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S1. Proof of Theorem 1.1

Preliminaries. To prove Theorem 1.1, we will require the notion of a contraction mapping:
Definition S1.1 (Contraction Mapping). Let X be a metric space with associated distance metric d. Then a mapping

F : X ‘æ X is called a contraction mapping if it satisfies for some 0 Æ “ < 1:

d(F (x), F (y)) Æ “d(x, y).
Contraction mappings are known to have the following properties:
Theorem S1.2 (Contraction Mapping Theorem (34)). Let F : X ‘æ X be a contraction mapping. The F has a unique fixed

point xú
satisfying F (xú) = xú

. Furthermore, the sequence xn+1

= F (xn) (with x
0

arbitrarily initialized) satisfies xn æ xú
.

We will write the Eigenvector Smoothing iterations Eq. (3)-Eq. (5) in terms of an operator G = (G
1

, . . . , GT ), given by:
G

1

(Ū
1

, . . . , ŪT ) = �K(U
1

+ –Ū
2

) [S1]
Gt(Ū1

, . . . , ŪT ) = �K(Ut + –Ūt≠1

+ –Ūt+1

), t = 2, . . . , T [S2]
GT (Ū

1

, . . . , ŪT ) = �K(UT + –ŪT ≠1

), [S3]

so that Eq. (3)-Eq. (5) can be written as Ū
(¸+1)

1:T = G(Ū (¸)

1:T ), where we have abbreviated Ū
1:T © (Ū

1

, . . . , ŪT ). Our proof will
use the following properties of G:
Lemma S1.3. A necessary condition for Ūú

1

, . . . , Ūú
T to be a global minimum of the optimization problem Eq. (2) is that

Ūú
1:T = G(Ūú

1:T ).
Lemma S1.4. For – < 1

4

Ô
2+2

, the mapping G is a contraction mapping.

The proof of Lemma S1.4 will use the Davis-Kahan Theorem:
Theorem S1.5 (Davis and Kahan, (6, 21)). Let �, �Õ

be symmetric, suppose S µ R is an interval, and suppose for some

positive integer K that V , V Õ œ Rn◊K
, and the columns of V (V Õ

) form an orthonormal basis for the sum of eigenspaces of

� (�Õ
) associated with the eigenvalues of � (�Õ

) in S. Let ” be the minimum of distance between any eigenvalues of � in S
between any eigenvalues of � not in S. Then there exists an orthogonal matrix R œ RK◊K

such that

||V R ≠ V Õ||F Æ
Ô

2
”

||� ≠ �Õ||F . [S4]

Proof of Theorem. The proof of Theorem 1.1 is as follows:

Proof of Theorem 1.1. Eq. (2) must have a global minimum, since its feasible region is bounded and its objective function is
bounded from below by 0. By Lemma S1.3, the global minimum of Eq. (2) must be a fixed point of G. By Lemma S1.4, G is a
contraction mapping, and hence by Theorem S1.2 it has a unique fixed point. It follows that the unique fixed point of G is the
global minimum of Eq. (2).

Since the Eigenvector Smoothing iterations are Ū
(¸+1)

1:T = G(Ū (¸)

1:T ), Lemma S1.4 and Theorem S1.2 imply that Ū
(¸)

1:T converges
to the fixed point of G as ¸ æ Œ. Thus, Ū

(¸)

1:T converges to the global minimum of Eq. (2), proving the theorem.
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Proof of Lemmas S1.3 and S1.4. The proof of Lemmas S1.3 and S1.4 are as follows:

Proof of Lemma S1.3. Let V = {V œ Rn◊K : V T V = I}, so that U = {V V T : V œ V} denotes the feasible region of each Ūt in
Eq. (2). A necessary condition for Ūú

1:T to be the global minimum of Eq. (2) is that each Ūú
t for must minimize the objective

when the other variables are held constant:

Ūú
1

= arg min
¯U1œU

ÎU
1

≠ Ū
1

Î2

F + –ÎŪ
1

≠ Ūú
2

Î2

F [S5]

Ūú
t = arg min

¯UtœU
ÎUt ≠ ŪtÎ2

F + –ÎŪt ≠ Ūú
t+1

Î2

F + –ÎŪú
t≠1

≠ ŪtÎ2

F , t = 2, . . . , T ≠ 1 [S6]

ŪT = arg min
¯UT œU

ÎUt ≠ ŪT Î2

F + –ÎŪú
T ≠1

≠ ŪT Î2

F . [S7]

To prove the lemma, it thus su�ces to show this condition is equivalent to Ūú
t = Gt(Ūú

1:T ) for t = 1, . . . , T .
Using the identity ÎMÎ2

F = Tr(MT M) and the fact that ÎUÎ2

F = K for all U œ U , algebraic manipulation of Eq. (S6) yields

Ūú
t = arg max

¯UtœU
Tr(ŪT

t Ut) + – Tr(ŪT
t Ūú

t+1

) + – Tr(ŪT
t Ūú

t≠1

)

= arg max
¯UtœU

Tr(ŪT
t (Ut + –Ūú

t+1

+ –Ūú
t≠1

)), [S8]

Since Ūú
t œ U , we can let Ūú

t = V̄ úV̄ T ú for some V̄ œ V, so that Eq. (S8) implies

V̄ ú = arg max
¯V œV

Tr(V̄ T (Ut + –Ūú
t+1

+ –Ūú
t≠1

)V̄ )

= EigvecK(Ut + –Ūú
t+1

+ –Ūú
t≠1

) [S9]

where EigvecK denotes the n ◊ K matrix in V whose columns are the first K eigenvectors. Here we have used the fact that
Ut, Ūú

t+1

, and Ūú
t≠1

are positive semidefinite matrices. Eq. (S9) implies that

Ūú
t = �K(Ut + –Ūú

t+1

+ –Ūú
t≠1

)
= Gt

!
Ūú

1:T

"

for t = 2, . . . , T ≠ 1. Analogous arguments, using Eq. (S5) and Eq. (S7) instead of Eq. (S6), show the same for t = 1 and t = T .

Proof of Lemma S1.4. Given Ū
1:T and Ū Õ

1:T , let �t and �Õ
t denote the matrices

�
1

= U
1

+ –Ū
2

and �Õ
1

= U
1

+ –Ū Õ
2

�t = Ut + –Ūt≠1

+ –Ūt+1

and �Õ
t = Ut + –Ū Õ

t≠1

+ –Ū Õ
t+1

, t = 2, . . . , T ≠ 1
�T = UT + –ŪT ≠1

and �Õ
T = UT + –Ū Õ

T ≠1

,

so that Gt(Ū1:T ) = �K(�t).
Let Vt and V Õ

t denote orthonormal bases for the first K eigenvectors of �t and �Õ
t, respectively. The following chain of

equations can be seen to hold for t = 2, . . . , T ≠ 1:

ÎGt(Ū1:T ) ≠ Gt(Ū Õ
1:T )ÎF = Î�K(�t) ≠ �K(�Õ

t)ÎF

1= ÎVtRRT V T
t ≠ V Õ

t V ÕT
t ÎF

= Î(VtR ≠ V Õ
t )RT V T

t + V Õ
t (VtR ≠ V Õ

t )T ÎF

Æ Î(VtR ≠ V Õ
t )RT V T

t Î + ÎV Õ
t (VtR ≠ V Õ

t )T ÎF

2= Î(VtR ≠ V Õ
t )RT ÎF + ÎVtR ≠ V Õ

t ÎF

= 2ÎVtR ≠ V Õ
t ÎF

3
Æ 2

Ô
2

”
Î�t ≠ �Õ

tÎF

= 2
Ô

2
”

–ÎŪt≠1

+ Ūt+1

≠ Ū Õ
t≠1

≠ Ū Õ
t+1

ÎF

Æ 2
Ô

2
”

–(ÎŪt≠1

≠ Ū Õ
t≠1

ÎF + ÎŪt+1

≠ Ū Õ
t+1

ÎF )

4
Æ 2

Ô
2

1 ≠ 2–
–(ÎŪt≠1

≠ Ū Õ
t≠1

ÎF + ÎŪt+1

≠ Ū Õ
t+1

ÎF ) [S10]

where we have used the following steps:
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1 : Let R œ RK◊K satisfy RRT = I. (R will satisfy additional conditions in 3 below).
2 : This step holds because ÎMT V T Î2

F = Tr(MT V T V M) = ÎMÎ2

F for any V œ V.
3 : This is the Davis-Kahan theorem. ” is the di�erence between the Kth and (K + 1)th eigenvalues for �t.
4 : Given U

1

, U
2

, U
3

œ U (where U is defined in the proof of Lemma S1.3), it holds (by Weyl’s inequality) that the
Kth eigenvalue of U

1

+ –(U
2

+ U
3

) is at least 1, and the (K + 1)th eigenvalue is at most 2–. As a result, ” Ø 1 ≠ 2–.

By analogous arguments, a similar condition holds for t = 1 and t = T :

ÎG
1

(Ū
1:T ) ≠ G

1

(Ū Õ
1:T )ÎF Æ 2

Ô
2

1 ≠ 2–
–ÎŪ

2

≠ Ū Õ
2

ÎF [S11]

ÎGT (Ū
1:T ) ≠ GT (Ū Õ

1:T )ÎF Æ 2
Ô

2
1 ≠ 2–

–ÎŪT ≠1

≠ Ū Õ
T ≠1

ÎF . [S12]

Summing Eq. (S10)-Eq. (S12) over t = 1, . . . , T yields

Tÿ

t=1

ÎFt(Ū1:T ) ≠ Ft(Ū Õ
1:T )ÎF Æ 4

Ô
2–

1 ≠ 2–

A
Tÿ

t=1

ÎŪt ≠ Ū Õ
tÎF

B
,

establishing that when 4

Ô
2–

1≠2– < 1, then F is a contraction with metric d(Ū
1:T , Ū Õ

1:T ) =
qT

t=1

ÎŪt ≠ Ū Õ
tÎF .

S2. Derivation of Eq. (2) as Relaxation of Smoothed K-means Clustering

Preliminaries. Let z œ [K]n and zÕ œ [KÕ]n denote cluster assignment vectors with K and KÕ clusters respectively. Let nab, na

and nÕ
b for a œ [K] and b œ [KÕ] denote class counts in z and zÕ as given by

nab =
nÿ

i=1

1{zi = a, zÕ
i = b}, na =

nÿ

i=1

1{zi = a}, nÕ
b =

nÿ

i=1

1{zÕ
i = b}.

The chi-squared distance between two partitions z and zÕ is defined in (27, 28) to be

�(z, zÕ) = K + KÕ

2 ≠ ‰2(z, zÕ),

where ‰2(z, zÕ) is defined to be

‰2(z, zÕ) =
ÿ

aœ[K]

ÿ

bœ[KÕ
]

n2

ab

nanÕ
b

.

Given data points xi œ Rd for i = 1, . . . , n, and cluster labels z œ [K]n, let µ
1

, . . . , µK œ Rd denote the cluster means given by

µk = 1
nk

ÿ

i:zi=k

xi, k = 1, . . . , K,

The K-means objective function is given by

K-means(z) =
nÿ

i=1

Îxi ≠ µzi Î2.

Given z œ [K] and zÕ œ [KÕ], let Z œ {0, 1}n◊K and ZÕ œ {0, 1}n◊KÕ denote normalized indicator matrices given by

Zia = 1Ô
na

1{zi = a} and ZÕ
ib = 1

nÕ
b

1{zÕ
i = b},

observing that ZT Z = ZÕT ZÕ = I.
Lemmas S2.1 and S2.2 are well-known (17, 28), and give alternative expressions for the K-means objective and chi-squared

distance, as functions of Z and ZÕ instead of z and zÕ:

Lemma S2.1. Let X œ Rn◊n
be given by Xij = xT

i xj. It holds that

K-means(z) =
nÿ

i=1

ÎxiÎ2 ≠ Tr(X, ZZT ).

Lemma S2.2. It holds that

ÎZZT ≠ ZÕZÕT Î2

F = 2�(z, zÕ).

Plugging Lemmas S2.1 and S2.2 into Eq. (6) gives the following identity:
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Lemma S2.3. The smoothed K-means objective function given by Eq. (6),

min
{µtk},{zt}

Tÿ

t=1

nÿ

i=1

Îxti ≠ µt,zt(i)

Î2 + –

2

T ≠1ÿ

i=1

�(zt, zt+1

),

is equivalent to

min
Z1,...,ZT

Tÿ

t=1

(≠ Tr(Xt, ZtZ
T
t )) + –

2

T ≠1ÿ

t=1

ÎZtZ
T
t ≠ Zt+1

ZT
t+1

Î2

F ,

where Xt œ Rn◊n
denotes the gram matrix [Xt]ij = xT

tixtj, and Zt œ Rn◊n
denotes the normalized indicator matrix of zt, so

that [Zt]ik = n
≠1/2

tk 1{zti = k}, where ntk =
qn

i=1

1{zti = k}.

Eq. (2) is Relaxation of Eq. (6). Similar to results found in (17, 28), here we show that Eq. (2) is a relaxation of Eq. (6). By
Lemma S2.3, the smoothed K-means objective given by Eq. (6) can be written as

min
Z1,...,ZT œZ

Tÿ

t=1

(≠ Tr(Xt, ZtZ
T
t )) + –

2

T ≠1ÿ

t=1

ÎZtZ
T
t ≠ Zt+1

ZT
t+1

Î2

F ,

where Z denotes the set of normalized indicator matrices inducible by some z œ [K]n. This is a di�cult combinatorial problem.
Since ZT Z = I for all Z œ Z, a relaxation is to remove the constraint Z

1

, . . . , ZT œ Z and instead require Z
1

, . . . , ZT œ V,
where V = {V œ Rn◊K : V T V = I}. This results in the relaxed optimization problem

min
V1,...,VT œV

Tÿ

t=1

(≠ Tr(Xt, VtV
T

t )) + –

2

T ≠1ÿ

t=1

ÎVtV
T

t ≠ Vt+1

V T
t+1

Î2

F ,

where V
1

, . . . , VT denotes the relaxed optimization variable. Letting Ūt = VtV
T

t , this is equivalent to optimizing Eq. (2),

min
¯U1,..., ¯UT œU

1
2

Tÿ

t=1

ÎXt ≠ ŪtÎ2

F + –

2

T ≠1ÿ

t=1

ÎŪt ≠ Ūt+1

Î2

F ,

where U = {V V T : V œ V}, and we have used the identity 2 Tr(Xt, Ūt) = ÎXt ≠ ŪtÎ2

F ≠ ÎXtÎ2

F ≠ ÎŪT Î2

F and the fact that
ÎŪtÎ2

F = K for all Ūt œ U .

Proof of Lemmas S2.1, S2.2, and S2.3. These proofs follow closely (17) and (28), and are included for self-completeness.

Proof of Lemma S2.1. It holds that

K-means(z) =
nÿ

i=1

Îxi ≠ µzi Î2

=
nÿ

i=1

!
ÎxiÎ2 ≠ 2xT

i µzi + ÎµiÎ2

"

=
nÿ

i=1

ÎxiÎ2 ≠ 2
Kÿ

k=1

nkµT
k µk +

Kÿ

k=1

nkÎµkÎ2

=
nÿ

i=1

ÎxiÎ2 ≠
Kÿ

k=1

nkÎµkÎ2

=
nÿ

i=1

ÎxiÎ2 ≠
Kÿ

k=1

Q

a 1
nk

ÿ

i:zi=k

ÿ

j:zj =k

xT
i xj

R

b

=
nÿ

i=1

ÎxiÎ2 ≠
Kÿ

k=1

Q

a 1
nk

ÿ

i:zi=k

ÿ

j:zj =k

Xij

R

b

=
nÿ

i=1

ÎxiÎ2 ≠ Tr(X, ZZT )

where the third and fifth equalities use the identity that µk = 1

nk

q
i:zi=k

xi, and the final equality uses the fact that [ZZT ]ij

is given by
[ZZT ]ij = 1

nzi

1{zi = zj}.
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Proof of Lemma S2.2. It can be seen that ÎZZT ≠ ZÕZÕT Î2

F equals

ÎZZT ≠ ZÕZÕT Î2

F = ÎZZT Î2

F ≠ 2 Tr
!
ZZT ZÕZÕT "

+ ÎZÕZÕT Î2

F

= K ≠ 2
ÿ

aœ[K]

ÿ

bœ[KÕ
]

n2

ab

nanÕ
b

+ KÕ

= 2�(z, zÕ),

where we have used the identities

ÎZZT Î2

F =
nÿ

i=1

nÿ

j=1

[ZZT ]2ij

=
nÿ

i=1

nÿ

j=1

1
n2

zi

1{zi = zj}

= K,

and

Tr(ZZT ZÕZÕT ) = Tr(ZT ZÕZÕT Z)
= ÎZT ZÕÎ2

F

=
ÿ

aœ[K]

ÿ

bœ[KÕ
]

n2

ab

nanÕ
b

.

Proof of Lemma S2.3. Use Lemmas S2.1 and S2.2 to rewrite the terms appearing in Eq. (6).

S3. Convergence and Relaxations Results for Laplacian Smoothing

Convergence Result. Let ⁄t,1 Ø · · · Ø ⁄t,n Ø 0 denote the eigenvalues of the matrix |Lt|, and let ”|Lt| = ⁄t,K ≠ ⁄t,K+1

denote
the gap between the Kth and (K + 1)th eigenvalues of |Lt|. Let ”

min

= mint ”|Lt|.
Theorem S3.1 states that the Laplacian smoothing iterations given by Eq. (7)-Eq. (9) converge to the global minimum of

Eq. (10), provided that – is not too large compared to ”
min

.

Theorem S3.1. For – < ”min
4

Ô
2+2

, the iterations Eq. (7)-Eq. (9) converge to the global minimizer of Eq. (10), under any feasible

initialization

A proof sketch is included at the end of this section.

Eq. (10) as Relaxation of Smoothed K-means Clustering. Let xti denote the ith row of the square root of |Lt| (i.e., the
eigencoordinates scaled by the square root of their eigenvalues), so that the gram matrix Xt is equal to |Lt|. The arguments of
Section S2 make no assumptions on {xti}, and imply that

1. By Lemma S2.3 the smoothed K-means problem

min
{µtk},{zt}

Tÿ

t=1

nÿ

i=1

Îxti ≠ µt,zt(i)

Î2 + –

2

T ≠1ÿ

t=1

�(zt, zt+1

),

can be written as

min
Z1,...,ZT œZ

Tÿ

t=1

(≠ Tr(|Lt|, ZtZ
T
t )) + –

2

T ≠1ÿ

t=1

ÎZtZ
T
t ≠ Zt+1

ZT
t+1

Î2

F ,

where Z denotes the set of normalized indicator matrices inducible by some z œ [K]n.

2. This problem can be relaxed in the same manner as Section S2, by replacing the constraint Z
1

, . . . , ZT œ Z with
Z

1

, . . . , ZT œ V, where V = {V œ Rn◊K : V T V = I}. This yields the optimization problem given by Eq. (10),

min
¯U1,..., ¯UT œU

Tÿ

t=1

Î|Lt| ≠ ŪtÎ2

F + –

T ≠1ÿ

t=1

ÎŪt ≠ Ūt+1

Î2

F ,

where U = {V V T : V œ V}.
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Proof Sketch of Theorem S3.1. The Laplacian Smoothing iterations Eq. (7)-Eq. (9) can be written as an operator H =
(H

1

, . . . , HT ) very similar to G:

H
1

(Ū
1

, . . . , ŪT ) = �K(|L
1

| + –Ū
2

)
Ht(Ū1

, . . . , ŪT ) = �K(|Lt| + –Ūt≠1

+ –Ūt+1

), t = 2, . . . , T

HT (Ū
1

, . . . , ŪT ) = �K(|LT | + –ŪT ≠1

),

for which analogous versions of Lemma S1.3 and S1.4 can be shown to hold:

Lemma S3.2. A necessary condition for Ūú
1:T to be a local minimum of Eq. (10) is that Ūú

1:T = H(Ūú
1:T ).

Lemma S3.3. For – < ”min
4

Ô
2+2

, the mapping H is a contraction mapping.

Proof Sketch of Theorem S3.1. Theorem S3.1 follows from identical arguments as that of Theorem 1.1, except that we use the
results of Lemmas S3.2 and S3.3 in place of Lemmas S1.3 and S1.4.

Proof Sketch of Lemma S3.2. The proof of Lemma S3.2 is identical to Lemma S1.3, except that we write |Lt| wherever the
term Ut appears.

Proof Sketch of Lemma S3.3. The proof of Lemma S3.3 is nearly identical to that of Lemma S1.4. Aside from writing |Lt| in
place of Ut, step 4 must be changed to:

4 : To bound ”, the Kth eigengap of �t = |Lt| + –Ūt≠1

+ –Ūt+1

, we observe that the Kth eigenvalue of �t is at least
⁄t,K , and the (K + 1)th eigenvalue is at most ⁄t,K+1

+ 2–. It thus holds that ” Ø ”|Lt| ≠ 2–.

Analogous to Eq. (S10), this shows for t = 2, . . . , T ≠ 1 that

ÎHt(Ū1:T ) ≠ Ht(Ū Õ
1:T )ÎF Æ 2

Ô
2

”
min

≠ 2–
–(ÎŪt≠1

≠ Ū Õ
t≠1

ÎF + ÎŪt+1

≠ Ū Õ
t+1

ÎF ),

with similar identities for t = 1 and t = T . Summing over all t then yields

Tÿ

t=1

ÎHt(Ū1:T ) ≠ Ht(Ū Õ
1:T )ÎF Æ 4

Ô
2–

”
min

≠ 2–

A
Tÿ

t=1

ÎŪt ≠ Ū Õ
tÎF

B
,

establishing the contraction identity when – < ”min
4

Ô
2+2

.

S4. Cross-Validation to Choose –

We apply the cross validation method of (24) (Algorithm 1) to choose –, which is a general purpose cross validation procedure
that requires a user-selected likelihood or loss function, and a model fitting procedure to evaluate the likelihood. We use this
procedure with the DCBM likelihood function, and for the fitting procedure we choose the classes zt by applying PisCES to the
Laplacianized adjacency matrices and then fit the DCBM parameters given zt and the unlaplacianized At in the obvious way.

Given our choice of likelihood and fitting method, Algorithm 1 of (24) divides the dyads into folds, and evaluates on the test
fold a degree corrected blockmodel (DCBM) that is fit to the training folds. When fitting the DCBM to the training folds,
matrix completion is used to impute the withheld dyads in the test fold.

The specific steps of the method are:

1. Randomly divide the
!

n
2

"
T dyads of A

1

, . . . , AT into S folds. Let Q denote the set of candidate values of – under
consideration.

2. For each fold s = 1, . . . , S and time t = 1, . . . , T let A
(s)

t œ Rn◊n be defined as

[A(s)

t ]ij =
;

[At]ij (i, j, t) /œ s

0 (i, j, t) œ s,
[S13]

and let Â
(s)

t denote the results of applying a matrix completion method (As Eq (1) in (24)) to each A
(s)

t to impute
the zeroed entries. Let Ū

(–,s)

1

, . . . , Ū
(–,s)

T denote the output of the PisCES algorithm using smoothing parameter – and
imputed Â

(s)

1

, . . . , Â
(s)

T . (The first step of PisCES is to Laplacianize the imputed adjacency matrices.)
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3. Evaluate L(–,s), the log likelihood of a fitted DCBM on the sth fold:

L(–,s) =
ÿ

(i,j,t)œs

[At]ij log(Ptij) + (1 ≠ [At]ij) log(1 ≠ Ptij) [S14]

where Ptij © P
(s)

tij is the estimated probability of connection between node i and node j at time t under the fitted DCBM,
and is given by

Ptij = dtidtj · Bt(zti, ztj),

where zti © z
(s)

ti is the estimated community of node i at time t, as given by K-means clustering on the eigenvectors of
Ū

(–,s)

t with Ÿ(Ū (–,s)

t ) classes; where dti © d
(s)

ti is the estimated DCBM degree parameter for node i, and is given by

dti =
ÿ

j

[Â(s)

t ]ij ,

and where Bt © B
(s)

t œ RK◊K is the estimated DCBM density parameter matrix, and is given by

[Bt]kl =

Q

a
ÿ

(i,j):zti=k,ztj =l

[Â(s)

t ]ij

R

b /

Q

a
ÿ

(i,j):zti=k,ztj =l

dtidtj

R

b .

4. Return the smoothing parameter – œ Q giving the best value for
q

s
L(–,s).

Remark When performing matrix completion for unknown K, we estimate the rank of matrix by the ’nature approach’ showed
in section 2.3 of (24).

Remark If At is real-valued, instead of Eq. (S14) we can evaluate the likelihood of the thresholded matrix:

‚L(–,s) =
ÿ

(i,j,t)œs

1{[At]ij > ·} · log(Ptij) + 1{[At]ij Æ ·} · log(1 ≠ Ptij),

where · is a threshold parameter. Note that Ptij remains unchanged from the discussion of Eq. (S14). In our data analysis, we
choose · = 0.76, where the choice of 0.7 follows previous works such as (29) and (32), and the 6th power follows from Eq. (17).

S5. Further discussion of ”

Cartoon Illustration. Fig. S1 shows the eigenvalues {⁄i} of the Laplacianized adjacency matrix L, in a static example (T = 1)
where A is generated by a DCBM with K = 4 communities. The eigengaps ⁄i+1

≠ ⁄i become very small for i > 4, so our rule
correctly identifies K = 4 using Eq. (12).

Usage of Eq. (12) assumes the Erdos-Renyi null model, which we choose because the DCBM has observation noise that is
independent across dyads. We remark that a “DCBM with K = 1” null could also have been used, with similar results. The
largest eigengap occurs at i = 1, so choosing the largest eigengap would incorrectly estimate K as 1.
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Fig. S1. (a) Largest 20 eigenvalues {⁄i} of Laplacianized adjacency matrix L under DCBM with K = 4. (b) First 19 eigengaps ⁄i+1 ≠ ⁄i corresponding to those 20
eigenvalues. The red line shows the threshold ” under Eq. (12).
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Fig. S2. Fitting lines for ” in different ER models with number of nodes n = 400 (a), 600 (b), 800 (c), and 1000 (d). and the density p ranges from 0.05 to 0.45.

Fast computation of ” under ER null. To speed up computation, we precomputed the threshold ” as given by Eq. (12), for
degree-normalized inputs with n ranging between 0 < n Æ 1000 and density p = #edges

(n
2) ranging between 0 < p Æ 0.5, and

found that the threshold is approximately given by the following curve (Fig. S2):

” ¥ 3.5
p0.58n1.15

, [S15]

Null Model for Correlation Matrices. In Section 3, the adjacency matrices A
1

, . . . , AT are formed by transforming the empirical
correlations between the n genes, by

[At]ij =
;

| corr(yi, yj)|6 i ”= j

0 i = j,

where yi œ Rd denotes the vector of expression levels for gene i at time t.
We wish to compute a cuto� ” for the Laplacianized adjacency matrices Lt, below which the eigenvectors are discarded as

being comparable to the “noise” eigenvectors of a null model. Our choice of null model for this setting is not an Erdos-Renyi
(ER) random graph, but rather the following: let p denote the average of the correlations between the samples {yi}:

p = 1!
n
2

"
ÿ

i<j

corr(yi, yj). [S16]

To generate a null model for At, we generate a random matrix Y null œ Rn◊d, whose columns are i.i.d. normal with covariance
�̂ œ Rn◊n given by

�̂ = (1 ≠ p)I + p11T ,

let ynull

i œ Rd denote the ith row of Y null, and let Anull

t œ Rn◊n be given by

[Anull

t ]ij =
;

| corr(ynull

i , ynull

j )|6 i ”= j

0 i = j.

Computation of ” then follows as before,

” = quantile
0.95

#
max{|⁄null

i | ≠ |⁄null

i+1

|, i Ø 2}
$

, [S17]

where |⁄null

1

| Ø · · · Ø |⁄null

n | are the eigenvalues of |Lnull

t |, where Lnull

t is the Laplacianized version of Anull

t , and the quantile is
computed by simulation.
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Accuracy of estimating K methods
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Fig. S3. Accuracy (measured by rate of correct estimation of K) of Ÿ and Bethe Hessian method (BH) of (26). Methods are tested on static DCBM networks, with n = 500

and (a) pin = (0.3, 0.3), pout = 0.1, Â œ (.75, 1.25) with K ranging from 5 to 15 and (b) K = 10, pin = (4pout, 4pout), Â œ (.75, 1.25) and average degree ranging
from 20 to 60. Ÿ and BH are also tested within PisCES on dynamic DCBMs with T = 6. (c) and (d) are under identical settings as (a) and (b), but use Â œ (0.5, 1.5) instead
of (0.75, 1.25).

Remark: A Null Model for Dynamic Networks. The PisCES iterations are given by

Ū ¸+1

1

= �(|L
1

| + –Ū ¸
2

)
Ū ¸+1

t = �(–Ū ¸
t≠1

+ |Lt| + –Ū ¸
t+1

) t = 2, . . . , T ≠ 1
Ū ¸+1

T = �(–Ū ¸
T ≠1

+ |LT |),

where the operator � requires a model selection method Ÿ that is applied not to |Lt| alone, but rather to |Lt| + –(Ū ¸
t≠1

+ Ū ¸
t+1

).
For this reason, it may be of interest to explore null models for the matrix |Lt| + –(Ū ¸

t≠1

+ Ū ¸
t+1

). One possible choice of null
model is to generate Lnull

t , Ūnull

t≠1

, and Ūnull

t+1

as follows:

1. Let Lnull

t be generated either from an ER random graph or correlation matrix, whichever is more appropriate

2. Let Ūnull

t≠1

and Ūnull

t+1

be random matrices in U = {V V T : V œ Rn◊K , V T V = I} for K matching the rank of Ū ¸
t≠1

and Ū ¸
t+1

,
respectively. Ūnull

t≠1

and Ūnull

t+1

are generated independently of Lnull

t .

Under this process, the cuto� ” equals the 0.95-level quantile of the eigengap (excluding ⁄
1

) of |Lnull

t | + –(Ūnull

t≠1

+ Ūnull

t+1

) under
this null distribution.

This generative process implies that A
1

, . . . , AT are assumed to be independent under the null. We investigate its performance
under PisCES. In settings where the density of At is high (> 0.3) and the ER null is used for |Lt| in step 1 above, we find
that the additional randomness generated by adding random Ūt≠1

and Ūt+1

results in more conservative (and improved)
estimates; that is, ” is made smaller so that Ÿ returns lower values for the estimated K. In other settings where At is noisier,
the additional noise due to Ūt≠1

and Ūt+1

is inconsequential in comparison, and does not change the estimated K; this is also
the case when we try this null on the data described in Section 3.

S6. Simulations

Simulation Model (dynamic DCBM). In static settings (i.e., T = 1), simulated networks with n nodes are generated under a
degree-corrected blockmodel (DCBM) with K classes, which is parameterized by a triplet (z, B, Â), where z œ [K]n is the
membership labels, B œ [0, 1]K◊K is a symmetric connectivity matrix, and Â œ [0.5, 1.5]n models degree heterogeneity. Given
(z, B, Â), the entries of the adjacency matrix A œ {0, 1}n◊n are independently generated from the Bernoulli distribution with
parameter as follows:

P (Aij = 1) =
;

ÂiÂjBzi,zj if i < j

0 if i = j,
with Aij = Aji for i > j

In dynamic settings, simulated networks are generated under a dynamic DCBM model of Eq. (13)-Eq. (15), with initial
class labels z(1) chosen by

z
(1)

i
iid≥ Multinomial

1 1
K

, . . . ,
1
K

2
.

Performance of Ÿ. Fig S3 shows a comparison of Ÿ (using ER null model as given by Eq. (12)) with the Bethe Hessian
method (BH) of Eq. (2) of (26). In the static settings shown (which are dense DCBM networks), Ÿ outperforms or performs
comparably to BH. Fig S3 also shows that both Ÿ and BH improve when they are used within PisCES (as part of the �
operator), suggesting that PisCES is flexible to the choice of model selection algorithm. We note that within PisCES we use
At + –D

1/2

t Ūt≠1

D
1/2

t + –D
1/2

t Ūt+1

D
1/2

t as the input to BH, rather than |Lt| + –Ūt≠1

+ –Ūt+1

; this is done because BH is
designed for the adjacency matrix as its input, rather than the Laplacian.
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n = 100 n = 500 n = 500, dense
hard medium easy hard medium easy hard medium easy

K 2 2 2 10 10 10 10 10 10
pin (0.2, 0.2) (0.2,0.25) (0.25, 0.25) (0.2,0.35) (0.2, 0.4) (0.2, 0.45) (0.55, 0.55) (0.6,0.6) (0.4, 0.8)
pout 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3

Table S1. Parameters for different cases in Fig. 1 and Fig. S4.

Overall Performance of PisCES. Table S1 gives DCBM parameter settings for 9 scenarios, where n œ {100, 500} and the
connectivity parameters p

in

and p
out

are chosen to create a range of signal-to-noise levels (“easy”, “medium”, and “hard”).
Figures S4 and S5 show performance of PisCES and the comparison methods for these scenarios, under a range of values for r
and T . For small networks where n = 100, Figure S4 shows that the methods behave similarly. For larger networks where
n = 500, Figure S5 shows that PisCES often outperforms the others by a substantial margin provided that T is large – except
when p

in

corresponds to “hard” scenarios or r = 0.5, at which point all methods perform poorly. In nearly all cases, PisCES
does comparable or better than the comparison methods.
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Fig. S4. Performance comparison on synthetic networks as a function of the time horizon and r, as measured by Adjusted Rand Index between true and estimated clusters.
Networks are generated by dynamic DCBM with parameters corresponding to n = 100 in Table S1. 100 simulations per data point. Note that each row of subfigures uses
different scales for the y-axis, as performance varies highly across the scenarios.

Sensitivity to –. Figure S6 shows performance of PisCES as a function of the smoothness parameter –. For each scenario, the
value of – that gives the best average performance over all simulations is marked. For r > 0, this value is always Æ 0.1, and is
chosen by the cross-validation procedure of (24) in 100% of the simulated trials. For denser networks, performance peaked at
smaller values of –; intuitively, each network has more signal so less smoothing is required. For large values of –, performance
is poor and the method often does not converge, as suggested by Theorems 1.1 and S3.1; this can be seen in Figure S7.

S7. Identifying changing gene communities in developing primate brains

Data description. Bakken et al. (18) provide transcription for a dense temporal sampling of prenatal and postnatal periods
measured on fine anatomical division of the rhesus monkey brain. The data contains 12,441 genes expressed in 1,936 distinct
samples �.

To gain a high-level understanding of the di�erence in gene expression across ages and regions, we disply the similarity
between samples using PCA. Region appears to be the dominant variable in the 724 postnatal samples projected onto the first
two principle components (Fig. S8), which explain 41% of the variance. Focusing on the 214 postnatal mPFC samples, layer
and age show high correlation with the first two PCs, which explain 40% of the variance (Fig. 4a). Likewise for 209 prenatal
mPFC samples, layer and age are highly correlated with the first two PCs, which explain 46% of the variance (Fig. 4b).

Results. Table S3 summarizes several important statistics. Nodal degree is calculated for every adjacency matrix as degree of
gene i, di =

q
j

Aij . E40 and L4 have the highest median nodal values which might be due to the smaller number of samples
available for these two periods. The number of communities in each age/layer is fairly similar over periods with the exception

�Available at https://github.com/AllenBrainAtlas/DevRhesusLMD/blob/master/cache/nhp_PrePost_StartingData.RData.
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of the first developmental period in each series (E40/L6). Communities are defined as big when their size > 100 and dense
when density > 0.1 for prenatal and > 0.06 for postnatal periods. At this initial phase the gene communities are larger but less
dense, suggesting they are less developed as a network. For the prenatal phase, the number of big and dense communities
generally increases over time. This pattern is not apparent in layers (L6 to L2). Finally, the high degree nodes are more likely
to be included in paths.

Figure S11 displays the uncorrected enrichment p-values for each prenatal community with respect to SFARI ASD genes.
Most communities are not nominally enriched, but a pattern of stronger nominal significance suggests ASD genes are most
clustered in the mid to late fetal period.
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Table S2. Sample sizes under fine (a) and relatively coarse (b and c) partitioning schemes. In (a) the vertical axes define layers.
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nodal
degree

number of
communities

size of
communities

density of
communities

number of
big and dense
communities

number of
big and dense
communities

in paths

number of
high degree nodes

in paths

number of
non-high degree
nodes in paths

E120
1st: 19

median: 60
3rd: 234

33
min: 49

median: 202
max: 1621

1st: 0.03
median: 0.05

3rd: 0.12
13 5(42%) 266 (29%) 1016 (12%)

E90
1st: 19

median: 50
3rd: 126

38
min: 9

median: 179
max: 1843

1st: 0.04
median: 0.06

3rd: 0.11
16 6 (38%) 702 (76%) 1064 (13%)

E80
1st: 20

median: 61
3rd: 143

31
min: 21

median: 257
max: 2080

1st: 0.03
median: 0.06

3rd: 0.09
10 5 (50%) 811 (88%) 1014 (12%)

E70
1st: 14

median: 40
3rd: 142

28
min: 27

median: 223
max: 2333

1st: 0.02
median: 0.04

3rd: 0.08
7 4 (57%) 845 (92%) 1200 (15%)

E50
1st: 19

median: 57
3rd: 225

26
min: 88

median: 229
max: 1944

1st: 0.03
median: 0.05

3rd: 0.10
9 3 (33%) 635 (69%) 975 (12%)

E40
1st:

median: 156
3rd: 295

15
min: 144

median: 530
max: 1724

1st: 0.04
median: 0.07

3rd: 0.14
9 1 (11%) 98 (11%) 323 (0.04%)

total
1st: 22

median: 66
3rd: 195

- - - 78 35 (45%) 3183 (58%) 4619 (9%)

L2
1st: 20

median: 50
3rd: 122

35
min: 22

median: 188
max: 1683

1st: 0.03
median: 0.05

3rd: 0.07
10 4 (40%) 537 (58%) 1131 (14%)

L3
1st: 15

median: 39
3rd: 106

36
min: 34

median: 150
max: 1778

1st: 0.02
median: 0.03

3rd: 0.06
9 5 (56%) 734 (80%) 1240 (15%)

L4
1st: 36

median: 89
3rd: 222

22
min: 34

median: 227
max: 1535

1st: 0.03
median: 0.06

3rd: 0.11
14 8 (57%) 774 (84%) 2001 (24%)

L5
1st: 17

median: 40
3rd: 97

34
min: 13

median: 190
max: 1719

1st: 0.02
median: 0.04

3rd: 0.07
9 7 (78%) 686 (75%) 1643 (20%)

L6
1st: 19

median: 44
3rd: 96

25
min: 50

median: 261
max: 2091

1st: 0.02
median: 0.04

3rd: 0.07
7 4 (57%) 260 (28%) 969 (12%)

total
1st: 20

median: 50
3rd: 123

- - - 82 46 (56%) 3030 (66%) 5737 (14%)

Table S3. Summary of PisCES communities obtained from analysis of prenatal and postnatal mPFC samples. The median value and 1st and
3rd quantiles of nodal degree, size of communities and density of communities, as well as the number of communities for each network are shown in the
first 4 columns. Big and dense communities are those with Ø 100 nodes and within-community density exceeding 0.1 (prenatal) or 0.06 (postnatal). High
degree nodes are those whose degree exceeds 90’th quantile. A path is a sequence of at least 3 big and dense communities that are connected by large
flows (see Fig. 5, Fig S10), where a large flow comprises at least 50% of its smaller community.
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of subfigures uses different scales for the y-axis, as performance varies highly across the scenarios.
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Fig. S6. Performance of PisCES as a function of –. Performance is measured by cross-validated log likelihood. Networks are generated by dynamic DCBM with T = 10,
K = 10, n = 500, (a) pout = 0.1, pin = (0.2, 0.2) and (b) pout = 0.3, pin = (0.6, 0.6). The highest point of each curve is marked by a “*”. 100 simulations per data point.
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Fig. S7. Convergence status of PisCES with different –. Difference of eigenvectors between consecutive iterations is calculated as ||U¸+1 ≠ U¸||1, where U¸ is the output
of PisCES in the ¸th iteration. The results shows one representative case under dynamic DCBM with n = 500, K = 10, r = 0.1, pin = (0.3, 0.3), pout = 0.1 and – = 0.1
or 0.2.
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All samples from 0M to 48 M

Fig. S8. Top two principal components for all samples from Age 0M to 48M. Age and region of each sample are depicted by shape and color, respectively (BG: basalganglia;
HP: hippocampus; AM: amygdala; Ocx: occipital cortex; mPFC: medialprefrontal cortex).
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Fig. S9. Performance comparison for PisCES, PCM and static analysis on rhesus monkey brain data measured by log likelihood. The log likelihood values are calculated with
the test data in 5-fold cross validation based on DCBM (Eq. Eq. (S14)) separately for each network in prenatal (a) and postnatal (b). The dynamic progression is informative,
as illustrated by the inferior performance of the static analysis, compared to the two dynamic analyses. Performance at E40 is illuminating. The fetal brain is developing very
rapidly at this stage and PisCES gains little from smoothing over age, but it still performs better than the unsmoothed, static method.
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L2 L3 L4 L5 L6

Fig. S10. Sankey plot for postnatal cases. Grey and red boxes denote communities, with height indicating community size. Colored “flows” denote groups of genes moving
between communities, with height indicating flow size. To reduce clutter, only large flows (> 100 genes or > 15% of its source and destination community) are shown; smaller
flows are partially drawn using dotted lines. Each flow’s color is determined by its gene membership, and equals the mixture of the colors of its input flows. NPG-enriched
communities are denoted by red boxes.

22 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Liu et al.



1
2

3
4

5

Age

−
lo

g
1

0
(p

)

E40 E50 E70 E80 E90 E120

Fig. S11. Enrichment of SFARI genes in communities detected by PisCES. Each circle represents the ≠ log10(p) of SFARI enrichment of a community. The p-values are
provided by single-sided Fisher’s exact test and are not corrected for multiple testing. The most highly enriched cluster, at E120, includes 26 ASD genes out of 444 genes,
including 4 NPG genes (CNTN6, CNTN4, CACNB2, KCNQ3), 9 synaptic transmission genes (GRIN2B, GABRB3, RIMS1, PRKCB, SLC12A5, CACNA1C, PLCB1, CACNB2,
KCNQ3) and 2 synapse assembly genes (MYT1L, SHANK2). Nodes colored red are enriched for NPG genes. To help identify communities, connecting lines are drawn
representing “flows” between communities as drawn in Fig. 5.
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Fig. S12. Heat maps of mean expression levels across spatio-temporal partitions (18) of selective neuron projection guidance (NPG) genes in medial pre-frontal cortex (mPFC)
samples partitioned by age and layer. The vertical axes define layers. The intensity of each grid represents the mean (to the power of 2) of either NPG+ (a) or NPG- (b) genes
in its corresponding partition. The NPG+ genes are defined as those that appear in NPG-enriched communities for at least three consecutive periods. The remaining NPG
genes define the NPG- group.
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Fig. S13. Number of NPG genes that have at least one neighbor in the correlation networks (Fig. 7).
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Fig. S14. (a), Heat map of mean expression levels of synaptic transmission (ST) genes in medial pre-frontal cortex (mPFC) samples partitioned by age and layer. In (a) the
vertical axes define layers. The intensity of each grid represents the mean (to the power of 2) of ST genes in its corresponding parition. (b), Correlation between the expression
levels of two synaptic transmission genes, KCNQ3 and SLC12A5, in mPFC samples at the ages of E120 and 0M. The axes are numbered by the expression levels of the two
genes, respectively. Each blue triangle represents a sample at the age of E120 and each red triangle represents a sample at the age of 0M. The Pearson correlation of the blue
triangles is 0.93 and that of the red triangles is 0.34.
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0.25 0.19 0.21 0.15

0.11 0.28 0.17

0.07 0.21 0.27 0.16

0.07 0.13 0.27

0.05 0.10 0.18 0.27

0.05 0.09 0.14 0.19 0.23

0.21

0.32

Table S4. Similarity of community assignments between age slices of prenatal samples (blue grids) and layer slices of postnatal samples
(pink grids) measured by adjusted Rand index.
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