

Supplementary Figure 1; related to Figure 1C. A histogram shows the distributions of reported variant effect scores from 12 large-scale mutagenesis data sets.

Supplementary Figure 2; related to figure 2A. A heatmap shows the Pearson correlation coefficient between descriptive feature values and variant effect scores for each large-scale mutagenesis data set. Note, E3 ligase, and BRCA1 datasets are missing B factor and predicted change in solvent accessibility features and also have low correlations between existing features and effect scores.

Supplementary Figure 3; related to Figure 3A. Our hyperparameter tuning scheme is designed to generate generalizable models. To determine the optimal values for each hyperparameter, we used a leave-one-protein-out cross-validation approach. To begin, we collected large-scale mutagenesis data sets and annotated them with features. Next, we created 8 training and validation dataset pairs; each training set contains variants from 7 of 8 proteins and the validation set contains variants from the protein withheld from the training set. Thus, each parameter set is being evaluated for its ability to predict a protein unseen by the model. Then, we test a set of hyperparameters using all testing and validation pair sets, and then update hyperparameters until all parameter values are evaluated. Once completed, we identify the parameter set that yields the most generalizable model, i.e., performs best on the left out protein's variant data set.

Supplementary Figure 4; related to Figure 3A. Training and testing data set RMSEs are very similar across iterations. While training Envision, 5% of data was withheld to determine the performance of the model as each tree was trained and added to the ensemble of decision trees. The plot shows the root mean squared error (RMSE), otherwise known as the mean difference between observed and predicted scores, for training and validation data. There is little difference between the RMSE of Envision for training and testing data, which suggests that Envision is not over trained.

Supplementary Figure 5; related to Figure 3B. Scatter plots show the correlation between leave-one-protein-out model predictions and observed variant effects.

Supplementary Figure 6; related to Figure 3B. Leave-one-protein-out models were trained either with normalized or non-normalized variant effect scores. The barplots show Pearson's (left) and Spearman's (right) correlation coefficients between observed variant effect scores and predicted variant effect scores for the left-out protein from models trained using normalized (blue) or non-normalized (red) scores. Overall, models trained on normalized variant effect scores predicted the left-out protein variant effect scores best.

Supplementary Figure 7; related to Figure 3C. Our leave-one-protein-out models compare favorably to SNAP2 and EVmutation models. This barplot shows the correlation between predicted and observed variant effect scores for each data set for SNAP2, EVmutation (epistatic and independent models) and our leave-one-protein-out models. The x-axis shows the protein/domain withheld from training. Here, we observe that our models outperform other predictors that our models have yet to see in training.

Supplementary Figure 8; related to Figure 3C. Effect of hyperparameter tuning cross-validation procedure. These barplots show the Pearson (left) and Spearman (right) correlations (y-axes) between predicted and observed variant effect scores for the left-out protein for models trained with hyperparameters optimized using a leave-one-protein-out cross-validation approach (blue). In this approach, at each round of cross-validation a different protein was used for testing. A standard tenfold cross-validation was also tested, where at each round of cross-validation a random 10% of variant effect scores were used for testing (red). The x-axes show the protein or domain left out of the hyperparameter tuning and model training procedures, which was used to evaluate model performance.

Supplementary Figure 9A-B; related to Figure 3E. Heatmaps show the correlation (Pearson's R) between predictions from four predictors for TP53 mutations arcoss mutant (G) and wild-type (H) amino acids. Darker red denotes more accurate predictions, while white shows poor predictive performance.

Supplementary Figure 10; related to Figure 3A. Envision, CADD, SIFT and PolyPhen2 were used to predict 9,028 pathogenic and 402 benign mutations from the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). Receiver operator characteristic (ROC) curves were generated for each model using the pROC package in R. PolyPhen2 predicted pathogenicity with the highest accuracy (AUC = 0.86, 95% CI: 0.84-0.88) followed by CADD (0.85, 0.83-0.87), SIFT (0.84, 0.81-0.86) and then Envision (0.72, 0.70-0.74). Confidence intervals were determined with 2,000 bootstrap replicates.

Supplementary Figure 11; related to Figure 4A. The heatmap below shows the mean variant effect score for each of the twenty amino acids across eight protein data sets. It is clear that proline mutations are one of the most disruptive mutations to protein function.

Supplementary Figure 12; related to Figure 4A. A barplot shows the correlation between Envision predictions and observed variant effect scores for each mutant amino acid in our training data. The mutant amino acid type is shown on the x-axis.

Supplementary Figure 13; related to Figure 2D. The leave-one-protein-out models we trained were used to predict their left-out protein's variant effect scores with one of three different feature sets. The barplots above show Pearson's (left) and Spearman's (right) correlation coefficients between predicted variant effect scores and observed variant effect scores for each of the left-out proteins. Black bars indicate that all features were used during the prediction phase (i.e. the same data as Figure 3B). Pink bars denote predictions made when all structural features for the left-out protein were masked. Blue bars denote predictions made when all evolutionary conservation-related features were masked. Structural features are identified in green in Figure 2D, and evolutionary features are identified in blue in Figure 2D.

Supplementary Table 1; related to Figure 1A. Summary of large-scale mutagenesis datasets.

Name	protein	dms_id	first_author	PMID	Year	Region mutagenized	Number of mutants	Number of mutagenized protein position	Organism p	Selected ohenotype	UniProt_ID	PDB_ID	Replicate correlation	Used in model?	Molecular function	Structural folds
TEM1 B lactamaca	TEM1 β-	Dota lactamaco	Eiroborg	27667612	V 10C	Eul protein	5100	797	E coli	Ampicillin	063503	1400	J	VEC	hydrolysis of lactam	Helix, sheet,
								:		Substrate				ii		
Yap65 (WW domain)	Yap65	WW_domain	Fowler	20711194	2010	WW domain	363	34	H. sapiens	binding	P46937	1JMQ	NA	YES	Protein binding	Beta, turn
PSD95 (Pdz3 domain)	PSD95	PSD95pdz3	McLaughlin	23041932	2012	PDZ3 domain	1577	83	Rattus norvegicus	Ligand binding	P31016	2BE9	NA	YES	Protein kinase bining	helix, sheet
Brca1 (RING domain)-										Ubiquitin ligase						Helix, sheet,
E3 ligase activity	Brca1	Brca1_E3	Starita	25823446	2015	RING1 domain	4872	303	H. sapiens	activity	P38398	1JM7	~0.85	NO	Many	turn
Brca1 (RING domain)-										Binding acivity						Helix, sheet,
Bard1 binding	Brca1	Brca1_Y2H	Starita	25823446	2015	RING1 domain	1748	102	H. sapiens	(Y2H)	P38398	1JM7	~0.85	NO	Many	turn
Aminoglycoside	Aminoglycoside									Antibiotic					Kanamycin kinase	Helix, sheet,
kinase	kinase	kka2_1:2	Melnikov	24914046	2014	Full protein	5300	264	K. pneumoniae	resistance	P00552	1ND4	0.88	YES	activity	turn
	E4B (U-box									ligase					Ubiquitin activating	Helix, sheet,
E4B (U-box domain)	domain)	E3_ligase	Starita	23509263	2013	U-box domain	668	102	M. musculus	activity	Q9ES00	2KR4	0.94	NO	enzyme activity	turn
										Yeast					Unfolded protein	Helix, sheet,
Hsp90	Hsp90	D6dsu	Mishra	27068472	2016	N/A	4021	219	S. cerevisiae	growth	P02829	2069	0.96	YES	binding ATP_dependent	turn Heliv cheet
Ubiquitin	Ubiquitin	Ubiquitin	Roscoe	23376099	2013	Full peptide	1249	75	S. cerevisiae g	rowth rate	POCG63	3CMM	0.96	YES	protein binding	turn
										mRNA						Helix, sheet,
Pab1 (RRM domain)	Pab1	Pab1	Melamed	25671604	2013	RRM domain	1188	75	S. cerevisiae	binding	P04147	1CVJ	NA	YES	Poly-A binding	turn
										Yeast					ATP-dependent	Helix, sheet,
Ubiquitin - E1 activity	Ubiquitin	E1_Ubiquitin	Roscoe	24862281	2014	N/A	1085	60	S. cerevisiae	growth	POCG63	3CMM	0.98	YES	protein binding	turn
Protein G (IgG						IgG-binding			Streptococcus sp. group	lgG-Fc						
domain)	Protein G	gb1	Olson	25455030	2014	domain	1045	55	G	binding	P06654	1PGA	0.99	YES	IgG-binding	helix, sheet

Supplementary Table 2; related to Figure 1D. Summary of descriptive features used to train gradient boosted models.

Features	Name	Description	Range/Categories	Reference
AA1	WT amino acid	WT AA	All possible AA	NA
AA2	MT amino acid	MT AA	All possible AA + Stop codon	NA
WT_Mut	WT and MT	Concatenation of WT and MT AAs	All 420 possible AA combinations	NA
AA1_polarity	WT polarity	Polarity of AA1 side chain	hydrophobic, special, uncharged,+,-	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA2_polarity	MT polarity	Polarity of AA2 side chain	hydrophobic, special, uncharged,+,-	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA1_PI	WT pl	Isoelectric point of AA1	3.22-9.74	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA2_PI	MY pl	Isoelectric point of AA2	3.22-9.74	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
deltaPI	pl change	Difference between WT and MT pl values	(-6.52)-6.52	NA
Grantham	Grantham	Physicochemical distance between WT and MT AA	0-215	Grantham, R. Science (1974)
AA2_weight	WT weight	Molecular mass (Da)	75-204	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA1_weight	MT weight	Molecular mass (Da)	75-204	http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
deltaWeight	Weight change	Difference between WT and MT weights	(-192)-192	NA
AA1vol	WT volume	AA1 volume (Å ³)	60.1-227.8	Zamyatnin, A.A. Prog. Biophys. Mol. Biol (1972)
AA2vol	MT volume	AA2 volume (Å ³)	60.1-227.8	Zamyatnin, A.A. Prog. Biophys. Mol. Biol (1972)
deltavolume	Volume change	Difference between WT and MT volumes	(-167.7-167.7)	NA
B_factor	B factor	B/Temperature factor from X-ray crystallography	0-84.35	Kabsch, W. & Sander, C. (1983)
Accessibility	Solvent accessibility	Number of water molecules in contact with this residue *10	0-238	Kabsch, W. & Sander, C. (1983)
dssp_sec_str	Secondary structure	Secondary structure	B, E, G, H, S, T, None	Kabsch, W. & Sander, C. (1983)
aa1_psic	WT likelihood	AA1 log likelihood ratio	(- 4.083)- (-0.596)	Adzhubei et al. 2010
aa2_psic	MT likelihood	AA2 log likelihood ratio	-5.621-(-0.807)	Adzhubei et al. 2010
delta_psic	Likelihood change	Change in log likelihood ratios	-3.07 - 4.868	Adzhubei et al. 2010
phi_psi_reg	Phi-psi	Region of the Ramachandran map	A, B, I, L, None	Adzhubei et al. 2010
delta_solvent_accessibility	Accessibility change	Predicted change in solvent accessibility	0 - 2.92	Adzhubei et al. 2010
mut_msa_congruency	MSA Substitution score	maximum homology of the AA2 to all sequences in multiple alignment	0.044 - 47.42	Adzhubei et al. 2010
mut_mut_msa_congruency	MT MSA Substitution	ximum homology of the AA2 to the sequences in multiple alignment with the mutant resic	1.462 - 47.42	Adzhubei et al. 2010
seq_ind_closest_mut	Homolog with MT	Query sequence identity with the closest homologue deviating from the AA1	9.03 - 93.7	Adzhubei et al. 2010
evolutionary_coupling_avg	Evolutionary coupling	Mean evolutionary coupling score	0-0.11	derived from Hopf. et al 2017 evo couplings scores
Abbreviations: WT = wild-typ	oe, AA. amino acid, MT = mut	ant, H = α -helix B = residue in isolated β -bridge, E = extended strand, participates in β ladder,	, G = 3-helix (310 helix), T = hydrogen bon	ded turn, S = bend
mobile inclusions, with a mile cyle		$a_{1}a_{2}a_{2}a_{3}a_{4}a_{3}a_{4}a_{5}a_{4}a_{5}a_{4}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5$, o = 5 inclis (5±0 inclis), i = injulogui 50ii	

Tuning			
round	Hyperparameter	Tested values	Optimum
1	Maximum number of decision trees	10, 25, 50, 100, 250	50
2	Maximum tree depth Minimum number of observations in	2, 6, 10, 25, 50	6
	terminal node of decision tree	2, 6, 10, 25, 50	50
2	Loss reduction required to add another		
5	branch to decision tree	0, 0.1, 0.2, 0.3, 0.4, 0.5	0.5
	Feature subsample proportion at each		
Λ	iteration	0.6, 0.7, 0.8, 0.9	0.6
4	Variant effect score subsample		
	proportion at each iteration	0.6, 0.7, 0.8, 0.9	0.9
	Increase iteration # 5-fold and reduce		
5	learning rate from 0.1 to 0.01 to	Trees = 250; Shrinkage =	
	compensate.	0.01	

Supplementary Table 4; related to Figure 3A. Grid search values for hyperparameter tuning and final hyperparameter values used to train Envision.

Feature	Importance		Туре
B factor		1347	Structural
Solvent accessibility		1299	Structural
Homolog with MT		1025	Evolutionary
WT likelihood		897	Evolutionary
Evolutionary coupling		839	Evolutionary
Likelihood change		628	Evolutionary
Accessibility change		536	Structural
MT likelihood		477	Evolutionary
MSA Substitution score		341	Evolutionary
Proline mutant		314	Physicochemical
Grantham		312	Physicochemical
WT weight		279	Physicochemical
Volume change		244	Physicochemical
WT volume		230	Physicochemical
WT pl		230	Physicochemical
Weight change		190	Physicochemical
MT weight		156	Physicochemical
MT volume		133	Physicochemical
Cysteine mutant		106	Physicochemical
MT pl		101	Physicochemical
Helix structure		99	Structural
pl change		93	Physicochemical
Beta strand structure		92	Structural
MT polarity		91	Physicochemical
WT polarity		77	Physicochemical

Supplementary Table 5; related to Figure 4A. Importance of each feature in Envision's gradient boosted model.

*Importance was determined by counting the number of times each feature occurred in the Envision decision tree ensemble.