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1 Theoretical background

We argue that effective differentially private predictive modelling methods
can be developed by a combination of:

i. An asymptotically efficiently private mechanism for which the effect of
the noise added to guarantee privacy vanishes as the number of samples
increases; and

ii. A way to limit the amount of private information to be shared. This
yields better performance on finite data as less noise needs to be added
for equivalent privacy. This can be achieved through a combination of
two things:

a. An approach to decrease the dimensionality of the data prior to the
application of the private algorithm; and

b. A method to focus the privacy guarantees to relevant variation in
data.

Criterion i can be formally stated through additional loss in accuracy
or utility of the estimates because of privacy. Our main asymptotic result
is that the optimal convergence rate of a differentially private mechanism
to a Bayesian estimate is O(1/n), which can be reached by our proposed
mechanism.

Criterion ii is non-asymptotic and thus more difficult to address theoreti-
cally. It manifests itself in the constants in the convergence rates as well as
empirical findings on the effect of dimensionality reduction and projecting
outliers to tighter bounds as discussed in the main text and in Fig. 2.

1.1 Definition of asymptotic efficiency

We begin by formalisation of the theory behind Criterion i.
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Definition 1. A differentially private mechanism M is asymptotically con-
sistent with respect to an estimated parameter θ if the private estimates θ̂M
given a data set D converge in probability to the corresponding non-private
estimates θ̂NP as the number of samples, n = |D|, grows without bound, i.e.,
if for any1 α > 0,

lim
n→∞

Pr{‖θ̂M − θ̂NP ‖ > α} = 0.

Definition 2. A differentially private mechanism M is asymptotically effi-
ciently private with respect to an estimated parameter θ, if the mechanism
is asymptotically consistent and the private estimates θ̂M converge to the
corresponding non-private estimates θ̂NP at the rate O(1/n), i.e., if for any
α > 0 there exist constants C,N such that

Pr{‖θ̂M − θ̂NP ‖ > C/n} < α

for all n ≥ N .

The term asymptotically efficiently private in the above definition is
justified by the following theorem, which shows that the rate O(1/n) is
optimal for estimating expectation parameters of exponential family distri-
butions. As it seems unlikely that better rates could be obtained for more
difficult problems, we conjecture that this rate cannot be beaten for Bayesian
estimates in general.

Theorem 1. The private estimates θ̂M of an exponential family posterior
expectation parameter θ, generated by a differentially private mechanism M
that achieves ε-differential privacy for any ε > 0, cannot converge to the
corresponding non-private estimates θ̂NP at a rate faster than 1/n. This is,
assuming M is ε-differentially private, there exists no function f(n) such
that lim supnf(n) = 0 and for all α > 0, there exists a constant N such that

Pr{‖θ̂M − θ̂NP ‖ > f(n)} < α

for all n ≥ N .

Proof. The non-private estimate of an expectation parameter of an exponen-
tial family is [1]

θ̂NP |x1, . . . , xn =
n0x0 +

∑n
i=1 xi

n0 + n
. (1)

The difference of the estimates from two neighbouring data sets differing by
one element is

(θ̂NP |D)− (θ̂NP |D′) =
x− y
n0 + n

, (2)

1We use α in limit expressions instead of usual ε to avoid confusion with ε-differential
privacy.
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where x and y are the corresponding mismatched elements. Let ∆ =
max(‖x− y‖), and let D and D′ be neighbouring data sets including these
maximally different elements.

Let us assume that there exists a function f(n) such that lim supnf(n) =
0 and for all α > 0 there exists a constant N such that

Pr{‖θ̂M − θ̂NP ‖ > f(n)} < α

for all n ≥ N .
Fix α > 0 and choose M ≥ max(N,n0) such that f(n) ≤ ∆/4n for all

n ≥M . This implies that

‖(θ̂NP |D)− (θ̂NP |D′)‖ =
∆

n0 + n
≥ ∆

2n
≥ 2f(n). (3)

Let us define the region CD = {t | ‖(θ̂NP |D)− t‖ < f(n)}. Based on our
assumptions we have

Pr(θ̂M|D ∈ CD) > 1− α (4)

Pr(θ̂M|D′ ∈ CD) < α (5)

which implies that
Pr(θ̂M|D ∈ CD)

Pr(θ̂M|D′ ∈ CD)
>

1− α
α

(6)

which means thatM cannot be differentially private with ε < log ((1− α)/α)→
∞ as α→ 0.

1.2 Different utility functions

Definition 3. Let U(θ̂NP (D)) measure the utility of the non-private model
θ̂NP estimated from data set D and let U(θ̂M(D)) measure the corresponding
utility of the private model θ̂M obtained using differentially private mecha-
nism M. The mechanism M is asymptotically consistent with respect to a
bounded utility U if the random variables U(θ̂M(D)) converge in probability
to U(θ̂NP (D)) as the number of samples, n = |D|, grows without bound, i.e.,
if for any α > 0,

lim
n→∞

Pr{|U(θ̂M(D))− U(θ̂NP (D))| > α} = 0.

Theorem 2. A differentially private mechanism M that is asymptotically
consistent with respect to a set of parameters is asymptotically consistent
with respect to any continuous utility that only depends on those parameters.

Proof. If θ̂M converges in probability to θ̂NP then by the continuous mapping
theorem the value of U(θ̂M) will converge in probability to U(θ̂NP ).
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1.3 Example: Gaussian mean

Theorem 3. Differentially private inference of the mean of a Gaussian
variable, with Laplace mechanism to perturb the sufficient statistics, is asymp-
totically consistent with respect to the posterior mean.

Proof. Let us consider the model

xi ∼ N(µ,Λ)

µ ∼ N(µ0,Λ0)

with µ as the unknown parameter and Λ and Λ0 denoting the fixed prior
precision matrices of the noise and the mean, respectively. We assume
||xi||1 ≤ B and enforce this by projecting the larger elements to satisfy this
bound.

Let the observed data set be D = {xi}ni=1 with sufficient statistic nx̄ =∑n
i=1 xi.
The non-private posterior mean is

µNP = (Λ0 + nΛ)−1(Λnx̄+ Λ0µ0).

The corresponding private posterior mean is obtained by replacing nx̄ with
the perturbed version nx̄′ = nx̄ + δ, where δ = (δ1, . . . , δd)

T ∈ Rd with
δj ∼ Laplace(0, 2Bdε ) and d = dim(xi), yielding

µDP = (Λ0 + nΛ)−1(Λ(nx̄+ δ) + Λ0µ0).

The difference of the private and non-private means is

‖µDP − µNP ‖1 = ‖(Λ0 + nΛ)−1(Λδ)‖1
= ‖(Λ−1Λ0 + n · I)−1δ‖1 ≤

c

n
‖δ‖1,

which is valid for all c > 1 for large enough n. This implies that

Pr{‖µDP − µNP ‖1 ≥ α} ≤ Pr
{ c
n
‖δ‖1 ≥ α

}
→ 0

as n→∞ for all α > 0.

Theorem 4. Differentially private inference of the mean of a Gaussian
variable with Laplace mechanism to perturb the input data set (naive input
perturbation) is not asymptotically consistent with respect to the posterior
mean.

Proof. The mechanism is almost the same as in Theorem 3, but we now
have nx̄′ = nx̄ +

∑n
i=1 δi) where δi = (δi1, . . . , δid)

T ∈ Rd with δij ∼
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Laplace(0, 2Bdε ). Similar computation as above yields

‖µDP − µNP ‖1 =

∥∥∥∥∥(Λ0 + nΛ)−1(Λ

n∑
i=1

δi)

∥∥∥∥∥
1

=

∥∥∥∥∥(
1

n
Λ−1Λ0 + I)−1

1

n

n∑
i=1

δi

∥∥∥∥∥
1

≥ 1

2

∥∥∥∥∥ 1

n

n∑
i=1

δi

∥∥∥∥∥
1

for sufficiently large n. By the central limit theorem the distribution of
1
n

∑n
i=1 δi converges to a Gaussian with non-zero variance. Hence µDP does

not converge to µNP for large n and the method is not asymptotically
consistent.

1.3.1 Asymptotic efficiency

Theorem 5. ε-differentially private estimate of the mean of a d-dimensional
Gaussian variable x bounded by ‖xi‖1 ≤ B in which the Laplace mechanism
is used to perturb the sufficient statistics, is asymptotically efficiently private.

Proof. In the proof of Theorem 3 we showed that

‖µDP − µNP ‖1 ≤
c

n
‖δ‖1,

where δ = (δ1, . . . , δd)
T ∈ RD with δj ∼ Laplace

(
0, 2Bdε

)
.

Because δj is Laplace, |δj | is exponential with

|δj | ∼ Exponential
( ε

2Bd

)
and

‖δ‖1 =

d∑
j=1

|δj | ∼ Gamma
(
d,

ε

2Bd

)
.

Given α > 0 we can choose C > cF−1(1−α; d, ε/(2Bd), where F−1(x; a, b)
is the inverse cumulative distribution function of the Gamma distribution
with shape a and rate b, to ensure that

Pr

{
‖µDP − µNP ‖1 >

C

n

}
≤ Pr

{
1

n
‖δ‖1 >

C

n

}
= Pr{‖δ‖1 > C} < α. (7)
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1.3.2 Convergence rate

We can further study the probability of making an error of at least a given
magnitude as

Pr{‖µDP − µNP ‖1 ≥ φ} ≤ Pr
{ c
n
‖δ‖1 ≥ φ

}
= Pr

{
Gamma

(
d,

nε

2Bcd

)
≥ φ

}
= 1− F

(
φ; d,

nε

2Bcd

)
= 1−

γ(d, nφε
2Bcd)

Γ(d)
, (8)

where F (x; a, b) is the cumulative distribution function of the Gamma distri-
bution with shape a and rate b.

The formula in Eq. (8) unfortunately has no simple closed form expression.
The result shows, however, that the n required to reach a certain level of
performance is linear in B and 1

ε . The dependence on d is complicated, but it
is in general super-linear as suggested by the mean of the gamma distribution
in Eq. (8), 2Bd2

nε .

1.4 Example: Zhang et al., AAAI 2016, (arxiv:1512.06992)

In their paper Zhang et al. derive utility bounds for a number of mechanisms.
The bounds are clearly insufficient to demonstrate the asymptotic efficiency
of the corresponding methods. For Laplace mechanism applied to Bayesian
network inference, their bound on excess KL-divergence as a function of the
data set size n is

O(mn lnn)

[
1− exp

(
− nε

2|I|

)]
+
√
−O(mn lnn) ln δ.

2 Differentially private linear regression

Let us next consider the linear regression model with fixed noise Λ,

yi|xi ∼ N(xTi β,Λ)

β ∼ N(β0,Λ0),

with β as the unknown parameter and Λ and Λ0 denoting the precision
matrices of the corresponding distributions.

Let the observed data set be D = {(xi, yi)}ni=1 with sufficient statistics
nxx =

∑n
i=1 xix

T
i and nxy =

∑n
i=1 xiyi.

The non-private posterior precision of β is

ΛNP = Λ0 + Λnxx

6



and the corresponding posterior mean is

µNP = Λ−1NP (Λnxy + Λ0β0). (9)

The corresponding private posterior precision is obtained by replacing nxx
with the perturbed version nxx′ = nxx+ ∆, where ∆ follows the Laplace
distribution according to the Laplace mechanism, yielding

ΛDP = Λ0 + Λ(nxx+ ∆).

Similarly using nxy′ = nxy + δ with δ following the Laplace mechanism we
obtain

µDP = Λ−1DP (Λ(nxy + δ) + Λ0β0). (10)

As presented in Methods, a more robust alternative is to assign prior dis-
tributions to the precision parameters and then sample the posterior. This
requires using the three sufficient statistics nxx, nxy, and nyy that are
perturbed with suitable noise. The mechanism is presented in detail in
Algorithm 1 and proven to guarantee differential privacy in Theorem 6. For
theoretical analysis, we study the model with fixed precision parameters and
an even privacy budget split between the two needed sufficient statistics. In
Algorithm 1 and Theorem 6, this corresponds to setting p1 = p2 = 0.5 and
leaving out the unnecessary term Syy.

2.1 The detailed mechanism

The function project in Algorithm 1 projects the data points into a useful
space and computes the sufficient statistics.

Theorem 6. Algorithm DiffPriSS in Algorithm 1 is ε-differentially private.

Proof. (i) Sxx = CC ′ + P is p1ε-differentially private.

Sxx is a symmetric d × d matrix with d(d+1)
2 degrees of freedom. Af-

ter project |C|∞ ≤ Bx and the sensitivity of each element ∆(Sxx)ij =
sup |cicj − c′ic′j | ≤ 2B2

x. Adding Laplace distributed noise to (Sxx)ij with

b = d(d+1)B2
x

p1ε
yields an ε′-DP mechanism with ε′ = 2p1ε

d(d+1) . Using basic compo-

sition [2] over the d(d+1)
2 independent dimensions shows that Sxx = CC ′ + P

is p1ε-differentially private.
(ii) CD is a d× 1 vector where d is the cardinality of I and each element

of CD is computed as follows:

∀i ∈ I, CDi =

n∑
j=1

CijDj , (11)

where |Cij | ≤ Bx and |Dj | ≤ By, and thus the sensitivity of CD is 2dBxBy.
Thus, Sxy = CD +Q is p2ε-differentially private.
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Algorithm 1 Differentially private statistics release

Require: p1 + p2 + p3 = 1
function DiffPriSS(X, Y , ε, Bx, By, p1, p2, p3)

n = |Y |, d = dim(X)
(C,D) = project(X,Y,Bx, By)
for i ∈ {1, . . . , n} do

for j ∈ {i, . . . , n} do

Pij = Pji ∼ Laplace
(

0, d(d+1)B2
x

p1ε

)
end for

end for
for i ∈ I do

Qi ∼ Laplace
(

0,
2dBxBy

p2ε

)
end for
R ∼ Laplace

(
0,

B2
y

p3ε

)
Sxx = CC ′ + P
Sxy = CD +Q
Syy = DD′ +R
return Sxx, Sxy, Syy

end function
function Project(X, Y , Bx, By)

for j = 1 to n do
for i = 1 to d do

Cij = max(−Bx,min(Bx, Xij))
end for
Dj = max(−By,min(By, Yj))

end for
return C, D

end function

(iii) DD′ is a scalar computed as

DD′ =

n∑
j=1

D2
j ,

where |Dj | ≤ By, and thus the sensitivity of DD′ is B2
y . Thus, Syy = DD′+R

is p3ε-differentially private.
Therefore, releasing Sxx, Sxy, and Syy together by DiffPriSS is ε-

differentially private.

2.2 Asymptotic consistency and efficiency

Theorem 7. Differentially private inference of the posterior mean of the
weights of linear regression with Laplace mechanism to perturb the sufficient
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statistics is asymptotically consistent with respect to the posterior mean.

Proof. Using Eqs. (9)–(10) we can evaluate

‖µDP − µNP ‖1 =
∥∥Λ−1DP (Λ(nxy + δ) + Λ0β0)− Λ−1NP (Λnxy + Λ0β0)

∥∥
1

≤
∥∥Λ−1DP (Λ(nxy + δ) + Λ0β0)− Λ−1DP (Λnxy + Λ0β0)

∥∥
1

+
∥∥Λ−1DP (Λnxy + Λ0β0)− Λ−1NP (Λnxy + Λ0β0)

∥∥
1

=
∥∥Λ−1DPΛδ

∥∥
1

+
∥∥(Λ−1DP − Λ−1NP )(Λnxy + Λ0β0)

∥∥
1

=
∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1

+
∥∥[(Λ0 + Λ(nxx+ ∆))−1

− (Λ0 + Λ(nxx))−1
]
(Λnxy + Λ0β0)

∥∥
1

=
∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1

+

∥∥∥∥[( 1

n
Λ0 + Λ

(
xx+

1

n
∆

))−1
−
(

1

n
Λ0 + Λxx

)−1 ](
Λxy +

1

n
Λ0β0

)∥∥∥∥
1

.

Assuming xx > 0, the first term clearly approaches 0 as n → ∞. For the
second term, as n→∞, ( 1

nΛ0 + Λ(xx+ 1
n∆))−1 → ( 1

nΛ0 + Λxx)−1 and as
(Λxy + 1

nΛ0β0) is bounded, the second term also approaches 0 as n → ∞.
This shows that µDP converges in probability to µNP .

Theorem 8. ε-differentially private inference of the posterior mean of the
weights of linear regression with the Laplace mechanism of Algorithm 1 to
perturb the sufficient statistics is asymptotically efficiently private.

Proof. From the proof of Theorem 7 we have

‖µDP − µNP ‖1 ≤
∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1

+

∥∥∥∥∥
[(

1

n
Λ0 + Λ

(
xx+

1

n
∆

))−1
−
(

1

n
Λ0 + Λxx

)−1](
Λxy +

1

n
Λ0β0

)∥∥∥∥∥
1

.

(12)

The first term can be bounded easily as∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ
∥∥
1

=
∥∥(Λ−1Λ0 + ∆ + nxx)−1δ

∥∥
1

≤
∥∥(Λ−1Λ0 + ∆ + nxx)−1

∥∥
1
‖δ‖1

≤ c1
n

∥∥(xx)−1
∥∥
1
‖δ‖1 (13)

where c1 > 1. The bound is valid for any c1 > 1 as n gets large enough.
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Similarly as in the proof of Theorem 5,

‖δ‖1 ∼ Gamma

(
d,

ε

4dBxBy

)
. (14)

Given α > 0 we can choose similarly as in the proof of Theorem 5

C1 > c1F
−1(1− α/2; d, ε/(4dBxBy))

∥∥(xx)−1
∥∥
1
,

where F−1(x;α, β) is the inverse distribution function of the Gamma distri-
bution with shape α and rate β, to ensure that

Pr

{
‖(Λ0 + Λ(nxx+ ∆))−1Λδ‖1 >

C1

n

}
<
α

2
. (15)

The second term can be bounded as∥∥∥∥∥
[(

1

n
Λ0 + Λ

(
xx+

1

n
∆

))−1
−
(

1

n
Λ0 + Λxx

)−1](
Λxy +

1

n
Λ0β0

)∥∥∥∥∥
1

=

∥∥∥∥∥
[(

1

n
Λ−1Λ0 + xx+

1

n
∆

)−1
−
(

1

n
Λ−1Λ0 + xx

)−1](
xy +

1

n
Λ−1Λ0β0

)∥∥∥∥∥
1

=
1

n

∥∥∥∥∥
(

1

n
Λ−1Λ0 + xx+

1

n
∆

)−1
∆

(
1

n
Λ−1Λ0 + xx

)−1(
xy +

1

n
Λ−1Λ0β0

)∥∥∥∥∥
1

≤ 1

n

∥∥∥∥∥
(

1

n
Λ−1Λ0 + xx+

1

n
∆

)−1
∆

(
1

n
Λ−1Λ0 + xx

)−1∥∥∥∥∥
1

∥∥∥∥xy +
1

n
Λ−1Λ0β0

∥∥∥∥
1

≤ 1

n

∥∥∥∥∥
(

1

n
Λ−1Λ0 + xx+

1

n
∆

)−1∥∥∥∥∥
1

‖∆‖1∥∥∥∥∥
(

1

n
Λ−1Λ0 + xx

)−1∥∥∥∥∥
1

∥∥∥∥xy +
1

n
Λ−1Λ0β0

∥∥∥∥
1

≤ c2
n

∥∥∥(xx)−1
∥∥∥
1
‖∆‖1

∥∥∥(xx)−1
∥∥∥
1
‖xy‖1 =:

c2
n
B2,

where similarly as in Eq. (13), the bound is valid for any c2 > 1 as n gets
large enough. Here ‖∆‖1 is the l1-norm of the matrix ∆ that whose elements

follow the Laplace distribution ∆ij ∼ Laplace(0, 2d(d+1)B2
x

ε ). We can bound
it as

‖∆‖1 = max
i
‖∆:i‖1,

where ∆:i are the row vectors of ∆ and the latter is the vector `1-norm.
Similarly as in Eq. (14) we have

‖δ‖1 ∼ Gamma

(
d,

ε

2d(d+ 1)B2
x

)
(16)

10



and as above given α > 0 we can choose

C2 > c2F
−1(1− α/2; d, ε/(2d(d+ 1)B2

x))
∥∥∥(xx)−1

∥∥∥2
1
‖xy‖1 ,

where F−1(x;α, β) is the inverse distribution function of the Gamma distri-
bution to ensure that

Pr

{
B2 >

C2

n

}
<
α

2
. (17)

Combining Eqs. (15) and (17) shows that

Pr

{
‖µDP − µNP ‖1 >

C1 + C2

n

}
< α. (18)

2.3 Convergence rate

Using Chebysev’s inequality together with Eq. (14) we can show that with
high probability

‖δ‖1 = O
(
d2BxBy

ε

)
and thus ∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1

= O

(
d2BxBy

∥∥(xx)−1
∥∥
1

nε

)
. (19)

Similarly for the second term we obtain

B2 = O

d3B2
x

∥∥∥(xx)−1
∥∥∥2
1
‖xy‖1

ε

 . (20)

Combining Eqs. (12)–(20) yields

‖µDP − µNP ‖1 = O

d2BxBy‖xx−1‖1 + d3B2
x

∥∥∥(xx)−1
∥∥∥2
1
‖xy‖1

nε


with high probability.
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Figure S1: This is a complement to Figure 4 in the main text. The
figure illustrates the effect of projecting the outliers to within the bounds
in linear regression, for different sample sizes n with 15-dimensional synthetic
data, evaluated by Spearman’s rank correlation between the predicted and
true values (higher values are better), both for DP (solid lines) and non-
private regression (dashed lines). The lines show a minor decrease in accuracy
of the non-private algorithm as the projection threshold becomes increasingly
tight. This minor decrease is eclipsed by a dramatic increase in the accuracy
of the DP algorithm.

12



0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

R
a
n
k
 c

o
rr

e
la

ti
o
n

Clipping bound (data stdevs)

 

 

n=1000, DP

n=3000, DP

n=1000, non−private

n=3000, non−private

Figure S2: This is a complement to Figure 4 in the main text.
The figure illustrates the effect of projecting the outliers to within the bounds
in linear regression, for different sample sizes n with 10-dimensional synthetic
data sampled from Student’s-t distribution with degrees of freedom as 1 ,
evaluated by Spearman’s rank correlation between the predicted and true
values (higher values are better), both for DP (solid lines) and non-private
regression (dashed lines). The lines show a minor decrease in accuracy of the
non-private algorithm as the projection threshold becomes increasingly tight.
This minor decrease is eclipsed by a dramatic increase in the accuracy of the
DP algorithm.
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Figure S3: This is a complement to Figure 5 in the main text
with more stringent privacy. Here we show Spearman’s rank correlation
coefficients (ρ, left) and wpc-index (right) between the measured ranking
of the cell lines and the ranking predicted by the models using ε = 1. The
baselines (horizontal dashed lines) are learned on 10 non-private data points;
the private algorithms additionally have privacy-protected data (x-axis).
The non-private algorithm (LR) has the same amount of additional non-
privacy-protected data. All methods use 10-dimensional data except the gray
baseline showing the best performance with 10 non-private 64-dimensional
data points. The results are averaged over all drugs and 50-fold Monte Carlo
cross-validation; error bars denote standard deviation over 50 Monte Carlo
repeats. The result shows that more data are needed for good prediction
performance under more stringent privacy.
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Figure S4: This is a complement to Figure 5 in the main
text with inclusion of robust LR. Here we show Spearman’s rank correlation
coefficients (ρ, left) and wpc-index (right) between the measured ranking
of the cell lines and the ranking predicted by the models using ε = 2. The
baselines (horizontal dashed lines) are learned on 10 non-private data points;
the private algorithms additionally have privacy-protected data (x-axis).
The non-private algorithm (LR) has the same amount of additional non-
privacy-protected data. All methods use 10-dimensional data except the gray
baseline showing the best performance with 10 non-private 64-dimensional
data points. The results are averaged over all drugs and 50-fold Monte Carlo
cross-validation; error bars denote standard deviation over 50 Monte Carlo
repeats. The result shows that more data are needed for good prediction
performance under more stringent privacy.
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