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Web Appendix A. Sensitivity Analysis
In this Web Appendix, we include results from the sensitivity analysis for the IFS data.
In Table A.1, we compare the posterior mean and credible intervals between three prior
choices: the original prior used in the main manuscript, a prior representing stronger prior
information, and one representing weaker prior information. Recall from Section 4 that
the hyperparameters for these for choices are H H Gα "œ œ "! ‚ ß - œ &ß œI  I ,$ $

5 H H G 5@ $ $ @œ œ œ "! ‚ ß - œ !ß œ ! ‚ œ0.5 for the original prior; 0 I  I , 0.8 forα "

the weak prior; and I  2 5 I , 0.2 for the strongH H G 5α "œ œ " ‚ ß - œ &ß œ ‚ œ$ $ @

prior 65,000Þ The MCMC algorithm for each of the three prior choices is run for 
iterations with the first 25,000 used as burn-in and the remaining 40,000 for inferenceÞ
 Posterior means, credible intervals, and model conclusions are similar across the
three prior choices. Generally, under the strong prior the CIs are slightly narrower and
point estimates are closer to zero due to the stronger influence of the prior. All choices
produce the same set of significant factors: non-molar, daily fluoride intake, sodapop
consumption and brushing frequency in the presence model and non-molar, brushing
frequency, and fluoride treatment in the severity model.

Table A.1. Summary of the sensitivity analysis for the IFS dataset based on the hurdle mixed CMP model.
original prior weak prior strong prior

Presence Model
post mean CI post mean CI post mean CI

Intercept -0.555 (-1.130,  0.015) -0.583 (-1.160, -0.014) -0.529 (-1.042, -0.014)
Non-molars -2.608 (-3.314, -2.082) -2.644 (-3.294, -2.155) -2.271 (-2.614, -1.981)

Sex -0.191 (-0.404,  0.019) -0.189 (-0.402,  0.027) -0.180 (-0.379,  )
ExamAge  0.132 (-0.017,  0.283)  0.134 (-0.017,  0.284)  0.132 (-0.010,  0.273)
FlIntake

0.020

-0.423 (-0.774, -0.074) -0.427 (-0.777, -0.080) -0.403 (-0.736, -0.070)
SodaPop  0.073 ( 0.029,  0.117)  0.074 ( 0.030,  0.119)  0.071 ( 0.029,  0.113)

ToothBrush -0.566 (-0.796, -0.339) -0.563 (-0.793, -0.340) -0.554 (-0.772, -0.340)
DentalVisit  0.222 (-0.342,  0.785)  0.249 (-0.302,  0.809)  0.173 (-0.325,  0.674)

FlTrt  0.334 (-0.039,  0.710)  0.335 (-0.038,  0.709)  0.341 (-0.002,  0.684)
FlHome  0.122 (-0.128,  0.378)  0.117 (-0.137,  0.372)  0.107 (-0.131,  0.342)

Severity Model
post mean CI post mean CI post mean CI

Intercept  0.904 ( 0.422,  1.406)  0.819 ( 0.403,  1.273)  0.860 ( 0.418,  1.320)
Non-molars -0.627 (-0.897, -0.373) -0.618 (-0.889, -0.355) -0.619 (-0.897, -0.363)

Sex -0.102 (-0.240,  0.039) -0.095 (-0.235,  0.043) -0.094 (-0.241,  0.046)
ExamAge  0.103 (-0.001,  0.207)  0.104 ( 0.004,  0.207)  0.102 (-0.008,  0.212)
FlIntake -0.104 (-0.343,  0.136) -0.108 (-0.346,  0.123) -0.102 (-0.345,  0.150)
SodaPop  0.015 (-0.014,  0.044)  0.018 (-0.009,  0.045)  0.017 (-0.012,  0.047)

ToothBrush -0.189 (-0.360, -0.036) -0.180 (-0.326, -0.037) -0.177 (-0.338, -0.011)
DentalVisit -0.071 (-0.474,  0.357) -0.034 (-0.447,  0.370) -0.042 (-0.445,  0.337)

FlTrt  0.259 ( 0.002,  0.554)  0.252 ( 0.004,  0.522)  0.266 ( 0.017,  0.524)
FlHome -0.117 (-0.308,  0.064) -0.119 (-0.310,  0.046) -0.109 (-0.293,  0.065)

0.888 (0.772,  1.005)  0.858 ( 0.717,  0.998)  0.898 (0.782,  1.02@ 4)



Web Appendix B. Computational Consideration
In this Web Appendix, we discuss some technical details regarding running the MCMC
scheme and performing diagnostic checks for the dental application of Section 4 of the
manuscript.
 Note that the MCMC algorithm introduced in Section 3 includes Metropolis-
Hasting moves in Steps 3, 4, and 6.  Each of these requires the selection of the variance
for the candidate proposal distribution.  We choose the variances through trial-and-error
by running the MCMC chain for a few thousand iterations and assessing whether the
empirical acceptance rates are with the ranges specified in [24].  In Table B.1, we show
the variances used in the local portion of Step 3.  For the global step we use a covariance
matrix proportional to .  The proposal variance for the severity random effectsÐ\ \ÑX "

#3 was chosen to be 3.5, and the variance for the dispersion  was 0.04.  In general, the@
variance parameters are highly dependent on the particular dataset under investigation.

Table B.1. Proposal variances for the local step ( )Section 3, Step
Proposal Variance

Intercept  0.0024
Non-molars 0.5010

Sex 0.0072
0.0051
0.0056
0.0002
0.0017
0.0

ExamAge
FlIntake
SodaPop

ToothBrush
DentalVisit 044

0.0056
0.0033

FlTrt
FlHome 

After running the MCMC algorithm for the required number of iterations, it is important
to check the chain for appropriate mixing.  In Figure B.1, we show 8 trace plots as a
representation of a full inspection of the trace plots of all parameters.  To assess overall
mixing of the model, we first consider the log-likelihood functions of the presence (zero)
and severity (count) models, given by
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We also consider the plots for the intercepts of both models, the coefficient of the sixth
predictor (ToothBrush), the log-determinant of the random effect matrix, and the
dispersion parameter . Due to the interdependencies in the elements of  from the@ D
positive definite constraint, it is easier to inspect the univariate summary . The691Ðl lÑD
log-likelihood indicate good mixing overall.  We see the presence model tends to mix
better than the severity, which is unsurprising since the count model contains less data
(~12% of the original data) and requires MH sampling. Overall, we find these figures to
indicate appropriate mixing of the chain.



Table B.2. Geweke test statistics for both the presence and severity models based on
hurdle mixed CMP model as applied to the IFS data

hurdle mixed CMP
Presence Model Severity Model

logL 1.8614 1.9207
Intercept  0.9578  0.8026

Non-molars -0.3295 -1.3654
Sex -0.6769 -0.5345

ExamAge
FlIntake
SodaPop

ToothBrush
DentalVisit

FlTrt

-1.9731 -0.2983
-0.3715 -0.8993
  0.5293  0.4771
-0.9174 -0.1640
 -1.3159 -1.0548
  1.2157  0.8993
  0.2977  0.5488

  N/A  1.9936
log(| |)   0.8176

FlHome 
@

D

The MCMC algorithm introduced in Section 3 of the manuscript was written in R.  For
the IFS case study, sampling took slightly less than 5 days to run 65,000 iterations on a
Lenovo Windows desktop computer with an Intel 3.4 GHz processor with 16 gb RAM.
In general, we have found the computational time to be quite variable to the different
aspects of the data used. In particular, we have found the following components to impact
computational time: the size of datasets (overall  and/or number of clusters ), percentR 8
of the data that are zero counts, and complexity of the random effect model structure
(especially for the CMP component).



Figure B.1. Trace plots of selected parameters from IFS analysis

 
To further investigate convergence of the MCMC chain, we consider the Geweke
diagnostic as shown in Table B.2. The test statistic values for most parameters are within
the =0.05 critical level, and so conclude that the chain has converged to the appropriateα
stationary distribution.



Web Appendix C. Additional Simulation Study
In this section, we consider a third simulation setting where the true data generating
model does not include zero inflation. The true model is an untruncated, mixed effect
CMP so that zeroes come from the same probability model as the positive counts (unlike
the hurdle model was propose). The true value for the regression coefficients and
dispersion are given in Table C.1, and the covariate are chosen as in the simulations of
Section 4.  The random effect  is drawn from #3 the  block of  ( , , ) in the# D 5 5 533 34 44

previouse simulations.
 We generate 200 datasets from this model, and apply both our proposed hurdle
mixed CMP model and the true mixed CMP model to each.  Posterior samples of the
model parameters are obtained by running the MCMC algorithm for 65,000 iterations
with 50,000 samples collected after discarding the first 15,000 as burn-in iterations.  As
the mixed CMP (true model) models the zero counts as part of the overall CMP
distribution, there are no  parameters for the presence model, as in our hurdle approach."
In Table C.1, we show estimation accuracy for only those parameters defined in the true
model.
 First, we consider the estimation of the coefficients - . The biases and MSEsα α" %

from the (true) mixed CMP model are slightly smaller than those from the hurdle mixed
CMP, as expected, but the differences are relatively smaller. Recall that under this hurdle
model, only the positive counts (around 62% of the simulated data) are used to estimate
these parameters, so we would expect these estimators to be less efficient than the CMP
estimators that use the full data. We then conclude that these parameters are still well
estimated by the hurdle model even under this model over-parameterization.
  there is some positive bias in the estimation of the intercept  underWe note that α!

the hurdle model. This is to be expected since the hurdle model is fitting a distribution
with support {1, 2, 3, } versus the true CMP with support {0, 1, 2, }.  Similarly, theá á
dispersion  is slightly biases high (understating the overdispersion).  Again, this is the@
anticipated behavior since variability is lost by excluding 0 from the support.
 In conclusion, we find that our CMP model still correctly estimates the impact of
the predictors on the count response, even when the model is overspecified to include a
separate model for the zero counts.  Similar to the second simulation of Section 4 where
the true model was the simpler hurdle Poisson, we again find that our proposed approach
performs well under various forms of model misspecification.



Table C.1. Summary of the severity model parameter estimation from hurdle CMP and
mixed CMP in the simulation study where the true model is a mixed effects model with
CMP.

 hurdle mixed CMP mixed CMP
True   Bias MSE    Bias MSE
 1.00    0.1300  0.0664  0.0361 0.0382
-1.00 -0.0227 0.0099 -0.0141 0.0054
-0.1

α
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α
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# 5 -0.0049 0.0148 -0.0003 0.0124
-0.075 -0.0061 0.0004 -0.0029 0.0003
 0.10  0.0052 0.0098  0.0013 0.0083
 0.80  0.0854 0.0118  0.0248 0.002

α
α
s
s
@s

$

%

7
 


