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Figure S1.  Human mammary epithelial cells ("TERT-HME1) and ectocervical epithelial cells (Ect1/E6E7) demonstrate depolymerization of the filamentous
Kéa network in response to bacterial ligands. (A) Confocal microscopic images of hTERTFHMET cells treated for 16 h with vehicle control, LTA (1 pg/ml),
flagellin (FliC; 0.5 pg/m) or LPS (1 pg/ml; pretreated with 250 ng/ml IFN-y for 2 h). The intense filamentous Kéa network staining surrounding the nucleus
in the control cell (insef) became diffused and weak after stimulation with bacterial ligands. (B) Ect1/ESE7 cells were treated as described in A. Similar
observations were made for Ect1/ESE7 cells. Note that Ect1/ESE7 cells do not express TLR-4. Bars, 10 pm.
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Figure S2. LPS-induced depolymerization of the filamentous Kéa network does not occur in epithelial cells with low expression of TLR-4 coreceptor
MD-2. Confocal microscopic images of hTCEpi cells treated for 16 h with vehicle control or LPS (1 pg/ml) with or without preincubation with IFN-y (250
ng/ml; 2 h). Normal hTCEpi cells produce low levels of MD-2 and are unresponsive to LPS. A 2-h pretreatment with IFN-y was used to induce MD-2
expression and LPS responsiveness. The filamentous K6a network staining (green) surrounding the nucleus (blue) in the control cells (left) and in cells
treated with LPS alone (middle) was intense; on the contrary, the filamentous network staining in cells primed with IFN-y before LPS stimulation (right) was
diffused and weak. Bars, 10 pm.
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Figure S3. Tandem mass spectrometry spectra of K6a phosphopeptides with a single phosphorylation at Ser-22 or double phosphorylation at Ser-19 and
Ser-22. (A and B) Kéa was subjected to tryptic digestion, and these tryptic digests were analyzed by LC-MS looking for Kéa phosphopeptides. (A) The
tandem mass spectrometry spectrum for a phosphopeptide GFSANSARLPGVSR with a single phosphorylation at Ser-22 is shown. The m/z of 500.2 is
consistent with the triply charged GFSANSARLPGVSR + PO; peptide. The difference of m/z values between y, and ys ions is consistent with a modification
on S$22. (B) The tandem mass spectrometry spectrum for a phosphopeptide RGFSANSAR with double phosphorylation at Ser-19 and Ser-22 is shown. The
m/z of 563.2 is consistent with the doubly charged RGFSANSAR + 2 PO, peptide. The tandem mass spectrometry spectra are dominated by two spikes
corresponding with one and two losses of H3PO, from the [M + 2 H]*2 ion (i.e., m/z 514.36 and 465.4). This is consistent with two sites of serine phos-
phorylation in this peptide. The m/z values of b,-H;PO, and y, ions are consistent with modifications at S19 and $22.
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Figure S4. Tandem mass spectrometry spectra of Ké6a phosphopeptides with a single phosphorylation at Ser-37 or Ser-60. (A and B) Kéa was subjected
to tryptic digestion, and these tryptic digests were analyzed by LC-MS looking for Kéa phosphopeptides. (A) The tandem mass spectrometry spectrum for
a phosphopeptide SGFSSVSVSR with a single phosphorylation at Ser-37 is shown. The m/z of 546.7 is consistent with the doubly charged SGFSSVSVSR
+ POj; peptide. The difference of m/z values between y; and y, ions is consistent with a modification on S37. (B) The tandem mass spectrometry spectrum
for a phosphopeptide SLYGLGGSK with a single phosphorylation at Ser-60 is shown. The m/z of 481.2 is consistent with the doubly charged SLYGLGGSK
+ PO; peptide. The m/z values of b, and y; ions are consistent with a modification on $60.
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Figure S5. Tandem mass spectrometry spectra of Ké6a peptides with ubiquitination at Lys-180, Lys-194, or Lys-204. (A-C) K6a was subjected to tryptic
digestion, and these tryptic digests were analyzed by LC-MS looking for Kéa ubiquitinated peptides. (A) The tandem mass spectrometry spectrum for
a triply charged peptide with an m/z of 399.6 is shown. The mass of this ion is consistent with the FASFIDKVR + GlyGly peptide. The mass difference
between the y; and y, ions is consistent with modification at K180. (B) The tandem mass spectrometry spectrum for a triply charged peptide with an m/z
of 630.0 is shown. The mass of this ion is consistent with the VLETKWTLLQEQGTK + GlyGly peptide. The mass difference between the C-terminal y;, and
y10 ions is consistent with modification on K194. (C) The tandem mass spectrometry spectrum for a triply charged peptide with an m/z of 559.0 is shown.
The mass of this ion is consistent with the WTLLQEQGTKTVR + GlyGly peptide. The mass difference between the C-terminal y; and y, ions is consistent
with modification on K204.
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