalar field defined as the difference between the soli-
tonic field n(r) and a unit vector defined by the target point on
S
2. The preimage is then visualized with the help of the iso-

surfaces of a small value in this ensuing scalar field (4, 8). The
freely available software KnotPlot (www.knotplot.com) is used
for simplifying and visualizing linking of preimages.

Determination and Switching of Hopf Indices of Topological Solitons.
The Hopf index Q of a 3D topological soliton, the topological
generalization of the Skyrmion winding number in 2D (9), has a
geometrical interpretation as the linking number of the pre-
images. In general, the preimage of a point on S

2 is a collection
of closed loops in R

3. Two preimages of any two distinct points
on S

2 are linked exactly Q times, where Q is the Hopf index. By
choosing the circulation of the preimage of the north pole on S2 to
be along the vectorized far-field n0 or M0 through the center of the
topological solitons, we consistently define the circulations of all
other preimages by smoothly moving away from the north pole and
exploring S

2. The linking number of preimages is then defined as
half the total number of crossings (9), with the sign of each crossing
defined by the convention based on the right-hand rule. Within this
procedure, by flattening the right hand, we extend the fingers in the
direction along the circulation of one preimage with the palm facing
the other. The sign of the crossing is then positive if the circulation
of the other preimage and the thumb’s direction point toward the
same side with respect to the first preimage, and negative otherwise.
The values of Q at all applied fields determined via this approach
are consistent with the ones obtained via numerical integration
(Table S1), as described below. Electric switching of Q of the to-
pological solitons was achieved by applying voltages to transparent
indium tin oxide electrodes of glass cells using a function generator
(DS345; Stanford Research Systems) with sinusoidal output oper-
ated at 1 kHz.
The Hopf index Q is also computed by integrating a topological

charge density in either S3 or R3 according to Eq. 1 (20–24). By
defining bi ≡ eijkFjk, one gets bi = eijkð∂jAk −∂kAjÞ=2= eijk∂jAk,
and A can be understood as the vector potential of the vector field
b, since b=∇×A, andQ can be rewritten asQ= 1=64π2

R
d3rb ·A.

After calculating b from the unit vector field n(r), the vector
potential A can be obtained by numerically solving the differential
equation b=∇×A, or constructed by the direct integration of b
(24). The latter method is briefly described as follows. By picking a
convenient gauge such that Az = 0, we integrated Ax and Ay from
bx =−∂zAy and by = ∂zAx. The integration constants were then
determined by assuring bz = ∂xAy −∂yAx. The values reported in
(Table S1 are based on the method of a direct integration. Before
the numerical integration to obtain the Hopf index, the numerical
solitonic field configurations were interpolated on a grid 10 times
finer than the original grid, for which the free-energy minimization
was performed, which was needed to achieve the numerical pre-
cision of Hopf index values presented in Table S1.
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Fig. S1. Electric switching from Q = 0 to Q = −1 (additional details for Fig. 5). (A–C) Computer-simulated cross-sections of the solitons stabilized at different U
in the plane orthogonal to n0 (Upper) and in the vertical plane containing n0 (Lower). (D–H) The 3D preimages in R3 of points on S2 shown as cones in Upper
Right Insets. (D and F correspond to the solitons shown in A and C, respectively, while E, G, and H correspond to B). Lower Right Insets show the schematics of
the linking of preimages, with the signs of the crossings marked in red. Arrows on preimages represent their consistently determined circulations. In D,
preimages of distinct points on S2 form a pair of Hopf links with linking numbers +1 and −1, yielding a net linking number 0. In E, G, and H, a preimage can be
a single loop (01) or a pair of unlinked closed-loops (021), depending on the location of the corresponding point on S2, with the subspaces separated by a critical
polar angle θc = 67.5°. For all combinations of distinct points on S2, the net linking number is 0. In F, a preimage is a single loop and the linking number is −1 for
all pairs of distinct preimages. (I) Critical polar angle θc and Hopf index Q of the soliton vs. U. The regions with Q = 0 and Q = −1 are shown using different
background colors and labeled respectively. Note the abrupt transitions in θc at U = 0.3 V and at U = 2.8 V, as well as the discontinuous Q-changing transition
from Q = 0 to Q = −1 at U = 2.9 V. Schematics of preimage linking within each voltage range are shown as Insets. Computer simulations were performed for
elastic constants of AMLC-0010 and d/p = 1.35.
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Fig. S2. Comparison of experimental and computer-simulated optical images of solitons shown in Fig. 5. The images in Left are obtained experimentally, and
those in Right are computer-simulated. (A–C) Polarizing optical micrographs of solitons corresponding to Fig. 5 A–C, respectively. (D–L) Cross-sectional non-
linear optical images of solitons corresponding to structures in Fig. 5A in the case of D, G, and J, to configurations in Fig. 5B in the case of E, H, and K, and Fig.
5C in the case of F, I, and L. Upper images are midplane cross-sections orthogonal to n0, and Lower images are cross-sections parallel to n0 and passing through
the central axes of the solitons. The polarization states of excitation light are linear in D–I, as marked in Upper Right of the experimental images, and are
circular in J–L. Note that since the field topologies of the soliton in Figs. 3C and 5C are similar, the experimental images in F, I, and L are the same as the images
shown in Fig. 4 F–L. The experiments were performed by using the partially polymerizable mixture based on AMLC-0010 confined in a glass cell with d/p ∼ 1.35.
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Fig. S3. Preimages of the Q = −2 soliton with broken axial symmetry (additional details for Fig. 6). (A) Cross-sections of the field configuration of the soliton in
the x–y plane orthogonal to n0 (Upper) and in the x–z plane parallel to n0 passing through the soliton’s center (Lower). (B) The ground-state manifold S2 is
divided into three subspaces (I, II, and III), with preimages of points in each subspace pictured in Lower and the boundaries between subspaces shown by using
black lines. (C) The stereographic projection of the northern hemisphere of the preimage topology map on S2. (D) Reconstructed 3D preimages of pairs of
distinct points with their corresponding subspaces on S2 (I, II, and III) identified. Upper Right Insets show the points on S2 as cones corresponding to the
preimages, and Lower Right Insets show the simplified schematics of the link of preimages. Computer simulations are performed for the material parameters
of AMLC-0010 and d/p = 1.5, fixed boundary conditions for the north-pole far-field preimage and U = 4.0 V.
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Fig. S4. Details of field-controlled structures and preimages of solitons shown in Fig. 7. (A, B, F, G, and K–M) Computer-simulated cross-sections in the plane
parallel to M0 of the solitons stabilized at different applied fields. The strength of applied field μ0H and θc (if present) are indicated in the top left. Note that
the field configurations of these solitons are all axially symmetric. (C, D, E, H–J, and N–P) Computer-reconstructed 3D preimages in R3 of points on S2 shown as
cones in respective Upper Right Insets. The simplified schematics of the linking of preimages are shown in Lower Right Insets. In A and B, the Q = 0 solitons with
complex linking of preimages are stabilized at μ0H = 0 and μ0H = −6.5 mT with θc = 73.5° and θc = 0°, respectively. The preimages reconstructed in C–E
correspond to the soliton pictured in A, for which the individual preimages form a Hopf link (221) in the case of S2 point at θ < θc and two separate unlinked
loops (021) for S

2 points at θ > θc. For all combinations of preimages of distinct points on S2, the total linking number is 0, even though the behavior of in-
dividual preimages is characterized by two subspaces on S2. The θc boundary lines are shown as black circles on S2 in corresponding Insets. In F and G, the so-
called “3π torons” with 3π twist from the central axis to periphery (4) are stabilized at μ0H = 4.4 mT and μ0H = 5.1 mT, with the subspace boundary lines at θc =
52° and θc = 14°, respectively. The two regions of discontinuity in each field configuration are the hyperbolic point defects marked as filled black stars, at which
some of the preimages terminate and M(r) is discontinuous. Each preimage in H–J of the 3π-toron in F is composed of a single closed loop and a half-loop band
terminating on the singular point defects. They are linked depending on the subspace of S2 that they correspond to. In K and L, elementary hopfions with
Q = −1 are stabilized at μ0H = −8.5 mT and μ0H = 5.3 mT, respectively. The preimages of two distinct points shown in N and O form Hopf links with linking
numbers of −1. In M, an elementary toron (4, 25) is stabilized at μ0H = 5.6 mT, and preimages form bands terminating on the two hyperbolic point defects, as
shown in P. Computer simulations were performed for the material parameters of ZLI-2806, d/p = 2.7, and fixed boundary conditions along M0, both at the
confining substrates and in the far-field exterior of the localized structures.
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Table S1. Linking graph diagrams and Hopf indices Q of the studied topological solitons

In the diagrams for solitons in the vector fields, colored filled circles represent closed-loop preimages of two distinct points on S2, with the colors indicative
of the points on S2. The red (black) lines indicate positive (negative) signs of linking between closed loops determined by circulations. The linking between
closed loops that each belong to the same preimage are indicated by dashed lines and is not counted toward the linking number between distinct preimages. In the
diagrams for solitons in the director fields, closed loops represented by filled circles that belong to the same preimage are grouped, with the corresponding subspace of
the point on S2 indicated if boundary lines are present. The Q values determined as the preimage linking numbers and via numerical integration using Eq. 1 for
vectorized n(r) and M(r) agree up to the numerical error.
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Movie S1. Individual preimages and linking of preimages of pairs of points within different subspaces of S2 for a Q = −2 complex Hopf soliton depicted in Fig.
3B. Right Inset shows the S2 order parameter space with the circle-like boundary line at θc and the points corresponding to preimages shown using cones of
corresponding colors. Left Inset shows the simplified schematics of preimages.

Movie S1

Table S2. Material parameters

Nematic LC host K11 (pN) K22 (pN) K33 (pN) ek e⊥ Δe Δn ξ ofCB-15(μm−1) ξ of ZLI-811(μm−1)

AMLC-0010 17.2 7.5 17.9 3.4 7.1 −3.7 0.08 — 10.47
ZLI-2806 14.9 7.9 15.4 3.3 8.1 −4.8 0.04 5.9 —

The table lists elastic and dielectric constants, optical and dielectric anisotropy values of the used nematic LC hosts, and helical twisting
power ξ of the used chiral additives when doped into these nematic hosts. These experimentally determined (4, 8, 25, 26) material parameters
were utilized in numerical modeling.

Movie S2. Experimental POM video shows a Q = −2 soliton first transforming while retaining Q = −2 and then discontinuously transitioning into a Q = −1
soliton. The black double arrows show the crossed polarizer and analyzer. The applied voltage is indicated in the upper left corner. The values of Q are shown
in the upper right corner.

Movie S2
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Movie S3. Individual preimages and linking of preimages of pairs of points in different subspaces on S2 for aQ = 0 composite soliton depicted in Fig. 5B. Right
Inset shows the S2 order parameter space with the circle-like boundary line at θc and the points corresponding to preimages shown using cones of corre-
sponding colors. Left Inset shows the simplified schematics of preimages.

Movie S3

Movie S4. Individual preimages and linking of preimages of pairs of points in different subspaces on S2 for a Q = 0 composite soliton depicted in Fig. 7A.
Right Inset shows the S2 order parameter space with the circle-like boundary line at θc and the points corresponding to preimages shown using cones of
corresponding colors. Left Inset shows the simplified schematics of preimages.

Movie S4
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