Supplemental Information

Variation in LOV Photoreceptor Activation Dynamics Probed by Time Resolved Infrared Spectroscopy

James N. Iuliano,[†] Agnieszka A. Gil,[†] Sergey P. Laptenok,^{‡,⊥} Christopher R. Hall,[‡] Jinnette Tolentino Collado,[†] Andras Lukacs,^{‡,§} Safaa A. Hag Ahmed,[†] Jenna Abyad,[†] Taraneh Daryaee,[†]Gregory M. Greetham,[¶] Igor V. Sazanovich,[¶] Boris Illarionov,[¥] Adelbert Bacher,[#] Markus Fischer,[¥] Michael Towrie,[¶] Jarrod B. French,[†] Stephen R. Meech,^{‡*} and Peter J. Tonge.^{†*}

[†]Department of Chemistry, Stony Brook University, New York, 11794, USA[‡] School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K. [§]Department of Biophysics, Medical School, University of Pecs, Szigeti út 12, 7624 Pecs, Hungary. [®]Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, U.K., [#]Department Chemie, Technische Universität München, D-85747 Garching, Germany, [¥]Institut für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany

[⊥]Current address (SPL): Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Kingdom of Saudi Arabia.

*Authors to whom correspondence should be addressed: Email: s.meech@uea.ac.uk (SRM); peter.tonge@stonybrook.edu (PJT)

Table S1: Assignment of LOV Spectra							
EAS1	AsLOV2	YtvA	LovK	EL222			
1FMN*	1375	1379	1382	1378			
1FMN*	1413	1418	1424	1419			
GS Bleach	1550	1548	1552	1544			
GS Bleach	1583	1580	1586	1580			
Protein		1615	1612	1615			
C2=O	1622	1629	1632	1631			
Asn (-)	1669	1663	1662	1652			
Gln513	1690	1702	1700	1700			
EAS2							
3FMN*	1438	1440	1443	1428			
3FMN*	1491	1491	1488	1488			
GS Bleach	1550	1548	1552	1544			
GS Bleach	1583	1580	1586	1580			
Protein		1615	1612	1615			
C2=0	1622	1629	1632	1631			
Asn (-)	1669	1663	1662	1652			
Gln513	1690	1702	1700	1700			
EAS3							
Protein (-)	1404	1406	1411	1406			
Protein (+)	1417	1417	1424	1418			
Protein (-)	1426	1430	1433	1430			
Protein (+)	1435	1443	1453	1450			
β-sheet N-H		1526					
C4C10a (+)	1541	1541	1547	1553			
C4C10a (-)	1553	1550	1553	1541			
β-sheet C=O	1625	1619	1633	1631			
Ja helix	1634						
β-sheet C=O			1650	1645			
FMN/Protein	1665	1667	1669	1665			
Gln513	1690	1695	1695	1700			
C4=0	1722	1720	1718				

Table S1: Band	assignments were	based on the effective	ffect of ¹³ C label	ling on the spe	ctrum of
AsLOV2.					

Figure S1: The LOV Photocycle

Figure S2: Kinetic traces and residuals showing quality of fit. Excited state decay is shown in black and ground state recovery is shown in red.

Figure S3: L-D FTIR of [¹⁵N-apoprotein]-YtvA

AsLOV2	LATTLERIEKNFVITDPRLPDNPIIFA
YtvA	MASFQSFGIPGQLEVIKKALDHVRVGVVITDPALEDNPIVYV
LovK	MEDYSESRRAGERLAAGHGVDDPFAAAISATRMAMIVADATQPDIPIIFA
EL222	MGQDRPIDGSGAPGADDTRVEVQPPAQWVLDLIEASPIASVVSDPRLADNPLIAI
	· · · · · · · · · · · · · · · · · · ·
AsLOV2	SDSFLQLTEYSREEIL <mark>GRNCRFLQ</mark> GPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKF
YtvA	NQGFVQMTGYETEEIL <mark>GKNCRFLQ</mark> GKHTDPAEVDNIRTALQNKEPVTVQIQNYKKDGTMF
LovK	NDAFLRLTGYARDEVI <mark>GRNCRFLQ</mark> GPDTDPKAIQAVRDALAAGEDVAVDLLNYRKDGSPF
EL222	NQAFTDLTGYSEEECV <mark>GRNCRFLA</mark> GSGTEPWLTDKIRQGVREHKPVLVEILNYKKDGTPF
	·:·* :* * :* :* ** ** ** :* ·: * *: ** ** *
AsLOV2	WNL <mark>E</mark> HLQPMRDQKGDVQYFIGVQLDGTEHVRDAAEREGVMLIKKTAENIDEAAK
YtvA	WNELNIDPMEIEDKTYFVGIQNDITKQKEYEKLLEDSLTEITALS-
LovK	WNALNMSPVRNDAGQLVYFFGSQVDVTDKKVVELRARDHSDGLQQMVEERTRE
EL222	RNA <mark>V</mark> LVAPIYDDDDELLYFLGSQVEVDDDQPNMGMARRERAAEM
	* . : *: : : **.* * :
AsLOV2	EL
YtvA	
LovK	
EL222	

Figure S4: Sequence alignment of the AsLOV2, YtvA, LovK, and EL222 LOV domains. Conserved LOV core motif is highlighted in yellow and shows the Gln to Ala replacement in EL222 and the prediction of Gln for LovK. F494 in AsLOV2 and corresponding residues in YtvA, LovK, and EL222 are highlighted in green.

Figure S5: F494 forms a π -stacking interaction with the isoalloxazine ring of FMN.

Figure S6: Proline residues on the LOV β-sheet.