Fig. S1

Fig S1. Comparison of dysmorphology and lineage tracing. (A-B) At GD11.25 cyclopamine-exposed embryos exhibit a marked deficiency of the MNP (dashed white outline) that results in cleft lip. (D-E) At GD14.5 cyclopamine-exposed embryos exhibit a deficiency of the secondary palatal shelves (PS) that results in cleft secondary palate. (C,F) Timed-pregnant female B6.129S4-Gt(ROSA)26Sortm1Sor/J mice mated to male Gli1tm3(cre/ERT2)Alj/J males and exposed to a single 50mg/kg Tamoxifen dose by ip injection at GD8.75. β-gal staining shows the lineage of SHH-responding cells in both the MNP at GD11.25 and the palatal shelves at GD14.5, corresponding to tissue deficiency shown in panels B and E.

Fig. S2

Fig S2. Morphometric analysis of MGE development. Vismodegib (LC Laboratories, Woburn, MA) or vehicle alone was administered at 40mg/kg via oral gavage to pregnant dams at GD8.75 as previously described (36). Unlike cyclopamine-exposed animals with OFCs, the majority of vismodegib-exposed animals do not have overt OFCs (A,B) and are viable into adulthood (n=7/9 survived to P30). Quantification of MGE area (dashed black outline) to total head area (white outline) shows comparable reduction in relative MGE area between cyclopamine and vismodegib-exposed embryos. Values represent mean \pm s.d.; ****P \leq 0.0001 **P \leq 0.01, 2-tailed Student's t test. PS, palatal shelf; LNP, lateral nasal process; MNP, medial nasal process; MxP, maxillary process.

Fig. S3

Fig. S3. MGE proliferation assay. (A) A hemisected GD10.0 embryo stained for Nkx2.1 depicts the range of sections (from X to Y) included in the proliferation analysis. (B, C) Sections corresponding to the levels indicated by the lines labeled X and Y in panel A. (D) An example section stained for Ki67 at the plane indicated by X. The dashed outline indicated the area of the neuroectoderm approximating the domain of Nkx2.1 expression and from which Ki67 positive cells were counted.

Table S1

Application	Gene	NCBI Reference Sequence	Forward Primer	Reverse Primer
ISH	Nkx2.1	NM_009385.3	TGCGTTTGTCGCTTACAG	AGGAGTTCAGATGGGATAGG
ISH	Pax6	NM_001244198.2	AGTGAATGGGCGGAGTTATG	AGTGTGTGTTGTCCCAGGTTC
ISH	Shh	NM_009170.3	CCTCTCCTGCTATGCTCCTG	TGTGTGGCACGCTTTATTTC
ISH	Gli1	NM_010296.2	CCCTCCTCCTCATTCCAC	TCCAGCTGAGTGTTGTCCAG
ISH	Gad1	NM_008077.5	AGATAGCCCTGAGCGACGAG	CTCCCACCAACAGCCTTTC
ISH	Lhx6	NM_008500.2	AACAGGACAGTCAGCCCAAG	TCTCAGCAGGAGAGGGAAAG
ISH	Dlx2	NM_010054.2	AACCACGCACCATCTACTCC	CTGGTCGCCACTTCCAATAC
RT-PCR	Ccna2	NM_009828.2	CCGGGCTAGAAGCAAAGTTGTATT	ATGGTGAAGGCAGGCTGTTTAC
RT-PCR	Ccnb1	NM_172301.3	CTGCGTCAAATGGTGGCAGATA	ATTTATGCCCACATCCGTGTCC
RT-PCR	Ccnd1	NM_007631.2	CATCAAGTGTGACCCGGACTG	CCTCCTCCTCAGTGGCCTTG
RT-PCR	Ccnd2	NM_009829.3	GCGGAAAAGCTGTGCATTTAC	TCCACTTCAGCTTACCCAACACT
RT-PCR	Ccnd3	NM_007632.2	GTACTCCTGGGTTGCTTTAC	GACTCTCCCTTGCCATTTC
RT-PCR	Ccne1	NM_007633.2	CCTCCTCCCAAGTAGTGGGATTAT	AACACAGTGGCACACAGACATAC
RT-PCR	Gad1	NM_008077.5	GAGAGGTTGGGTCAGGATCTGTAA	TCCTTCAGTGAGATGGCCTAGATG
RT-PCR	Slc32a1 (Vgat)	NM_009508.2	CCTGAAAGGTTGACCGGGAAAT	TACAGTTCCACGACCGGATACA
RT-PCR	Sst	NM_009215.1	GCCCAACCAGACAGAGAATGAT	GAAGTTCTTGCAGCCAGCTTTG
RT-PCR	Slc6a1 (Gat1)	NM_178703.4	GTCATCATCTCCTGGGCCATCTA	CGCTGGTCATGTTGGTGGTATT
RT-PCR	Abat	NM_172961.3	CCTGGCTTTCATGCTTCCTTAGAC	GGGCTGTGATGTGAACTGCTATT
RT-PCR	Slc17a7 (Vglut1)	NM_182993.2	TCTCTGAGGAGGAGCGCAAATA	TAGACGGGCATGGACGTAAAGA
RT-PCR	Slc17a6 (Vglut2)	NM_080853.3	CCCTGAGGAAACAAGCGAAGAAA	CCTGTGAGGTAGCACCGTAAGA
RT-PCR	Slc17a8 (Vglut3)	NM_182959.3	AAGACGGAGTGGAGACAACAGA	GCTGAGGTGAAGCCAGACATTTAG

Table S1. Primer Sequences for real time RT-PCR and ISH. Primers for ISH probe generation (Nkx2.1, Pax6, Shh, Gli1, Gad1, Lhx6, and Dlx2) were designed using Primer3 and the indicated NCBI reference sequence. A 26 nucleotide sequence consisting of a 5bp leader sequence followed by the T7 RNA polymerase recognition sequence (ACGATGTTAATACGACTCACTATAGGG) was added to the 5' end of the reverse primer. Primers for RT-PCR (Ccna2, Ccnb1, Ccnd1, Ccnd2, Ccnd3, Ccne1, Gad1, Slc32a1, Sst, Slc6a1, Abat, Slc17a7, Slc17a6, and Slc17a8) were designed using PrimerQuest and the indicated NCBI reference sequence. All primer sequences were checked for specificity using NCBI Primer BLAST.