Supporting Information

David E. Condon, Phu V. Tran, Yu-Chin Lien, Jonathan Schug, Michael K. Georgieff, Rebecca A. Simmons and Kyoung-Jae Won

Contents

S1 Artificial Data	2
S2 DMR-Calling on Artificial Data Set	2
S3 Rat Data	4
S4 Effects of Parameters on Number of DMRs Identified in Rat Hippocampus	9

Figure S1: p-values and percent differences in the artificial data sets. Each point in each graph represents a single CpG. Background 1 DMRs show greater differences between groups than between group 2 sets. DMRs become increasingly similar to one another when progressing from sets 1-4 in both backgrounds, i.e. set 1.1 shows greater differences in methylation than set 1.2, etc.

S2 DMR-Calling on Artificial Data Set

	DMRs	Program	False Negative	False Positive	True Positive	Overlay	Reverse Overlay	Jaccard
		Defiant	4	0	187	97	99	0.97
		BH	4	0	187	97	99	0.97
DDDG 1 1	101	BY	4	0	187	97	99	0.97
I REPRESENT	191	Holm	4	0	187	97	99	0.97
		Hochberg	4	0	187	97	99	0.97
		Bonferroni	4	0	187	97	99	0.97
		Defiant	12	0	179	93	99	0.93
		BH	10	0	181	94	99	0.94
RRBS 1.2	191	BY	10	0	181	94	99	0.94
		Holm	10	0	181	94	99	0.94
		Hochberg	10	0	181	94	99	0.94
ļ		Bonferroni	10	0	181	94	99	0.94
		Defiant	14	0	177	92	99	0.92
		BH	12	0	179	93	99	0.93
RRBS 1.3	191	BY	12	0	179	93	99	0.93
		Holm	12	0	179	92	99	0.9
		Hochberg	12	0	179	92	99	0.9
		Bonferroni	12	0	179	92	99	0.9
		Defiant	12	0	179	91	99	0.91
		BH	8	0	183	92	98	0.79
RRBS 1.4	191	Holm	152		180	0	94	0.51
		Hochberg	153	0	38	9	01	0.008
		Ronformoni	153	0	20	9	01	0.008
		Definet	155	0	170	9	51	0.003
		Denant		0	179	05	95	0.07
		BV	0		179	95	90	0.93
RRBS 2.1	188	Holm	9		179	94	96	0.49
		Hochberg	9	l õ	179	94	96	0.49
		Bonferroni	9	l õ	179	94	96	0.49
		Defiant	14	0	174	92	93	0,56
		BH	11	ő	177	94	99	0.92
DDDCCC	100	BY	10	Ő	178	95	98	0.85
RRBS 2.2	188	Holm	20	Ő	168	82	93	0.34
		Hochberg	20	0	168	82	93	0.34
		Bonferroni	20	0	168	81	93	0.33
		Defiant	16	0	172	90	93	0.55
		BH	13	0	175	93	94	0.46
DDDG 22	199	BY	15	0	173	85	93	0.38
RRD5 2.3	100	Holm	141	0	47	14	94	0.12
		Hochberg	141	0	47	14	94	0.12
		Bonferroni	141	0	47	14	94	0.12
		Defiant	66	0	122	50	96	0.39
		BH	186	0	2	0.24	95	0.0011
RRBS 2.4	188	BY	0	0	0	0	0	0
		Holm	0	0	0	0	0	0
		Hochberg	0	0	0	0	0	0
		Bonterroni	0	0	0	0	0	0
		Defiant	11	0	984	98	99	0.99
		BH	11	0	984	98	99	0.99
WGBS 1.1	995	Holm	11	0	984	98	99	0.99
		Hochberg	11	0	984	98	99	0.98
		Bonferroni	11	0	984	98	99	0.98
		Defiant	11	0	984	98	99	0.99
		BH	11	ŏ	984	98	99	0.99
		BY	11	ŏ	984	98	99	0.99
WGBS 1.2	995	Holm	11	0	984	1e + 02	98	0.79
		Hochberg	11	0	984	1e + 02	98	0.79
		Bonferroni	11	0	984	1e + 02	98	0.79
		Defiant	19	0	976	97	99	0.98
		BH	19	0	976	98	99	0.98
WGBS 1.3	995	BY	17	0	978	99	98	0.86
		Holm	8	0	987	1.1e+02	88	0.37
		Hochberg	8	0	987	1.1e+02	88	0.37
L		Bonferroni	8	0	987	1.1e+02	88	0.37
		Detiant	15		980	93	99	0.94
		BH	16		979	94	96	0.65
WGBS 1.4	995		649		530	30	70	0.3
		Hochberg	0/2		52	2.0	78	0.025
		Bonferron	9/2		52	2.8	78	0.025
	1	Defiant	18		970	98	98	0.020
		BH	18	l õ	970	97	99	0.96
		BY	16	Ő	972	98	98	0.84
WGBS 2.1	988	Holm	98	Ő	890	90	86	0.32
		Hochberg	98	0	890	90	86	0.32
		Bonferroni	98	0	890	90	86	0.32
		Defiant	22	0	966	97	98	0.96
		BH	20	0	968	97	96	0.67
WGPS 22	000	BY	18	0	970	99	93	0.51
VVGBS 2.2	988	Holm	350	0	638	57	83	0.23
		Hochberg	350	0	638	57	83	0.23
L		Bonferroni	350	0	638	57	83	0.23
		Defiant	33	0	955	94	98	0.93
		BH	51	0	937	94	88	0.39
WGBS 2.3	988	BY	233	0	755	73	83	0.25
		Holm	920	0	68	4.4	82	0.039
		Hochberg	920	0	68	4.4	82	0.039
		Bonierroni	920		68	4.4	82	0.039
		Denant BU	392		596	47	99	0.49
		BV	0				0	
WGBS 2.4	988	Holm	0	0	0	l õ	0	ő
		Hochberg	0	0	0	l õ	0	ő
		Bonferroni	Ő	Ő	Ő	Ő	ő	ő
L	1	Bomorioni		Y				

Table S1: Complete summary of data set performance. Each program is run on the artificial data set by Jühling, et al., and the performance is quantified according to column headings here. True negatives do not exist in this regime. Jüling, et al. made 200 DMRs in each RRBS data set, and 1000 DMRs in each WGBS data set. However, some of these DMRs overlap, which are combined to give the totals in the second column. This data is plotted in Figure 4.

	Defiant	MethylKit	MethylSig	Metilene	RADMeth	RnBeads
Defiant	1	6.8×-12	6.1×10^{-7}	0.81	0.02	1×10^{-5}
MethylKit	6.8×10^{-12}	1	0.3	1.1×10^{-12}	0.00024	0.22
MethylSig	6.1×10^{-7}	0.3	1	4×10^{-7}	0.0055	0.78
Metilene	0.81	1.1×10^{-12}	4×10^{-7}	1	0.018	8×10^{-6}
RADMeth	0.02	0.00024	0.0055	0.018	1	0.017
RnBeads	1×10^{-5}	0.22	0.78	8×10^{-6}	0.017	1

Table S2: Similarity of the results. A p-value is computed based on Welch's t-test to test if the F1 values are significantly different from each other. Each data set contains 16 F1 values, which are visualized in the main manuscripts Figure 3. Smaller p-values indicate two sets have similar prediction quality, and larger p-values indicate dissimilar prediction quality. Defiant and Metilene are very similar to each other, while MethylKit, MethylSig, and RnBeads are all similar.

S3 Rat Data

Table S3: Differentially Methylated Regions in rat hippocampus from iron-deficient diet. Percentage differences are weighted.

Chr	Start-End	CpN	ΔC_{PN}	Mean.Diff.	Control	FeDef	p(DMR)	q(DMR, BH)	Gene
1	2984116-2984175	5	3	-54.1	68.2, 87.8, 94.1	35.5, 3.5, 66.7	0.030273	0.0370722	Ust
1	3283278-3283785	8	2	26.3	85.1,70.7,62.0	98.1,98.7,95.2	0.026841	0.0349238	n/a
1	3332817-3332836	5	4	49.0	47.1, 30.0, 32.4	99.2,79.0,41.3	0.0217799	0.0321781	n/a
1	14745012-14745130	5	2	-42.4	57.2, 78.3, 52.5	30.9,16.9,31.1	0.0112178	0.0254067	n/a
1	24003758-24003842	5	4	-52.9	63.5,97.3,85.9	18.9,25.4,62.7	0.0113219	0.0254067	n/a
1	41054728-41054799	5	4	-47.1	54.5,67.1,52.9	2.2,23.7,13.7	0.00374428	0.0176779	Tmem181
1	411/8581-411/8648	5	4	51.9	32.6,27.0,30.8	82.5,89.7,69.7	0.00405702	0.0178665	Ezr
1	53742719-53742971	5	2	50.5	68.4,31.1,43.8	98.7,97.2,82.0	0.0145519	0.0282406	n/a
1	54090073-54090645	5	2	11.8	73.5,61.0,58.8	74 5 24 7 70 0	0.0727801	0.074074	n/a Di-1-2
1	55893444-55893557 77195564 77195647	10	3	48.0	34.9,9.8,2.4	14.5,34.7,70.9	0.0181842	0.0307102	Riok2
1	//135504-//13504/ 82075016 82075160	10	10	- ((. (76.6,89.9,88.6	33.7,1.0,28.0	0.00378043	0.01/07/9	FKTP
1	83973010-83973109	10	3	21.5	00.3,00.0,77.8	5 2 10 0 10 0	0.00801934	0.0241300	n/a D=f1
1	84451057-84451280	10	4	-20.0	49 6 47 5 41 2	3.2,19.9,10.0	0.0333003	0.0387104	U-f2
1	87122065 87122052	6	2	-10.0	47.7.1.4.4.6	52 4 80 0 74 6	0.00230301	0.0102422	Katd15
1	111592052-111592130	5	5	34.7	29 1 32 2 30 8	66 5 66 4 64 3	2 323610-06	0.0005321027	Snurf
1	121044743-121044809	6	6	63.2	0 0 0 0 38 2	76 9 92 9 73 7	0.0155784	0.0291518	n/a
1	128654487-128654533	7	6	59.7	20 8 44 2 4 9	82 0 89 1 74 8	0.0178515	0.0307102	Chd2
1	158953236-158953343	5	3	28.6	46.6.35.1.42.3	62.1.80.0.64.6	0.0108184	0.0252358	Pde2a
1	171993800-171993818	8	6	73.6	1.0.1.0.100.0	100.0.55.0.100.0	0.0179782	0.0307102	Spon1
1	172182951-172183695	5	3	25.1	38.5.55.6.50.5	74.4.81.2.61.6	0.00926084	0.0241306	n/a
1	185363658-185363687	6	4	39.5	19.1.42.2.39.4	61.0.81.6.57.4	0.0116517	0.0255446	Sbk1
1	202868640-202869000	7	2	15.9	47.9.53.6.57.2	68.3.68.7.73.4	0.00932277	0.0241306	n/a
1	206461401-206461447	5	2	54.8	29.5, 0.0, 19.6	64.0,86.3,56.5	0.00531099	0.019938	Unc93b1
1	208319368-208319451	10	7	12.9	4.4, 2.5, 0.4	16.2, 14.8, 14.0	0.00144341	0.0162422	Map3k11
1	209815225-209815262	5	3	35.4	38.0,0.0,10.0	45.0,49.0,71.8	0.0236085	0.0329655	Macrod1
1	220326761-220326791	5	3	32.6	0.8, 0.0, 0.0	27.6,39.1,0.0	0.0327091	0.0385946	Foxb2
1	242506849-242506883	6	6	46.1	48.7, 36.0, 34.9	100.0,91.8,68.2	0.00979567	0.0242713	Pde6c
1	252626662-252626754	5	3	-39.4	38.3, 56.3, 48.6	11.0,4.7,16.9	0.00302388	0.0162422	Sh3pxd2a
1	267364979-267365031	7	5	12.2	0.0,0.0,0.0	13.6,5.2,11.8	0.0170925	0.0305796	n/a
10	4888901-4889304	9	6	-33.6	86.2,83.2,94.6	67.2,48.2,53.6	0.00524075	0.019938	n/a
10	11841326-11841423	5	2	-19.1	93.8,94.4,92.4	75.6,72.0,83.5	0.00872419	0.0241306	n/a
10	20351685-20351826	5	4	-41.5	73.3, 73.2, 85.2	45.2,26.6,60.2	0.0157616	0.0291518	Slit3
10	21254640-21254742	5	2	42.5	35.1, 20.3, 38.4	73.4,81.5,69.1	0.000983834	0.0162422	Tenm2
10	40271922-40271951	8	7	-25.1	19.2, 30.4, 29.0	0.6,0.0,2.5	0.0104426	0.0249099	Hint1
10	45545289-45545547	6	2	17.8	48.3, 44.4, 35.0	54.8,61.6,62.1	0.0117995	0.0255446	n/a
10	55714200-55714272	5	2	-41.6	25.9,60.9,40.8	5.4,0.0,29.2	0.0156958	0.0291518	Arhgef15
10	57112714-57112782	5	3	-40.9	40.0, 57.7, 53.7	23.5,7.6,11.0	0.00132764	0.0162422	n/a
10	67191436-67191780	9	3	25.2	76.8,51.7,59.7	84.8,95.6,73.5	0.0301709	0.0370722	n/a
10	77093819-77093868	5	5	71.5	10.8,16.7,10.3	93.9,78.0,75.9	0.00184672	0.0162422	n/a
10	105396059-105396099	9	6	-17.2	20.3,23.8,11.2	0.8,0.7,1.8	0.0282488	0.0365478	Ushig
10	108269686-108269764	21	15	28.8	22.0,19.5,16.4	45.0,56.0,22.0	0.0391476	0.0431	Usp36
11	17146066-17146106	9	8	-30.2	42.6,53.0,59.0	35.0,7.4,24.7	0.0245269	0.0336327	n/a
11	31/4349/-31/43549	5	4	29.8	47.7,40.7,27.5	68.7,71.7,61.4	0.0204757	0.0310007	Anh man 21
11	03833739-03833814	0	3	50.8	5.7,0.0,0.9	38.1,38.7,21.3	0.0200422	0.0340725	Arngapsi
11	10060115 10060156	5	9	32.0	95 4 100 0 09 9	49.0,47.0,02.3	0.00525952	0.019938	Trrop
12	16089265-16089348	5	4	40.2	0.0.18.6.8.5	58 6 49 8 27 5	0.00700103	0.0241306	Prkar1b
12	22788417-22788467	5	4	-36.6	69 9 82 4 88 6	23 2 53 3 49 0	0.0213802	0.0321556	Abhd11
12	23585373-23585418	q	7	-38.4	21 9 31 2 51 2	0 0 12 7 2 4	0.0221575	0.0322953	Ncf1
12	23791973-23792113	6	4	39.2	34 8 33 1 22 7	72 8 64 4 55 7	0.00124335	0.0162422	n/a
12	33719678-33719732	5	3	56.4	25.8.0.0.2.2	56.0.81.4.15.4	0.0254836	0.0343085	Hip1r
12	34621065-34621083	5	4	-37.7	39.4.55.7.65.6	12.8.3.7.28.8	0.00759221	0.0238167	Tmem120b
12	39062421-39062490	5	5	72.5	18.7.0.0.16.7	88.3.92.6.69.1	0.000822336	0.0162422	n/a
12	43111111-43111179	5	4	26.8	20.4.0.0.14.7	36.2.47.3.24.7	0.00996287	0.0242713	Ankrd13a
13	40660450-40660482	5	4	37.9	2.8, 0.0, 25.8	59.9,40.8,47.8	0.0139099	0.0276989	n/a
13	44269540-44269643	5	2	28.6	35.2, 51.5, 39.0	61.8,68.5,90.7	0.0128098	0.0259597	Srgap2
13	48819200-48819299	31	22	29.8	47.6,31.8,37.7	66.8,66.6,74.6	0.00247569	0.0162422	n/a
13	51913209-51913262	5	3	42.7	36.7, 41.6, 45.9	81.8, 93.5, 66.4	0.0186019	0.0307102	n/a
13	69053464-69053587	6	3	-34.2	53.3, 79.4, 55.3	18.2, 39.0, 43.0	0.0230969	0.0327881	n/a
13	94586882-94586912	6	6	-44.2	43.8, 66.5, 57.3	0.8, 0.0, 31.1	0.0184648	0.0307102	Kif26b
13	95168374-95168497	6	3	-28.2	69.9, 87.0, 88.6	38.0,69.3,90.2	0.110058	0.111519	Smyd3
13	106031408-106031457	5	3	30.1	62.6, 54.4, 56.6	86.0,90.1,79.5	0.00071932	0.0162422	Ptpn14
14	2958537-2958713	5	2	11.8	65.0, 71.0, 79.5	76.4,82.7,88.2	0.0288184	0.0368358	n/a
14	4804119-4804353	6	3	-38.3	66.5, 65.2, 100.0	45.7,36.6,66.0	0.03895	0.0431	n/a
14	9078808-9078864	6	2	-27.8	85.5, 84.0, 82.3	73.8,48.3,62.3	0.0437367	0.0472439	Cds1
14	11126297-11126452	8	6	42.1	4.9, 1.0, 0.0	40.8,52.8,34.3	0.00739733	0.0235276	n/a
14	49295945-49296146	5	3	10.6	58.6,65.0,64.4	72.2,78.5,67.0	0.0298388	0.0369357	n/a
14	78263930-78263981	5	4	30.9	19.5,0.4,5.2	34.2,42.8,36.2	0.0099039	0.0242713	n/a
14	83328062-83328105	1 í	4	37.4	20.5,0.0,0.5	03.0,15.8,43.5	0.0119357	0.0255446	Sicbal
14	00032721-86532789	o c	2	10.5	08.3,82.9,61.1	11.4,13.9,86.8	0.116593	0.11762	Aebp1
14	00083202-86683607	9	5	19.3	30.0,45.5,42.7	50.5,00.8,52.2	0.0216243	0.0321556	Camk2b
14	92399000-92399670	6	3	-30.1	14.2,80.0,81.8	1 2 1 2 9 10 0	0.00393701	0.01/0//9	n/a Commd1
15	18685274 19695400	7	4	-40.4	11 / 1 1 1 1	24 4 21 2 26 5	0.00264069	0.0102422	Ketde
15	47353634-47353650	5	5	35.4	210007	0 0 46 2 20 1	0.0205073	0.0368358	n/s
15	56622270-56622384	5	2	27.4	61 6 65 9 59 5	94 1 93 0 68 9	0.020409	0.0316667	Cog3
15	57197525-57197705	5	3	46.7	54.2.35 4 46 4	88.2.99 0 84 5	0.00078294	0.0162422	n/a
15	71038760-71038830	7	4	-31.3	44.9.35.5.53 4	23.6.10.4.12.5	0.00478432	0.0192212	n/a
15	89916679-89916730	5	3	38.2	37.0.41.4.24 7	67.2.77.0.73.0	0.00283125	0.0162422	n/a
15	105901274-105901326	5	4	32.6	15.2,0.0.1.8	39.9,47.2.33.7	0.00470636	0.0192212	n/a
16	874927-874996	5	3	14.8	9.0,10.3.12.1	28.8,27.4.8.8	0.04543	0.0483882	n/a
<u> </u>				. C	ntinued on next p	909			

Chr	Start-End	CpN	$\Delta C_{\rm PN}$	Mean.Diff.	Control	FeDef	p(DMR)	q(DMR, BH)	Gene
16	2611707-2611912	6	5	-19.8	92.7,96.1,88.8	64.4,77.4,56.4	0.0453399	0.0483882	Arhgef3
16	9778982-9779163	6	2	-19.5	83.9,100.0,87.1	73.8,71.4,64.3	0.0284361	0.0365835	n/a
16	36318586-36318678	5	5 4	-20.4	42.9.58.3.41.0	18.3.7.9.25.0	0.00573369	0.0231017	Jak3 n/a
16	60564878-60564937	7	4	-19.4	6.2, 24.1, 20.4	0.3,0.0,3.2	0.0179139	0.0307102	Ppp1r3b
16	76246820-76247048	6	3	33.4	7.0,21.7,10.3	44.5,51.3,31.6	0.0041934	0.0181187	n/a
16	78707244-78707433	6	3	-48.5 23.1	51.5, 71.3, 57.0 53.8, 46.1, 50.0	68.0.79.0.71.3	0.00201781	0.0162422 0.019519	n/a n/a
16	83012122-83012301	7	2	17.4	20.7, 6.1, 16.6	30.8,33.4,33.6	0.0228205	0.0326618	n/a
17	4281441-4281478	8	8	33.7	0.0,1.7,18.9	37.1,54.2,1.8	0.0325863	0.0385946	n/a
17	15935669-15935742	5	4	32.7	41.7.39.7.57.0	83.1.86.7.76.6	0.0100801	0.0213201	n/a n/a
17	22396243-22396561	7	2	19.6	75.1,78.7,69.8	95.6, 92.0, 88.4	0.00218851	0.0162422	n/a
17	22609252-22609299	5	4	-56.5	57.5,100.0,81.5	28.7,25.7,53.3	0.00784158	0.0241306	n/a
17	73067990-73068071	6	2	-19.7	90.8.93.4.79.5	67.1.64.8.83.2	0.0183347	0.0385325	Adarb2
17	81114169-81114311	7	3	15.2	74.3,81.9,73.5	90.6,89.5,92.3	0.00923972	0.0241306	n/a
17	93284212-93284310	8	4	43.1	15.7,0.0,12.6	65.1,61.3,34.0	0.0191771	0.0307102	Armc3
18	23768658-23768682	9	9	22.3	0.4,0.0,12.9	19.1,32.5,18.6	0.0128081	0.0259597	n/a
18	24357111-24357179	10	8	-11.6	12.2, 12.5, 8.2	1.0,0.0,0.0	0.000746369	0.0162422	Lims2
18	31022806-31022976	5	2	-29.9	74.1,96.6,78.3	48.3,59.0,53.7	0.0189068	0.0307102	n/a DCD725020
18	49143687-49143733	7	5	-33.0	35.0.0.0.43.6	4.2.0.3.0.8	0.0475656	0.0504283	n/a
18	54715910-54716038	5	4	58.5	24.9, 38.7, 15.2	86.9,95.8,69.3	0.00179423	0.0162422	Adamts19
18	63553630-63553823	9	3	-15.1	81.2,76.0,77.9	58.3,68.6,62.7	0.0132092	0.0265342	n/a Dardo
19	22720661-22720747	6	2	24.3	64.5,74.8,56.6	80.2,94.9,95.6	0.0175453	0.0307102	n/a
19	22849465-22849522	6	3	-39.0	96.9,100.0,87.5	72.4, 44.5, 76.0	0.0291378	0.0368358	Dnaja2
19	25001054-25001122	6	5	37.6	42.5,17.8,50.4	94.7,69.5,69.1	0.0231951	0.0327881	n/a
19	38713521-38713538	5	2	46.9	33.3.10.9.38.1	69.2.82.5.59.3	0.00923039	0.0241306	n/a n/a
19	38980387-38980420	5	4	-23.1	70.0,80.0,88.4	65.3, 59.7, 53.8	0.016757	0.0304455	n/a
19	52002579-52002798	8	2	25.1	69.0,76.9,60.7	97.4,91.4,85.7	0.00908934	0.0241306	Jph3
19	12283994-12284047	5	3	27.9	2.0,0.0,0.0	39.0,28.4,13.5	0.0157852	0.0162422 0.0291518	n/a
2	29168336-29168379	9	4	21.2	2.1, 0.0, 0.3	0.0, 28.2, 17.5	0.0495389	0.0518009	n/a
2	31424242-31424271	6	2	17.9	0.0,0.0,3.1	20.7,11.4,17.6	0.00430524	0.0182159	Marveld2
2	121891228-121891476 181597557-181597692	5	4	-40.8	76.3.95.5.90.2	25.9,37.5,22.6	0.000798562	0.0162422	n/a n/a
2	221045909-221045998	5	3	21.1	73.8,73.9,78.5	98.5,97.0,88.4	0.00220147	0.0162422	n/a
2	235588411-235588653	7	4	-43.3	56.8,93.1,72.8	42.6,21.7,41.8	0.0125395	0.0259597	n/a
2	242429702-242430218 244585404-244585449	6	2	-23.4 59.7	45.9.82.4.17.9	97.0.100.0.63.0	0.0328644	0.0241306 0.0385946	n/a n/a
20	8714262-8714300	5	5	23.6	0.0,0.9,1.2	34.1,18.6,18.2	0.0322619	0.0385946	Btbd9
20	10508413-10508515	6	2	-20.5	91.5,95.2,93.4	68.8,75.3,71.4	0.00238295	0.0162422	n/a Di o
20	12719388-12719472 14232267-14232470	7	4	-57.3	31.2.20.1.50.0	69.0.58.6.49.6	0.0622895	0.0388641	n/a
20	21840729-21840811	17	14	31.1	58.3,61.6,41.0	63.0,89.3,89.8	0.025619	0.0343085	n/a
20	43959021-43959029	5	5	16.7	64.1,66.3,71.0	83.9,83.0,82.8	0.00664756	0.0227207	Rev31
20	45220690-45220716 512284-513118	5	2	47.9	15.3,0.0,17.7	52.1,69.9,61.1	0.00150237	0.0162422 0.0322953	Fig4
3	857533-857571	6	3	-21.5	90.4,83.3,85.7	67.5,62.8,75.9	0.00391654	0.0176779	n/a
3	6093327-6093452	5	3	-42.9	45.2,72.0,62.0	21.7,5.1,25.6	0.00598267	0.0215201	Sardh
3	23226986-23227030	11	9	-37.6	57.1.45.9.33.6	77.7.87.2.56.4	0.0190621	0.0307102	n/a n/a
3	52516532-52516792	5	2	17.1	85.2,85.3,79.2	100.0,99.6,100.0	0.00956842	0.0242094	Myo3b
3	90642611-90642715	5	2	-45.6	66.2,100.0,98.9	47.1,12.3,76.1	0.0409278	0.0448444	LOC691083
3	142445820-142445854	6	4	36.8	14.8,8.2,4.1	38.1,61.0,32.0	0.0313729	0.0380126	Scrt2
3	142623641 - 142623664	6	6	13.5	0.0,0.0,0.0	16.1, 14.1, 0.0	0.0376158	0.0420196	Tbc1d20
3	145186118-145186253	5	3	47.6	18.4,20.9,21.5		0.03125	0.0380126	n/a n/a
3	147652273-147652381	5	4	55.5	47.7,0.0,23.6	72.5,86.9,84.7	0.0202811	0.0316667	n/a
3	163145309 - 163145362	5	4	42.2	39.5, 28.1, 47.5	97.0, 83.5, 75.8	0.00219583	0.0162422	n/a
3	163998942-163999150	5	3 5	-48.2	81.0,89.2,65.8		0.00724292	0.023361	n/a Se1811
4	18887802-18887867	5	3	-36.5	93.3,82.7,91.5	54.9,45.0,84.6	0.0294021	0.0368358	n/a
4	30043178-30043287	6	3	-10.0	96.0,98.4,93.1	85.5,86.4,86.0	0.0150873	0.0287916	Pon2
4	64694008-64694079	5	3	35.6	0.6.0.0.0.0	34.3.42.9.19.2	0.0126591	0.0259597	Dgki n/a
4	79078961-79078979	5	5	-36.5	83.3,100.0,72.7	35.9,53.8,57.1	0.0161661	0.0296162	n/a
4	83224864-83224882	6	2	-23.3	16.6,45.8,35.5	15.4,5.1,26.5	0.0492341	0.0517184	n/a Marilio
4	117883970-117884074	5	2	-27.7	79.1.83.6.91.4	72.4.49.5.66.1	0.0233906	0.0328616	n/a
4	125493483-125493628	7	5	35.4	65.2, 52.4, 57.8	97.3, 98.6, 65.0	0.0348407	0.0396494	n/a
4	135068059-135068209	6	3	25.6	13.8,0.6,12.2	44.5,34.2,23.1	0.0109894	0.0252358	n/a
4	152175717-152175986	5	2	37.3	49.6,53.9,38.5	82.0,92.9,70.9	0.00389964	0.0176779	n/a n/a
4	155004956-155005063	5	2	27.9	28.9, 0.0, 11.6	40.5, 33.3, 55.8	0.0219386	0.0322048	Cacna1c
4	156652330-156652470	5	4 0	31.8 86.6	70.2,40.5,50.4	82.7,80.8,89.0	0.0349401	0.0396494	B4galnt3 Guev2a
4	180853644-180853654	6	2	-20.1	23.8,21.8,22.8	5.2,0.0,2.6	0.00293218	0.0162422	St8sia1
4	183227074-183227255	5	2	29.4	54.7,48.2,43.5	83.5,73.9,79.0	0.00134202	0.0162422	n/a
5	23291095-23291135 36423056-36423067	11 5	9 4	26.5 24.5	77.6,68.4,57.4	96.4,83.8,96.2 22,8.30.5.17.2	0.0189427	0.0307102 0.0307102	Clvs1 n/a
5	47480035-47480257	7	3	-20.7	21.0,25.0,25.6	4.4,3.2,2.4	0.000921858	0.0162422	n/a
5	74610996-74611190	5	2	-17.4	15.3,20.2,24.5	2.3,1.2,14.2	0.00704929	0.0231017	n/a
5	122024952-122025056 122084769-122084813	6	2 4	-35.3 56.0	16.7,0.0.21.0	20.9,18.7,40.3 68.0,80.1.63.4	0.0123664 0.000769255	0.0259597 0.0162422	n/a Ak4
5	135420990-135421016	7	6	-35.1	56.7,67.3,62.2	22.5, 18.8, 40.3	0.00915786	0.0241306	n/a
5	136132686-136132721	5 7	4	-56.8	57.4,87.2,74.1	47.1,7.9,3.2	0.01102	0.0252358	Mknk1
5	149435589-149435615	5	3 4	-52.3	5.1,0.0,1.2 78.9,90.2,100.0	40.0,45.7.28.9	0.0010397944	0.0162422 0.0162422	n/a n/a
6	12391051-12391125	15	12	24.9	39.3, 44.6, 44.7	71.5,59.8,77.5	0.0168846	0.0304455	Ppp1r21
6	55087640-55087713	5	3	-37.4	48.0,46.8,47.4	0.5,10.1,28.3	0.0209088	0.0319208	n/a
6	96289551-96289692	6	3	60.8	47.2,12.2,33.1	90.3,90.9,68.4	0.00622269	0.021923	n/a
6	107440678-107440705	6	3	-13.3	10.1, 16.0, 19.1	0.3, 6.0, 0.5	0.00377919	0.0176779	Dpf3
6	122268714-122268843	8	5	28.1	10.0, 6.4, 1.7 77 3 75 0 70 6	47.7,31.6,27.2	0.00903122	0.0241306 0.0162422	n/a
6	132317229-132317284	6	4	44.7	15.8,32.0,16.6	59.8,73.3,30.8	0.0265253	0.0347103	Bcl11b
6	137232424-137232529	7	4	29.7	30.5,45.0,45.0	65.4,74.7,66.2	0.0036151	0.0176779	n/a
77	5989545-5989557 12927921-12927962	5	2	21.1	72.8,60.0,75.0	94.0,96.8,90.4	0.00304985	0.0162422 0.0338807	n/a Wiz
7	16313904-16313927	5	3	28.7	2.0,0.4,3.4	37.7,24.5,22.1	0.0173605	0.0307102	Kank3
7	20973985-20974033	6	4	42.0	25.0,9.1,26.2	52.0,79.9,68.8	0.0114275	0.0254067	Ric8b
77	21538395-21538476 32468442-32468577	7	3	33.7 38.7	10.9,0.0,2.2	24.0,54.4,42.1	0.0225117	0.0448748 0.0324225	n/a n/a
7	48108685-48110000	8	3	-14.8	96.9,90.4,81.9	72.7,81.6,64.3	0.050689	0.0525239	n/a
7	58578533-58578764	5	3	26.6	68.5,41.5,55.4	82.6,89.5,82.3	0.0326632	0.0385946	n/a
77	71564289-71564366	6 5	3	45.6 20.5	31.9,19.9,19.8 59.0 56 8 40 1	83.1,62.5,70.2	0.0349084	0.0162422	n/a n/a
7	125015154-125015274	6	2	-38.5	54.6,58.8,57.6	29.2,6.4,33.8	0.0294466	0.0368358	n/a
7	126341158-126341239	5	3	-28.3	30.8,34.1,31.9	8.7,0.9,5.2	0.00257108	0.0162422	n/a
77	135265350-135265404 139805770-139805786	5	3	38.2 14.6	33.3,19.1,4.3 3.8.5.4.14	61.8,50.8,54.1 10.6.21.9 8 0	0.0148276	0.0285338 0.0463007	Sic38a1 n/a
7	142086661-142086804	5	4	60.8	30.5,5.5,23.5	82.1,99.5,60.2	0.00882773	0.0241306	n/a
				C	ontinued on next p	age			

	Table S3 – continued from previous page									
Chr	Start-End	CpN	ΔC_{PN}	Mean.Diff.	Control	FeDef	p(DMR)	q(DMR, BH)	Gene	
8	6090401-6090446	6	4	28.4	45.3,67.3,57.6	89.0,83.3,83.9	0.0245255	0.0336327	n/a	
8	12721284-12721410	9	7	50.1	16.7, 5.4, 0.0	72.3,51.1,47.5	0.004375	0.0182159	Fat3	
8	41254229-41254287	6	3	30.8	49.2,37.1,46.8	70.5,78.4,63.8	0.00230177	0.0162422	n/a	
8	51154948-51155149	5	2	-18.3	50.3,55.6,52.3	15.2, 50.8, 34.1	0.186609	0.186609	n/a	
8	53698160-53698290	5	2	38.9	40.6,37.0,39.7	82.0,73.1,82.4	0.00239481	0.0162422	n/a	
8	65166756-65166792	6	6	28.1	71.2,63.6,72.9	98.8,99.6,97.4	0.00276201	0.0162422	n/a	
8	91817444-91817491	5	4	-69.0	83.4,100.0,58.3	6.9, 14.8, 17.2	0.00962034	0.0242094	Pgm3	
8	104424662-104424727	9	4	-10.7	34.9,32.0,25.3	21.4, 18.6, 18.7	0.0367213	0.0414245	Armc8	
8	107270544-107270587	5	3	33.2	16.4,0.0,0.0	47.5, 43.9, 7.9	0.0349745	0.0396494	Ephb1	
8	108640761-108640829	7	5	16.8	65.7,72.2,72.5	93.2,85.7,84.8	0.00282423	0.0162422	n/a	
8	125128537-125128625	5	4	-48.9	85.0,84.5,94.8	55.1, 28.6, 55.4	0.0144395	0.0282406	Mobp	
8	127158930-127158988	5	2	-25.0	47.0,29.9,28.6	0.0, 15.2, 10.0	0.0140888	0.0278133	Klhl40	
9	9045295-9045389	6	3	-29.0	61.6,67.1,58.9	26.1, 48.7, 38.4	0.0206041	0.0316667	Guca1a	
9	10483790-10483920	6	2	18.8	70.2,54.4,61.1	83.5,79.7,77.6	0.02386	0.0331148	n/a	
9	11436153-11436327	6	3	-44.0	82.9,85.7,88.1	52.0, 32.5, 45.3	0.00937828	0.0241306	n/a	
9	18057850-18057912	5	3	22.6	3.2,0.0,0.0	29.1, 19.5, 5.1	0.0263564	0.0346874	Tfap2b	
9	31431836-31431978	6	2	24.2	40.7,24.7,33.2	50.8, 62.6, 48.1	0.0106525	0.0251486	n/a	
9	32492545-32492748	6	2	-21.8	70.5,76.3,94.4	48.0,62.6,74.6	0.0567747	0.0585649	Bag2	
9	74595534-74595562	5	3	-14.3	0.0, 14.0, 18.4	0.4, 0.0, 1.6	0.0481507	0.0508134	Dnpep	
9	77468091-77468349	5	2	10.0	76.3,88.7,71.8	91.7, 89.5, 89.1	0.141672	0.142293	n/a	
9	77904490-77904556	5	3	27.4	59.1, 49.9, 49.1	65.4, 88.1, 78.4	0.0263288	0.0346874	Mogat1	
9	91559815-91560325	5	3	36.2	53.0,42.4,32.8	77.1,75.9,72.7	0.0119306	0.0255446	n/a	
9	107124722-107125470	5	2	-21.2	88.5,76.7,87.2	64.8, 55.7, 71.8	0.0122189	0.0259086	Arhgap28	
X	90842868-90842894	6	6	31.4	33.2,21.1,40.5	50.0, 71.2, 65.4	0.00652632	0.0226444	n/a	
X	90843046-90843140	12	9	32.4	33.3,20.3,23.1	76.3,48.5,51.2	0.0331123	0.0386873	n/a	
X	122513987-122514019	6	3	28.8	69.0,57.4,70.0	96.6,96.1,94.0	0.00850166	0.0241306	n/a	
X	130298607-130299446	7	2	10.8	59.1, 61.6, 52.3	61.9,72.9,65.0	0.0447212	0.0480806	n/a	
X	160446080-160446146	5	5	-55.2	59.0, 97.1, 93.8	31.4,34.9,28.1	0.0250428	0.0339338	n/a	
X	160539343-160539409	6	3	-38.2	78.5,100.0,74.9	64.9,30.9,65.2	0.0391317	0.0431	n/a	

Gene	# CpG	Δ Methylation	Description
Fkrp ^{†1}	10	-77.7	fukutin related protein
$Dip2a^{\dagger 2}$	10	-57.3	disco interacting protein 2 homolog A
$Dpf1^{†3,4}$	10	-20.6	D4, zinc and double PHD fingers family 1
$Usf2^{\dagger 5}$	10	-18.3	upstream transcription factor 2
$Lims2^{\dagger 6,7}$	10	-11.6	LIM and senescent cell antigen like domains 2
$Ncf1^{\dagger 8}$	9	-38.4	neutrophil cytosolic factor 1
Ush1g	9	-17.2	Usher syndrome 1G
$Armc8^{\dagger 9}$	9	-10.7	armadillo repeat containing 8
$Hint1^{\dagger 10}$	8	-25.1	histidine triad nucleotide binding protein 1
$Jak3^{*\dagger 11}$	8	-20.4	Janus kinase 3
Ppp1r3b*	7	-19.4	protein phosphatase 1, regulatory (inhibitor) subunit 3B
$Tal1^{\dagger 12}$	7	-35.1	T cell acute lymphocytic leukemia 1
Arhgef3 ^{*†13}	6	-19.8	Rho guanine nucleotide exchange factor (GEF) 3
$Bag2^{\dagger 14}$	6	-21.8	BCL2-associated athanogene 2
$Ss18l1^{+15}$	6	-18.6	synovial sarcoma translocation gene on chromosome 18-like 1
$Adarb2^{\dagger 16}$	6	-19.7	adenosine deaminase, RNA-specific, B2
Kif26b ^{†17}	6	-44.2	kinesin family member 26B
Guca1a ^{*†18}	6	-29.0	guanylate cyclase activator 1a (retina)
Cds1	6	-27.8	CDP-diacylglycerol synthase 1
Dnaja2 ^{†19}	6	-39.0	DnaJ heat shock protein family (Hsp40) member A2
Commd1 ^{†20}	6	-40.4	COMM domain containing 1
$St8sia1^{\dagger 21}$	6	-20.1	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1
Smyd3	6	-28.2	SET and MYND domain containing 3
$Dpf3^{\dagger 4}$	6	-13.3	D4, zinc and double PHD fingers, family 3
$Pon2^{\dagger 22}$	6	-10.0	paraoxonase 2
Pgm3* ^{†23}	5	-69.0	phosphoglucomutase 3
Arhgap28* ^{†24}	5	-21.2	Rho GTPase activating protein 28
Mknk1 ^{*†25}	5	-56.8	MAP kinase-interacting serine/threonine kinase 1
LOC691083	5	-45.6	Unknown
$Slit3^{\dagger 26}$	5	-41.5	slit homolog 3 (Drosophila)
$Tmem 120b^{\dagger 27}$	5	-37.7	transmembrane protein 120B
$Klhl40^{+28}$	5	-25.0	kelch-like 40
Pck1* ^{†29}	5	-48.2	phosphoenolpyruvate carboxykinase 1, cytosolic
$Dnpep^{\dagger 30}$	5	-14.3	aspartyl aminopeptidase
$Mobp^{\dagger 31}$	5	-48.9	myelin-associated oligodendrocytic basic protein
RGD735029	5	-17.2	Unknown
Trrap ^{†32}	5	-28.2	transformation/transcription domain-associated protein
$Tmem 181^{+33}$	5	-47.1	Unknown
$Sardh^{\dagger 34}$	5	-42.9	sarcosine dehydrogenase
$Wiz^{\dagger 35}$	5	-45.3	widely-interspaced zinc finger motifs
$Ust^{\dagger 36}$	5	-54.1	uronyl-2-sulfotransferase
Arhgef15 ^{†37}	5	-41.6	Rho guanine nucleotide exchange factor (GEF) 15
$Sh3pxd2a^{\dagger 38}$	5	-39.4	SH3 and PX domains 2A

Table S4: DMRs showing decreased methylation from an Fe-deficient diet in rat hippocampus data. DMRs are associated with genes based on a promoter cutoff of 15,000 nucleotides. Gene names are from MGI.

*Has role in GTPases and nucleotide exchange.

[†]Is associated with the hippocampus, neurons, and/or brain, with relevant literature cited.

Gene	# CpG	Δ Methylation	Description
Tnni1 ^{†39}	31	29.8	troponin I. skeletal, slow 1
$Usp36^{\dagger 40}$	21	28.8	ubiquitin specific peptidase 36
Ppp1r21/Ccdc128*41	15	24.0	protein phoenbatesen 1. regulatory subunit 21
Clye1	11	24.5	clauses in 1
Map3k11*†42	10	12.0	mitogen activited protein kinase kinase linase 11
Complete †43	10	12.9	allow colored this doe and art entries hinses II hat
$\operatorname{Camk2D}_{13}$	9	19.3	calcium/calmodulin-dependent protein kinase II, beta
$\operatorname{Iqcg}^{+44}$	9	52.6	IQ motif containing G
Gucy2c*+45	9	86.6	guanylate cyclase 2c
$Armc3^{\dagger 46}$	8	43.1	armadillo repeat containing 3
$\text{Spon1}^{\dagger 47}$	8	73.6	spondin 1, (f-spondin) extracellular matrix protein
$Jph3^{\dagger 48}$	8	25.1	junctophilin 3
$Slc5a1^{\dagger 49}$	7	37.4	solute carrier family 5 (sodium/glucose cotransporter), member 1
$Kctd6^{\dagger 50}$	7	27.3	potassium channel tetramerisation domain containing 6
$Chd2^{+51}$	7	59.7	chromodomain helicase DNA binding protein 2
$Capn12^{\dagger 52}$	7	21.5	calpain 12
$S_{out} 2^{\dagger} 5^{3}$	6	21.0	control homolog 2 ging finger protein (Drosenhile)
Mar 110 ^{†54}	0 C	00.0	scratch nonolog 2, zine miger protein (Drosophila)
Mrp119 ⁺⁰¹	6	23.9	mitochondrial ribosomal protein L19
Tbc1d20 ⁺³⁵	6	13.5	TBC1 domain family, member 20
Ak4*†56	6	56.0	adenylate kinase 4
$Kctd15^{\dagger 57}$	6	55.1	potassium channel tetramerisation domain containing 15
$Bcl11b^{\dagger 4}$	6	44.7	B cell leukemia/lymphoma 11B
$Mib1^{\dagger 58}$	6	48.9	mindbomb homolog 1 (Drosophila)
$Sbk1^{*+59}$	6	39.5	SH3-binding kinase 1
Pde6c* ^{†60}	6	46.1	phosphodiesterase 6C, cGMP specific, cone, alpha prime
Marveld2 [†]	ő	17.9	MARVEL (membrane-associating) domain containing 2
Bic8b ^{†61}	6	42.0	resistance to inhibitors of designators 8 homolog B ($C_{\rm electron}$)
Af1 † 62	0 C	42.0	ADD rikes detien factor 1
Arii ⁺	0	17.0	ADF-ribosylation factor 1
Myo3b ⁺⁶⁰	5	17.1	myosin IIIB
Dgk1*+04	5	51.3	diacylglycerol kinase, iota
Unc93b1	5	54.8	unc-93 homolog B1 (C. elegans)
Rev3l	5	16.7	REV3-like, catalytic subunit of DNA polymerase zeta RAD54 like (S. cerevisiae)
Foxb2	5	32.6	forkhead box B2
Olr987	5	21.1	Unknown
Prkar1b ^{*†65}	5	40.2	protein kinase, cAMP dependent regulatory, type I beta
$Btbd9^{\dagger 66}$	5	23.6	BTB (POZ) domain containing 9
Riok2*	5	48.0	RIO kinase 2 (yeast)
$Pde2a^{\dagger 67}$	5	28.6	phosphodiesterase 2A. cGMP-stimulated
Itsn1 ^{†68}	5	29.8	intersectin 1 (SH3 domain protein 1A)
Mc3r	5	42.2	melanocortin 3 recentor
Ptpn14*	5	30.1	protein twosing phosphatase non-recentor type 14
B4galnt3	5	21.8	both 14 N apotul galacteening! transformers 3
Eq.+2	5	62.8	EAT at minel and havin 2
Fat5 Komle2	5	02.0	FAT atypical called in 5
	0	20.1	KN moth and ankyrin repeat domains 5
Ankrd13a	5	26.8	ankyrin repeat domain 13a
Ttap2b	5	22.6	transcription factor AP-2 beta
Cog3	5	27.4	component of oligomeric golgi complex 3
Macrod1	5	35.4	MACKO domain containing 1
Ezr	5	51.9	ezrin
Arhgap31*	5	36.8	Rho GTPase activating protein 31
Mogat1	5	27.4	monoacylglycerol O-acyltransferase 1
$Srgap2^*$	5	28.6	SLIT-ROBO Rho GTPase activating protein 2
Tenm2	5	42.5	teneurin transmembrane protein 2
Pabpn11	5	33.3	poly(A)binding protein nuclear 1-like
Slc38a1	5	38.2	solute carrier family 38, member 1
Tgif2	5	32.2	TGFB-induced factor homeobox 2
Hip1r	5	56.4	huntingtin interacting protein 1 related
Cacnalc	5	27.9	calcium channel, voltage-dependent. L type, alpha 1C subunit
Aebp1	5	10.5	AE binding protein 1
Fig4*	5	47.9	FIG4 phosphoinositide 5-phosphatase
Spurf	5	34.7	SNRPN upstream reading frame
Adamts19	5	58.5	a disintegrin-like and metallopentidase (reprojusin type) with thrombospondin type 1 motif 10
Enhh1	5	22.9	The recently on type with thompospondin type I moth, 19 Enh recentor R1
триот	ป	00.4	Ерп тесерког Б1

Table S5: DMRs showing increased methylation from rat hippocampus data. Gene names are from MGI. Has role in GTPases and nucleotide exchange. [‡]is associated with calmodulin in Hematopoiesis

S4 Effects of Parameters on Number of DMRs Identified in Rat Hippocampus

Option	Default value when not specified
minimum coverage	10
difference of methylation percentage	10.000000
p-value	0.05
minimum number of CpN	5
minimum range of the differentially methylated nucleotides	0
maximum range between CpN	20,000
non-differentially methylated CpG count for extension	5

Table S6: Parameters used for evaluating individual and combinined parameters. All images in this section show two parameters varied as all others are set to default values.

Figure S2: DMRs counted as a function of minimum CpN, with all other options held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. Lower minimum CpN counts show more and often shorter DMRs.

Figure S3: DMRs in rat hippocampus counted as a function of CpN and differentially methylated CpN (d), with all other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. Similar sharp decreases in DMR ount occur as in Figure S2.

Figure S4: DMRs in rat hippocampus counted as a function of CpN and p-value with all other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. Low p-value and low CpN will give a high DMR count, but many are likely false positives.

Figure S5: DMRs in rat hippocampus counted as a function of CpN & minimum percent cutoff. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. CpN appears to be more important than minimum percent change.

Coverage

Figure S6: Minimum coverage influences the number of DMRs found in the rat hippocampus with all other parameters set constant as in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. Low coverage has higher sensitivity, but poorer selectivity, while high coverage will have better sensitivity, but poorer selectivity.

Figure S7: A sample graph showing number of DMRs found in the rat hippocampus as a function of minimum coverage and minimum CpN. All parameters but coverage and CpN are set as in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. Both exponentially increase the number of DMRs, which necessitates a logarithmic scale.

Figure S8: Minimum coverage and minimum differential CpN work similarly together to determine the DMR count in the rat hippocampus. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Figure S9: Minimum coverage and p value influence the number of DMRs found in the rat hippocampus. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant. *P*-value appears slightly more important than coverage in determining DMR count.

Figure S10: The number of DMRs found in the rat hippocampus is influenced by the minimum coverage and the minimum percent cutoff. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Figure S11: How the minimum number of differentially methylated CpN influences the number of DMRs in the rat data. All other parameters are held constant as in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Figure S12: The minimum number of differentially methylated CpN "d" and the maximum p-value influence the number of DMRs found in the rat hippocampus. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Figure S13: The minimum number of differentially methylated CpN "d" and the minimum percent change influence the number of DMRs found in the rat hippocampus. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Max. p-value

Figure S14: Maximum p-values display the expected behavior, with higher selectivity at lower p and higher sensitivity at higher p. All other parameters are held to values shown in Table S6.

Figure S15: The maximum p-value and the minimum percent change influence the number of DMRs found in the rat hippocampus. The p-value appears to have a stronger influence on the number of DMRs found than the minimum percent cutoff. All other parameters held constant as indicated in Table S6. This plot is made with GNUPlot using the Perl script plot_results.pl which is included with Defiant.

Minimum Percent Change

Figure S16: Minimum percent change influences the number of DMRs found. Larger minimum percent cutoffs show fewer DMRs, while there will be more DMRs showing smaller minimum percent cutoffs. All other parameters are held to values shown in Table S6.

References

- ¹ Beltran-Valero de Bernabé, D.; Voit, T.; Longman, C.; Steinbrecher, A.; Straub, V.; Yuva, Y.; Herrmann, R.; Sperner, J.; Korenke, C.; Diesen, C.; Dobyns, W. B.; Brunner, H. G.; van Bokhoven, H.; Brockington, M.; Muntoni, F. J. Med. Genet. **2004**, 41(5), e61.
- ² Kong, R.; Shao, S.; Wang, J.; Zhang, X.; Guo, S.; Zou, L.; Zhong, R.; Lou, J.; Zhou, J.; Zhang, J.; Song, R. Am. J. Med. Genet. Part B: Neuropsychiatric Genetics **2016**, 171(2), 203–208.
- ³ Yoo, A. S.; Staahl, B. T.; Chen, L.; Crabtree, G. R. Nature 2009, 460, 642–646.
- ⁴ Hota, S. K.; Bruneau, B. G. Development **2016**, 143(16), 2882–2897.
- ⁵ Nicolas, G.; Bennoun, M.; Devaux, I.; Beaumont, C.; Grandchamp, B.; Kahn, A.; Vaulont, S. *Proc. Natl. Acad. Sci. U.S.A.* **2001**, *98*(15), 8780–8785.
- ⁶ Cocks, G.; Wilde, J. I.; Graham, S. J.; Bousgouni, V.; Virley, D.; Lovestone, S.; Richardson, J. J. Alzheimers Dis. 2010, 19(2), 631–646.
- ⁷ Mastaitis, J.; Min, S.; Elvert, R.; Kannt, A.; Xin, Y.; Ochoa, F.; Gale, N. W.; Valenzuela, D. M.; Murphy, A. J.; Yancopoulos, G. D.; Gromada, J. Proc. Natl. Acad. Sci. U.S.A. 2015, 112(6), 1845–1849.
- ⁸ Schiavone, S.; Jaquet, V.; Sorce, S.; Dubois-Dauphin, M.; Hultqvist, M.; Backdahl, L.; Holmdahl, R.; Colaianna, M.; Cuomo, V.; Trabace, L.; Krause, K.-H. *Transl Psychiatry* **2012**, *2*.
- ⁹ Guerrieri, D.; Praag, H. Oncotarget **2015**, 6(21).
- ¹⁰Liu, Q.; Puche, A. C.; Wang, J. B. Neurochem. Res. **2008**, 33(7), 1263–1276.
- ¹¹ Feldker, D. E. M.; Datson, N. A.; Veenema, A. H.; Meulmeester, E.; De Kloet, E. R.; Vreugdenhil, E. Eur. J. Neurosci. 2003, 17(2), 379–387.

- ¹² Achim, K.; Peltopuro, P.; Lahti, L.; Tsai, H.-H.; Zachariah, A.; Åstrand, M.; Salminen, M.; Rowitch, D.; Partanen, J. BiO 2013.
- ¹³ Thiesen, S.; Kübart, S.; Ropers, H.-H.; Nothwang, H. Biochem. Biophys. Res. Commun. 2000, 273(1), 364 369.
- ¹⁴ Patil, S. P.; Tran, N.; Geekiyanage, H.; Liu, L.; Chan, C. Neurosci. Lett. **2013**, 554, 121 125.
- ¹⁵ Möller, A. The protein SS18L1 is a potent suppressor of polyQ-mediated huntingtin aggregation and toxicity PhD thesis, Universität zu Berlin, **2012**.
- ¹⁶ Melcher, T.; Maas, S.; Herb, A.; Sprengel, R.; Higuchi, M.; Seeburg, P. H. J. Biol. Chem. **1996**, 271(50), 31795–31798.
- ¹⁷ Heinrich, J.; Proepper, C.; Schmidt, T.; Linta, L.; Liebau, S.; Boeckers, T. Neuroscience **2012**, 221, 86 95.
- ¹⁸ Kitiratschky, V. B.; Behnen, P.; Kellner, U.; Heckenlively, J. R.; Zrenner, E.; Jägle, H.; Kohl, S.; Wissinger, B.; Koch, K.-W. Hum. Mutat. 2009, 30(8), E782–E796.
- ¹⁹ Rosales-Hernandez, A.; Beck, K. E.; Zhao, X.; Braun, A. P.; Braun, J. E. A. Cell Stress Chaperones 2009, 14(1), 71-82.
- ²⁰ Baecker, T.; Mangus, K.; Pfaender, S.; Chhabra, R.; Boeckers, T. M.; Grabrucker, A. M. *BioMetals* **2014**, 27(4), 715–730.
- ²¹ Bobowski, M.; Harduin-Lepers, A.; Delannoy, P. In *Handbook of Glycosyltransferases and Related Genes*; Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T., Eds.; Springer Japan: Tokyo, 2014; pages 767–780.
- ²² Costa, L. G.; de Laat, R.; Dao, K.; Pellacani, C.; Cole, T. B.; Furlong, C. E. Neurotoxicology 2014, 43, 3 9.
- ²³ Zhang, Y.; Yu, X.; Ichikawa, M.; Lyons, J. J.; Datta, S.; Lamborn, I. T.; Jing, H.; Kim, E. S.; Biancalana, M.; Wolfe, L. A.; DiMaggio, T.; Matthews, H. F.; Kranick, S. M.; Stone, K. D.; Holland, S. M.; Reich, D. S.; Hughes, J. D.; Mehmet, H.; McElwee, J.; Freeman, A. F.; Freeze, H. H.; Su, H. C.; Milner, J. D. J. Allergy Clin. Immunol. 2014, 133(5), 1400 1409.e5.
- ²⁴ Wolstenholme, J. T.; Rissman, E. F.; Bekiranov, S. Genes, Brain and Behavior **2013**, 12(2), 166–180.
- ²⁵ Su, Y. A.; Zhang, Q.; Su, D. M.; Tang, M. X. Int. J. Biol. Sci. 2011, 7(3), 308-322.
- ²⁶ Hagino, S.; Iseki, K.; Mori, T.; Zhang, Y.; Hikake, T.; Yokoya, S.; Takeuchi, M.; Hasimoto, H.; Kikuchi, S.; Wanaka, A. Glia 2003, 42(2), 130–138.
- ²⁷ Labonne, J. D. J.; Lee, K.-H.; Iwase, S.; Kong, I.-K.; Diamond, M. P.; Layman, L. C.; Kim, C.-H.; Kim, H.-G. Hum. Genet. 2016, 135(7), 757–771.
- ²⁸ Horvath, E. Genetic Investigations And Counselling On Neurogenetic Disorders PhD thesis, University of Szege, **2014**.
- ²⁹ Xia, Z.; Chibnik, L. B.; Glanz, B. I.; Liguori, M.; Shulman, J. M.; Tran, D.; Khoury, S. J.; Chitnis, T.; Holyoak, T.; Weiner, H. L.; Guttmann, C. R. G.; De Jager, P. L. PLOS ONE **2010**, 5(11), 1–6.
- ³⁰ Cai, W. W.; Wang, L.; Chen, Y. Biosci. Biotechnol. Biochem **2010**, 74(10), 2050–2055.
- ³¹ Montague, P.; Barrie, J. A.; Thomson, C. E.; Kirkham, D.; McCallion, A. S.; Davies, R. W.; Kennedy, P. G. E.; Griffths, I. R. European Journal of Neuroscience **1998**, 10(4), 1321–1328.
- ³² Wurdak, H.; Zhu, S.; Romero, A.; Lorger, M.; Watson, J.; yuan Chiang, C.; Zhang, J.; Natu, V. S.; Lairson, L. L.; Walker, J. R.; Trussell, C. M.; Harsh, G. R.; Vogel, H.; Felding-Habermann, B.; Orth, A. P.; Miraglia, L. J.; Rines, D. R.; Skirboll, S. L.; Schultz, P. G. Cell Stem Cell **2010**, 6(1), 37 47.
- ³³ Caracausi, M.; Rigon, V.; Piovesan, A.; Strippoli, P.; Vitale, L.; Pelleri, M. C. Hippocampus 2016, 26(1), 13-26.
- ³⁴ Lang, H.; Minaian, K.; Freudenberg, N.; Hoffmann, R.; Brandsch, R. Biochem. J. 1994, 299(2), 393–398.
- ³⁵ Matsumoto, K.; Ishii, N.; Yoshida, S.; Shiosaka, S.; Wanaka, A.; Tohyama, M. Brain Res. Mol. Brain Res. 1998, 61(1-2), 179 189.
- ³⁶ Properzi, F.; Carulli, D.; Asher, R. A.; Muir, E.; Camargo, L. M.; Van Kuppevelt, T. H.; Ten Dam, G. B.; Furukawa, Y.; Mikami, T.; Sugahara, K.; Toida, T.; Geller, H. M.; Fawcett, J. W. Eur. J. Neurosci. 2005, 21(2), 378–390.
- ³⁷ Salogiannis, J. Regulation of excitatory synapse development by the RhoGEF Ephexin5 PhD thesis, Harvard University, **2013**.
- ³⁸ Iacobas, S.; Iacobas, D.; Spray, D.; Scemes, E. Brain Res. **2012**, 1487, 131 139.
- ³⁹ Lu, L.; Wei, L.; Peirce, J. L.; Wang, X.; Zhou, J.; Homayouni, R.; Williams, R. W.; Airey, D. C. BMC Genomics 2008, 9(1), 444.

- ⁴⁰ Anta, B.; Martín-Rodríguez, C.; Gomis-Perez, C.; Calvo, L.; López-Benito, S.; Calderón-García, A. A.; Vicente-García, C.; Villarroel, Á.; Arévalo, J. C. J. Biol. Chem. **2016**, 291(36), 19132–19145.
- ⁴¹ Gillingham, A. K.; Sinka, R.; Torres, I. L.; Lilley, K. S.; Munro, S. Developmental Cell **2014**, 31(3), 358 373.
- ⁴² Gelbard, H. A.; Dewhurst, S.; Maggirwar, S. B.; Kiebala, M.; Polesskaya, O.; Gendelman, H. E. Neurotherapeutics 2010, 7(4), 392 – 398.
- ⁴³ Borgesius, N. Z.; van Woerden, G. M.; Buitendijk, G. H. S.; Keijzer, N.; Jaarsma, D.; Hoogenraad, C. C.; Elgersma, Y. J. Neurosci. 2011, 31(28), 10141–10148.
- ⁴⁴ Chen, L.-T.; Liang, W.-X.; Chen, S.; Chen, Z.; Chen, S.-J. Blood **2015**, 120(21), 764–764.
- ⁴⁵ Kim, G. W.; Lin, J. E.; Waldman, S. A. Trends in Endocrinology & Metabolism 2013, 24(4), 165 173.
- ⁴⁶ Chong, A.; Zhang, Z.; Choi, K. P.; Choudhary, V.; Djamgoz, M. B.; Zhang, G.; Bajic, V. B. Genomics 2007, 89(3), 378 384.
- ⁴⁷ Jahanshad, N.; Rajagopalan, P.; Hua, X.; Hibar, D. P.; Nir, T. M.; Toga, A. W.; Jack, C. R.; Saykin, A. J.; Green, R. C.; Weiner, M. W.; Medland, S. E.; Montgomery, G. W.; Hansell, N. K.; McMahon, K. L.; de Zubicaray, G. I.; Martin, N. G.; Wright, M. J.; Thompson, P. M.; the Alzheimer's Disease Neuroimaging Initiative. *Proc. Natl. Acad. Sci. USA* **2013**, 110(12), 4768–4773.
- ⁴⁸ Wilburn, B.; Rudnicki, D. D.; Zhao, J.; Weitz, T. M.; Cheng, Y.; Gu, X.; Greiner, E.; Park, C. S.; Wang, N.; Sopher, B. L.; Spada, A. R. L.; Osmand, A.; Margolis, R. L.; Sun, Y. E.; Yang, X. W. Neuron **2011**, 70(3), 427 440.
- ⁴⁹ Szablewski, L. J. Alzheimers Dis. **2016**, 55(4), 1307–1320.
- ⁵⁰ Shcherbatyy, V.; Carson, J.; Yaylaoglu, M.; Jäckle, K.; Grabbe, F.; Brockmeyer, M.; Yavuz, H.; Eichele, G. Neuroinformatics 2015, 13(1), 111–125.
- ⁵¹ Suls, A.; Jaehn, J. A.; Kecskés, A.; Weber, Y.; Weckhuysen, S.; Craiu, D. C.; Siekierska, A.; Djémié, T.; Afrikanova, T.; Gormley, P.; von Spiczak, S.; Kluger, G.; Iliescu, C. M.; Talvik, T.; Talvik, I.; Meral, C.; Caglayan, H. S.; Giraldez, B. G.; Serratosa, J.; Lemke, J. R.; Hoffman-Zacharska, D.; Szczepanik, E.; Barisic, N.; Komarek, V.; Hjalgrim, H.; Møller, R. S.; Linnankivi, T.; Dimova, P.; Striano, P.; Zara, F.; Marini, C.; Guerrini, R.; Depienne, C.; Baulac, S.; Kuhlenbäumer, G.; Crawford, A. D.; Lehesjoki, A.-E.; de Witte, P. A.; Palotie, A.; Lerche, H.; Esguerra, C. V.; Jonghe, P. D.; Helbig, I.; Hendrickx, R.; Holmgren, P.; Stephani, U.; Muhle, H.; Pendiziwiat, M.; Appenzeller, S.; Selmer, K.; Brilstra, E.; Koeleman, B.; Rosenow, F.; Leguern, E.; Sterbova, K.; Magdalena, B.; Rodica, G.; Arsene, O. T.; Diana, B.; Guerrero-Lopez, R.; Ortega, L.; Todorova, A. P.; Kirov, A. V.; Robbiano, A.; Arslan, M.; Yiş, U.; Ivanović, V. Am. J. Hum. Genet. 2013, 93(5), 967 – 975.
- ⁵² Kuppili, R. R.; Bose, K. In Proteases in Apoptosis: Pathways, Protocols and Translational Advances; Bose, K., Ed.; Springer International Publishing: Cham, 2015; pages 53–94.
- ⁵³ Marín, F.; Nieto, M. A. Dev. Dynam. **2006**, 235(9), 2586–2591.
- ⁵⁴ Anthoni, H.; Zucchelli, M.; Matsson, H.; Müller-Myhsok, B.; Fransson, I.; Schumacher, J.; Massinen, S.; Onkamo, P.; Warnke, A.; Griesemann, H.; Hoffmann, P.; Nopola-Hemmi, J.; Lyytinen, H.; Schulte-Körne, G.; Kere, J.; Nøthen, M. M.; Peyrard-Janvid, M. Hum. Mol. Gen. 2007, 16(6), 667.
- ⁵⁵ Tweedie, D.; Rachmany, L.; Rubovitch, V.; Lehrmann, E.; Zhang, Y.; Becker, K. G.; Perez, E.; Miller, J.; Hoffer, B. J.; Greig, N. H.; Pick, C. G. Experimental Neurology 2013, 239, 170 – 182.
- ⁵⁶ Sperlágh, B.; Vizi, E. S. Neurochemical Research **2007**, 32(11), 1978–1989.
- ⁵⁷ Dutta, S.; Dawid, I. B. Development **2010**, 137(18), 3013–3018.
- ⁵⁸ Yoon, K.-J.; Lee, H.-R.; Jo, Y. S.; An, K.; Jung, S.-Y.; Jeong, M.-W.; Kwon, S.-K.; Kim, N.-S.; Jeong, H.-W.; Ahn, S.-H.; Kim, K.-T.; Lee, K.; Kim, E.; Kim, J.-H.; Choi, J.-S.; Kaang, B.-K.; Kong, Y.-Y. *Molecular Brain* **2012**, *5*(1), 40.
- ⁵⁹ Long, P.; Samnakay, P.; Jenner, P.; Rose, S. Eur. J. Neurosci. **2012**, 36(6), 2733–2742.
- ⁶⁰ Bollen, E.; Prickaerts, J. *IUBMB Life* **2012**, *64*(12), 965–970.
- ⁶¹ Gong, J.; Grodsky, J. D.; Zhang, Z.; Wang, P. Eukaryotic Cell **2014**, 13(10), 1290–1299.
- ⁶² Hernandez-Deviez, D. J.; Casanova, J. E.; Wilson, J. M. Nat. Neurosci. 2002, 5.
- ⁶³ Brown, M. E.; Bridgman, P. C. J. Neurobiol. **2004**, 58(1), 118–130.

⁶⁴ Ishisaka, M.; Hara, H. J Pharmacol Sci **2014**, 124(3), 336–343.

- ⁶⁵ Wong, T. H.; Chiu, W. Z.; Breedveld, G. J.; Li, K. W.; Verkerk, A. J. M. H.; Hondius, D.; Hukema, R. K.; Seelaar, H.; Frick, P.; Severijnen, L.-A.; Lammers, G.-J.; Lebbink, J. H. G.; van Duinen, S. G.; Kamphorst, W.; Rozemuller, A. J.; Bakker, E. B.; Neumann, M.; Willemsen, R.; Bonifati, V.; Smit, A. B.; van Swieten, J. Brain **2014**, 137(5), 1361.
- ⁶⁶ DeAndrade, M. P.; Zhang, L.; Doroodchi, A.; Yokoi, F.; Cheetham, C. C.; Chen, H.-X.; Roper, S. N.; Sweatt, J. D.; Li, Y. PLOS ONE **2012**, 7(4), 1–10.

⁶⁷ Fernández-Fernández, D.; Rosenbrock, H.; Kroker, K. S. Synapse **2015**, 69(10), 484–496.

⁶⁸ Morderer, D.; Nikolaienko, O.; Skrypkina, I.; Cherkas, V.; Tsyba, L.; Belan, P.; Rynditch, A. Gene 2012, 505(2), 360 – 364.