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Supplementary Figure 1; related to Figure 1C. A histogram shows the distributions of
reported variant effect scores from 12 large-scale mutagenesis data sets.
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Supplementary Figure 2; related to figure 2A. A heatmap shows the Pearson correlation
coefficient between descriptive feature values and variant effect scores for each large-scale
mutagenesis data set. Note, E3 ligase, and BRCAT1 datasets are missing B factor and predicted
change in solvent accessibility features and also have low correlations between existing features
and effect scores.
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Supplementary Figure 3; related to Figure 3A. Our hyperparameter tuning scheme is designed
to generate generalizable models. To determine the optimal values for each hyperparameter, we
used a leave-one-protein-out cross-validation approach. To begin, we collected large-scale
mutagenesis data sets and annotated them with features. Next, we created 8 training and
validation dataset pairs; each training set contains variants from 7 of 8 proteins and the validation
set contains variants from the protein withheld from the training set. Thus, each parameter set is
being evaluated for its ability to predict a protein unseen by the model. Then, we test a set of
hyperparameters using all testing and validation pair sets, and then update hyperparameters until
all parameter values are evaluated. Once completed, we identify the parameter set that yields the
most generalizable model, i.e., performs best on the left out protein’s variant data set.
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Supplementary Figure 4; related to Figure 3A. Training and testing data set RMSEs are very
similar across iterations. While training Envision, 5% of data was withheld to determine the
performance of the model as each tree was trained and added to the ensemble of decision trees.
The plot shows the root mean squared error (RMSE), otherwise known as the mean difference
between observed and predicted scores, for training and validation data. There is little difference
between the RMSE of Envision for training and testing data, which suggests that Envision is not
over trained.
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Supplementary Figure 5; related to Figure 3B. Scatter plots show the correlation between
leave-one-protein-out model predictions and observed variant effects.
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Supplementary Figure 6; related to Figure 3B. Leave-one-protein-out models were trained
either with normalized or non-normalized variant effect scores. The barplots show Pearson’s
(left) and Spearman’s (right) correlation coefficients between observed variant effect scores and
predicted variant effect scores for the left-out protein from models trained using normalized
(blue) or non-normalized (red) scores. Overall, models trained on normalized variant effect
scores predicted the left-out protein variant effect scores best.
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Supplementary Figure 7; related to Figure 3C. Our leave-one-protein-out models compare
favorably to SNAP2 and EVmutation models. This barplot shows the correlation between
predicted and observed variant effect scores for each data set for SNAP2, EVmutation (epistatic
and independent models) and our leave-one-protein-out models. The x-axis shows the
protein/domain withheld from training. Here, we observe that our models outperform other
predictors that our models have yet to see in training.
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Supplementary Figure 8; related to Figure 3C. Effect of hyperparameter tuning cross-
validation procedure. These barplots show the Pearson (left) and Spearman (right) correlations
(y-axes) between predicted and observed variant effect scores for the left-out protein for models
trained with hyperparameters optimized using a leave-one-protein-out cross-validation approach
(blue). In this approach, at each round of cross-validation a different protein was used for testing.
A standard tenfold cross-validation was also tested, where at each round of cross-validation a
random 10% of variant effect scores were used for testing (red). The x-axes show the protein or
domain left out of the hyperparameter tuning and model training procedures, which was used to
evaluate model performance.
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Supplementary Figure 9A-B; related to Figure 3E. Heatmaps show the correlation (Pearson’s
R) between predictions from four predictors for TP53 mutations arcoss mutant (G) and wild-type
(H) amino acids. Darker red denotes more accurate predictions, while white shows poor
predictive performance.
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Supplementary Figure 10; related to Figure 3A. Envision, CADD, SIFT and PolyPhen2 were
used to predict 9,028 pathogenic and 402 benign mutations from the ClinVar database
(https://www.ncbi.nlm.nih.gov/clinvar/). Receiver operator characteristic (ROC) curves were
generated for each model using the pROC package in R. PolyPhen2 predicted pathogenicity with
the highest accuracy (AUC = 0.86, 95% CI: 0.84-0.88) followed by CADD (0.85, 0.83-0.87),
SIFT (0.84, 0.81-0.86) and then Envision (0.72, 0.70-0.74). Confidence intervals were
determined with 2,000 bootstrap replicates.
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Supplementary Figure 11; related to Figure 4A. The heatmap below shows the mean variant
effect score for each of the twenty amino acids across eight protein data sets. It is clear that
proline mutations are one of the most disruptive mutations to protein function.
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Supplementary Figure 12; related to Figure 4A. A barplot shows the correlation between
Envision predictions and observed variant effect scores for each mutant amino acid in our
training data. The mutant amino acid type is shown on the x-axis.
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Supplementary Figure 13; related to Figure 2D. The leave-one-protein-out models we trained
were used to predict their left-out protein’s variant effect scores with one of three different
feature sets. The barplots above show Pearson’s (left) and Spearman’s (right) correlation
coefficients between predicted variant effect scores and observed variant effect scores for each of
the left-out proteins. Black bars indicate that all features were used during the prediction phase
(i.e. the same data as Figure 3B). Pink bars denote predictions made when all structural features
for the left-out protein were masked. Blue bars denote predictions made when all evolutionary
conservation-related features were masked. Structural features are identified in green in Figure
2D, and evolutionary features are identified in blue in Figure 2D.
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Supplementary Table 1

. Number of .
. R N Region Number of N . Selected N Replicate . N Structural
Name protein dms_id first_author PMID Year . mutagenized Organism UniProt_ID  PDB_ID N Used in model?  Molecular function
mutagenized mutants . L phenotype correlation folds
protein positions
TEM1 B- Ampicillin hydrolysis of lactam  Helix, sheet,
TEM1 B-lactamase lactamase Beta lactamase  Firnberg ~ 24567513 2014 Full protein 5198 287 E. coli resistance P62593 1XPB YES antibiotics turn
Substrate
Yap65 (WW domain) Yap65 WW_domain Fowler 20711194 2010 WW domain 363 34 H. sapiens binding P46937 umMQ NA YES Protein binding Beta, turn
PSD95 (Pdz3 domain) PSD95 PSD95pdz3  Mclaughlin 23041932 2012 PDZ3 domain 1577 83 Rattus norvegicus P31016 2BE9 NA YES Protein kinase bining  helix, sheet
Brcal (RING domain)- Helix, sheet,
E3 ligase activity Brcal Brcal_E3 Starita 25823446 2015 RING1 domain 4872 303 H. sapiens P38398 um7 ~0.85 NO Many turn
Brcal (RING domain)- Helix, sheet,
Bard1 binding Brcal Brcal_Y2H Starita 25823446 2015 RING1 domain 1748 102 H. sapiens P38398 um7 ~0.85 NO Many turn
Aminoglycoside Aminoglycoside Antibiotic Kanamycin kinase  Helix, sheet,
kinase kinase kka2_1:2 Melnikov 24914046 2014 Full protein 5300 264 K. pneumoniae resistance P00552 1ND4 0.88 YES activity turn
Ubiquitin
E4B (U-box ligase Ubiquitin activating  Helix, sheet,
E4B (U-box domain) domain) E3_ligase Starita 23509263 2013 U-box domain 899 102 M. musculus activity Q9ES00 2KR4 0.94 NO enzyme activity turn
Yeast Unfolded protein Helix, sheet,
Hsp90 Hsp90 hsp90 Mishra 27068472 2016 N/A 4021 219 S. cerevisiae growth P02829 2CG9 0.96 YES binding turn
Yeast ATP-dependent Helix, sheet,
Ubiquitin Ubiquitin Ubiquitin Roscoe 23376099 2013 Full peptide 1249 75 S. cerevisiae growth rate  POCG63 3CMM 0.96 YES protein binding turn
mRNA Helix, sheet,
Pabl (RRM domain) Pabl Pab1l Melamed 25671604 2013 RRM domain 1188 75 S. cerevisiae inding P04147 icv) NA YES Poly-A binding turn
Yeast ATP-dependent Helix, sheet,
Ubiquitin - E1 activity Ubiquitin E1_Ubiquitin Roscoe 24862281 2014 N/A 1085 60 S. cerevisiae growth POCG63 3CMM 0.98 YES protein binding turn
Protein G (1gG 1gG-binding Streptococcus sp. group 1gG-Fc
domain) Protein G gbl Olson 25455030 2014 dom: 1045 55 G ding P06654 1PGA 0.99 YES 1gG-binding helix, sheet
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Supplementary Table 2

gradient boosted models.

Features Name Description Range/Categories Reference

AA1 WT amino acid All possible AA NA

AA2 MT amino acid All possible AA + Stop codon NA

WT_Mut WT and MT All 420 possible AA combinations NA

AA1_polarity WT polarity Polarity of AA1 side ch hydrophobic, special, uncharged,+- http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.htmlgrefs
AA2_polarity MT polarity Polarity of AA2 side ch hydrophobic, special, uncharged,+,- http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA1_PI WT pl Isoelectric point of AA1 3.22-9.74 http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA2_PI MY pl Isoelectric point of AA2 3.22-9.74 http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
deltaPl pl change Difference between WT and MT pl values (-6.52)-6.52 NA

Grantham Grantham Physicochemical distance between WT and MT AA 0-215 Grantham, R. Science (1974)

AA2_weight WT weight Molecular mass (Da) 75-204 '/www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
AA1_weight MT weight Molecular mass (Da) 75-204 '/www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/abbreviation.html#refs
deltaWeight Weight change Difference between WT and MT weights (-192)-192

AAlvol WT volume AA1 volume (A%) 60.1-227.8 , A.A. Prog.

AA2vol MT volume AA2 volume (A%) 60.1-227.8 , A.A. Prog.

deltavolume Volume change Difference between WT and MT volumes (-167.7-167.7)

B_factor B factor B/Temperature factor from X-ray crystallography 0-84.35 Kabsch, W. & Sander, C. (1983)

Accessibility Solvent accessibility Number of water molecules in contact with this residue *10 0-238 Kabsch, W. & Sander, C. (1983)

dssp_sec_str Secondary structure Secondary structure B,E, G, H,S, T, None Kabsch, W. & Sander, C. (1983)

aal_psic WT likelihood AAL1 log likelihood ratio (-4.083)- (-0.596) Adzhubei et al. 2010

aa2_psic AA2 log likelihood ratio -5.621-(-0.807) Adzhubei et al. 2010

delta_psic Likelihood change Change in log likelihood ratios -3.07 - 4.868 Adzhubei et al. 2010

phi_psi_reg Phi-psi Region of the Ramachandran map A, B, 1, L, None Adzhubei et al. 2010

delta_solvent_accessi Accessibility change Predicted change in solvent accessibi 0-2.92 Adzhubei et al. 2010

mut_msa_congruency MSA Substitution score maximum homology of the AA2 to all sequences in multiple alignment 0.044 - 47.42 Adzhubei et al. 2010

mut_mut_msa_congruency MT MSA Substitution iximum homology of the AA2 to the sequences in multiple alignment with the mutant resic 1.462 - 47.42 Adzhubei et al. 2010

seq_ind_closest_mut Homolog with MT Query sequence identity with the closest homologue devi g from the AA1 9.03-93.7 Adzhubei et al. 2010

evolutionary_coupling_avg Evolutionary coupling Mean evolutionary coupling score 0-0.11 derived from Hopf. et al 2017 evo couplings scores

Abbreviations: WT = wild-type, AA. amino acid, MT = mutant, H = a-helix B = residue in isolated B-bridge, E = extended strand, participates in B ladder, G = 3-hell

(310 helix), T = hydrogen bonded turn, S = bend



Supplementary Table 4; related to Figure 3A. Grid search values for hyperparameter tuning
and final hyperparameter values used to train Envision.

Tuning
round Hyperparameter Tested values Optimum
1 Maximum number of decision trees 10, 25, 50, 100, 250 50
Maximum tree depth 2,6,10, 25,50 6
2 Minimum number of observations in
terminal node of decision tree 2, 6,10, 25,50 50
3 Loss reduction required to add another
branch to decision tree 0,0.1,0.2,0.3,0.4,0.5 0.5
Feature subsample proportion at each
iteration 0.6,0.7,0.8,0.9 0.6
4 .
Variant effect score subsample
proportion at each iteration 0.6,0.7,0.8,0.9 0.9
Increase iteration # 5-fold and reduce
5 learning rate from 0.1 to 0.01 to Trees = 250; Shrinkage =

compensate. 0.01




Supplementary Table 5; related to Figure 4A. Importance of each feature in Envision’s

gradient boosted model.

Feature Importance Type

B factor 1347 Structural
Solvent accessibility 1299 Structural
Homolog with MT 1025 Evolutionary
WT likelihood 897 Evolutionary
Evolutionary coupling 839 Evolutionary
Likelihood change 628 Evolutionary
Accessibility change 536 Structural

MT likelihood 477 Evolutionary
MSA Substitution score 341 Evolutionary
Proline mutant 314 Physicochemical
Grantham 312 Physicochemical
WT weight 279 Physicochemical
Volume change 244 Physicochemical
WT volume 230 Physicochemical
WT pl 230 Physicochemical
Weight change 190 Physicochemical
MT weight 156 Physicochemical
MT volume 133 Physicochemical
Cysteine mutant 106 Physicochemical
MT pl 101 Physicochemical
Helix structure 99 Structural

pl change 93 Physicochemical
Beta strand structure 92 Structural

MT polarity 91 Physicochemical
WT polarity 77 Physicochemical

*Importance was determined by counting the number of times each feature
occurred in the Envision decision tree ensemble.



