Supplementary Information

Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors.

Tetsuo Yamashita^{1,*,†}, Daniel Ken Inaoka^{2,3,†}, Tomoo Shiba^{4,†}, Takumi Oohashi², So Iwata^{5,6,7,8,9}, Takao Yagi¹⁰, Hiroaki Kosaka^{1,‡}, Hideto Miyoshi¹¹, Shigeharu Harada^{4,*}, Kiyoshi Kita^{2,3}, Katsuya Hirano¹

¹Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan.

²Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan

³School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan

⁴Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan

⁵Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK.

⁶Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK.

⁷Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Human Receptor Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

⁸Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan.

⁹Systems and Structural Biology Centre, RIKEN, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

¹⁰Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.

¹¹Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

*Correspondence: harada@kit.ac.jp (S.H.)

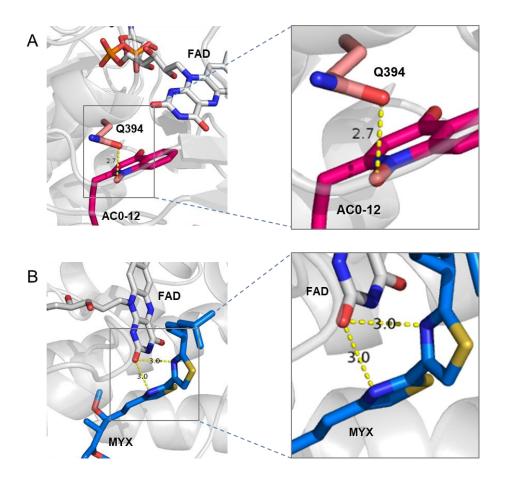
tyama@med.kagawa-u.ac.jp (T. Yamashita)

[†]These authors contributed equally to this work.

[‡]Present address: Osaka Jikei College, 1-2-8 Miyahara, Yodogawa-Ku, Osaka 532-0003, Japan.

Supplementary Methods

The expression and purification of Ndi1. The mature Ndi1, which lacks a mitochondrial targeting signal, is expressed as an recombinant protein tagged with (His)₁₀ by pET16b vector and *E. coli* BL21(DE3)pLysS. The construction of the expression plasmid, pET16b(NDI1-m), was described previously ¹. The bacterial cells harboring pET16b(NDI1-m) were grown in 5 mL of 2 × YT medium containing 100 µg/mL of ampicillin and 20 µg/mL of chloramphenicol for about 7–8 h with rotation at 220 rpm at 37°C and then they were inoculated to 500 mL of MagicMediaTM *E. coli* expression medium (Life Technologies) containing 100 µg/mL of ampicillin for the expression of recombinant proteins. This media does not require isopropyl β-D-thiogalactopyranoside for the induction of the expression. The cells were cultured in highly aerated conditions using a 2.5 L baffled flask (Ultra Yield flaskTM) with rotation at 300 rpm at 37°C. After 15-16 h, the cells were collected by centrifugation at 8,000 × g for 10 min.


The wild-type Ndi1 used in the crystallization trial and the evaluation experiments of inhibitors was purified using a detergent exchange procedure, as described previously¹. The harvested cells were homogenized in 50 mM Tris-HCl (pH 8.0 at 25°C), 1 mM EDTA, and protease inhibitor cocktail (cOmplete ULTRA Tablets; Roche) by freeze-and-thaw cycles (repeated two times) in liquid nitrogen with sonication for 3 min (Output: 20%, 1/4" microchip, SONIFIER 250D-Advanced; Branson). The homogenates were centrifuged at $10,000 \times g$ for 10 min at 4°C to remove unbroken cells and inclusion bodies, and the supernatant was further centrifuged at 183,000 \times g for 90 min at 4°C. The pellet (membrane fraction) was then suspended at 5 mg of protein/ml in 50 mM Tris-HCl (pH 8.0 at 4°C), 200 mM NaCl, 0.1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 10% glycerol (buffer A). After adding Triton X-100 at a final concentration of 0.3% (w/v), the sample was incubated for 30 min at 4°C with slow stirring and centrifuged at $183,000 \times g$ for 90 min at 4°C. The supernatant was loaded onto a Ni-sepharose column (HisTrap HP, 5 mL; GE healthcare), which was equilibrated with buffer A containing 0.02% (w/v) Triton X-100. The column was washed with 10 column volumes of buffer A containing 0.1% (w/v) Triton X-100 and 15 mM histidine. The column was subjected to detergent exchange by washing with 5 column volumes of buffer A, 10 column volumes of buffer A containing 0.1% (w/v) dodecyl- β -D-maltoside (DDM), and 5 volumes of buffer A containing 0.02% (w/v) DDM. Thereafter, the enzyme was eluted with buffer A containing 0.02% (w/v) DDM and 200 mM histidine and 50 mM imidazole. The eluents were immediately loaded onto a desalting column (Econo-Pac 10DG, 10 ml; Bio-Rad), which had been equilibrated with 50 mM Mops-NaOH (pH 7.0) containing 0.1 mM EDTA, 10% (w/v) glycerol, and 0.02% (w/v) DDM. The desalted specimen was then concentrated with Amicon-Ultra (molecular weight cut-off 30K; Millipore) to 10 mg of protein/ml. The yield of Ndi1 contains >20 mg/L of culture media. The purity of the Ndi1 preparations was approximately 90%, as determined by the intensity of the 57 kDa band on a SDS-PAGE gel stained with CBB Stain One Super (Nacalai, Japan). The purified recombinant Ndi1 was quickly frozen in liquid nitrogen and stored at -80°C until use.

Site-directed mutagenesis. The amino acid replacements of Ndi1 were basically performed with PrimeSTAR mutagenesis basal kit (Takara, Japan) using pET16b(NDI1-m) (2) and a synthetic oligonucleotide primer set (Table S2). The mutagenesis of H397 was performed with a QuikChange II XL site-directed mutagenesis kit (Stratagene, CA). Each mutation was confirmed through DNA sequencing (DNA sequencing service, Eurofins). The purification procedure of wild-type and mutant enzymes, used for the determination of the kinetic parameters (Table 2), was basically the same as the above procedure, without the replacement of the detergent from Triton X-100 with DDM. After washing the enzyme with buffer A containing 0.1% Triton X-100 and 15 mM histidine, 0.02% Triton X-100 was added to all buffer as a substitute for DDM. With the exception of 5 mutants containing L444D, I459A, I459N, R479I, and R479H, which showed a yield <10% of wild-type (1.04, 1.86, 1.58, 1.06, and 1.74 mg of protein/L of culture media, respectively), the yields of the mutant enzymes were comparable to the yield of the wild-type enzyme.

References

1 Yamashita, T., Nakamaru-Ogiso, E., Miyoshi, H., Matsuno-Yagi, A. & Yagi, T. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. *J Biol Chem* **282**, 6012-6020, (2007).

Supplementary Figures

Figure S1. Amino acid residues contributing to the interaction with AC0-12 and myxothiazol molecules by hydrogen bonding. The protein backbone is represented by a gray cartoon, and the FAD and Gln394 (Q394) molecules are indicated with white and pale orange, respectively. (*A*) Interaction between Q394 and AC0-12 (red). (*B*) Interaction between the isoalloxazine ring of FAD and myxothiazol (blue).

Data set	NDH2-stigmatellin	NDH2-AC0-12	NDH2-
	-		myxothiazol
Data collection			
Space group	$C222_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
Cell parameters			
<i>a / b / c</i> (Å)	116.7, 128.5, 86.7	69.9, 115.8, 166.5	70.3, 116.4, 166.6
X-ray source	SPring8 BL44XU	SPring8 BL44XU	KEK-PF 17A
Wavelength (Å)	0.9000	0.9000	0.9800
Temperature (K)	100	100	100
Resolution (Å)	50.0-1.85 (1.88-1.85)	50.0-3.4 (3.46-3.4)	50-3.2 (3.26-3.2)
Total reflections	301,479	90,367	147,138
Unique reflections	55,879	18,371	22,984
Completeness (%)	99.9 (100.0)	97.3 (98.6)	98.1 (99.6)
R _{merge} I	0.086 (0.786)	0.094(0.764)	0.125 (0.609)
$I/\sigma(I)$	7.1 (1.8)	7.9 (1.2)	7.1 (2.7)
Redundancy	5.4 (5.0)	4.9 (4.6)	6.5 (5.8)
<u>Refinement</u>			
Resolution (Å)	30 - 1.85	30 - 3.4	20 - 3.2
No. of reflections	49,008	15,012	19,430
$R_{\rm work} / R_{\rm free}$	0.182 / 0.204	0.207 / 0.299	0.220 / 0.285
Average <i>B</i> -factors ($Å^2$)	24.3	62.9	78.4
rmsd from ideal values			
Bond length (Å)	0.007	0.011	0.008
Bond angle (°)	1.44	1.61	1.43
Residues in the Ramachandran plot			
(%) [*]	92.1	79.5	82.3
Most favored regions	7.9	19.1	17.0
Additionally allowed regions	0.0	1.4	0.6
Generously allowed regions	0.0	0.0	0.0
Disallowed regions			
Protein Data Bank ID code	5YJW	5YJY	5YJX

 Table S1. Data collection and refinement statistics

* calculated by Procheck

Table S2. The primers used for the site-directed mutagenesis of Ndi1

mutant	forward primer	reverse primer
W63F	5'-TCGGGGTTCGGAGCTATTTCGTTTTTAAAGCAC-3'	5'-AGCTCCGAACCCGAACCCAGTATCAGCACGTT-3'
A393G	5'-CCAACCGGCCAAGTAGCGCACCAAGAG-3'	5'-TACTTGGCCGGTTGGTGGCAACCCAGC-3'
Q394G	5'-ACCGCCGGAGTAGCGCACCAAGAGGCC-3'	5'-CGCTACTCCGGCGGTTGGTGGCAACCC-3'
Q394A	5'-ACCGCCGCAGTAGCGCACCAAGAGGCCGAATAT-3'	5'-CGCTACTGCGGCGGTTGGTGGCAACCCAGCAAA-3'
H397A	5'-GCCCAAGTAGCGGCCCAAGAGGCCG-3'	5'-CGGCCTCTTGGGCCGCTACTTGGGC-3'
L444D	5'-AACGATGATGGTGCCTTAGCATACCTGGGATCC-3'	5'-GGCACCATCATCGTTGTATTTGAAAGGTTTAAA-3'
L444N	5'-AACGATAATGGTGCCTTAGCATACCTGGGATCC-3'	5'-GGCACCATTATCGTTGTATTTGAAAGGTTTAAA-3'
L447N	5'-GGTGCCAATGCATACCTGGGATCCGAAAGGGCC-3'	5'-GTATGCATTGGCACCTAAATCGTTGTATTTGAA-3'
I459A	5'-GCAACCGCACGTTCCGGTAAGAGAACATTTTAC-3'	5'-GGAACGTGCGGTTGCAATGGCCCTTTCGGATCC-3'
I459N	5'-GCAACCAATCGTTCCGGTAAGAGAACATTTTAC-3'	5'-GGAACGATTGGTTGCAATGGCCCTTTCGGATCC-3'
I459W	5'-GCAACCTGGCGTTCCGGTAAGAGAACA-3'	5'-GGAACGCCAGGTTGCAATGGCCCTTTC-3'
R479I	5'-CTTATTCATAATTTTGTACTTGTCCATGATTCT-3'	5'-GTACAAAATTATCCATAAGTAGAAGGTCATTAAGC-3'
R479A	5'-TTATGGGCAATTTTGTACTTGTCCATG-3'	5'-CAAAATTGCCCATAAGTAGAAGGTCAT-3'
R479K	5'-TTATGGAAGATTTTGTACTTGTCCATG-3'	5'-CAAAATCTTCCATAAGTAGAAGGTCAT-3'
R479H	5'-TTATGGCACATTTTGTACTTGTCCATG-3'	5'-CAAAATGTGCCATAAGTAGAAGGTCAT-3'
Y482F	5'-ATTTTGTTCTTGTCCATGATTCTATCT-3'	5'-GGACAAGAACAAAATTCTCCATAAGTA-3'
S484F	5'-TACTTGTTCATGATTCTATCTGCAAGA-3'	5'-AATCATGAACAAGTACAAAATTCTCCA-3'
S484I	5'-TACTTGATCATGATTCTATCTGCAAGA-3'	5'-AATCATGATCAAGTACAAAATTCTCCA-3'
M485A	5'-TTGTCCGCGATTCTATCTGCAAGATCG-3'	5'-TAGAATCGCGGACAAGTACAAAATTCT-3'
M485E	5'-TTGTCCGAGATTCTATCTGCAAGATCG-3'	5'-TAGAATCTCGGACAAGTACAAAATTCTCC-3'
L487A	5'-ATGATTGCATCTGCAAGATCGAGATTA-3'	5'-TGCAGATGCAATCATGGACAAGTACAA-3'

Bold typefaces indicate the introduced mutation sites.