
Supplementary Information

P-values as random variables

Halsey and colleagues1 present illustrative simulations for a two-sample t-test, by obtaining random

P-values that result from pairs of samples of different sizes N1, N2, assuming that the true stan-

dardized mean difference between two populations is 0.5. Their graphs and histograms (Figures 3,4

in Halsey et al) underscore substantial randomness in the P-values over repeated samples from the

same populations. Indeed, P-values can be viewed as random variables with their respective distri-

butions. For example, P-values derived from common continuous test statistics (such as Student’s

t) will have the cumulative distribution function (CDF)2,3 given by Fγ(p) = 1−Gγ
(
G−10 (1− p)

)
,

where G0(·) and Gγ(·) denote the CDF of the test statistic under the null and the alterna-

tive hypotheses and γ is the noncentrality parameter, which in Halsey’s et al. experiments is

γ = 0.5
√

1/(1/N1 + 1/N2). For example, F
γ=0.5

√
1/(1/30+1/30)

(0.05/2) = 0.48, as in Halsey et al.

The probability density function (PDF) of a P-value for a fixed γ follows from differentiating

Fγ(·), and gives fγ(p) =
gγ(G−1

0 (1−p))
g0(G−1

0 (1−p))
. where gγ(·) is the density that corresponds to the cumulative

distribution Gγ(·).

The CDF inverse allows to sample random P-values as P = 1 − G0

(
G−1γ (U)

)
, where U is

a uniform (0-1) random number. Thus, empirical histograms shown in Halsey’s et al. can be

reproduced by generating P-values directly, without simulating the actual samples and computing

the t-statistics. CDF values, Fγ(p), would give the expected proportion of P-values in a histogram

that are smaller or equal to ‘p.’ The plot of the PDF, fγ(p), on top of a histogram would match its

shape when the histogram is obtained using a large number of simulations. Furthermore, P-value

variability can be assessed visually by simply plotting its density. A simple R code implementing

this method is available at https://github.com/dmitri-zaykin/Random_P-values.

One-sided P-value of the Z-statistic as a posterior probability of the null hypoth-

esis

P-values for the point null (or short interval) hypotheses, such as H0 : 0 < µ < δ do not correspond

to posterior probabilities, but the situation is different in the one-sided testing. Casella and Berger4

derived general bounds for posterior probabilities for the problem of testing H0 : µ ≤ 0 vs HA : µ >
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0. It is worth to point out that for the conjugate normal model, there is a simple and illustrative

connection between P-values for testing this H0 and the posterior probabilities Pr(H0|Z) where Z

is the test statistic. Suppose we are testing the difference µ between two sample means, µ = m1-

m2 and that a priori, the mean difference, µ, has a normal distribution, µ ∼ Φ(µ0, s
2
0). The

difference µ = m1-m2 is the same as (m1-m2)-(m2-m2). So, we can re-scale to m1 ∼ Φ(µ, s20/2),

m2 ∼ Φ(0, s20/2). Given two sample means, X̄1, X̄2, assume normal samples of size N1, N2 and the

variance σ2, so that X1,i ∼ Φ(m1, σ
2) and X2,i ∼ Φ(m2, σ

2). We compute the usual Z statistic,

Z =
√
N
σ

(
X̄1 − X̄2

)
, where N = 1/(1/N1+1/N2). The noncentrality parameter γ for the Z-statistic

is a location parameter, Z ∼ Φ(γ, 1), and the posterior probability can be derived in terms of the

normal density, f(x | mean, variance), as follows:

Pr(H0 | Z) =

∫ 0
−∞ f(t | µ, σ2)f

[
µ | µ∗, (σ∗)2

]
dµ∫∞

−∞ f(t | µ, σ2)f [µ | µ∗, (σ∗)2] dµ

=
1

2

[
2√
π

∫ ∞
ω

exp
(
−t2
)
dt

]
,

where ω = (µ∗)σ2 +(σ∗)2 Z√
2σ(σ∗)

√
σ2 +(σ∗)2

; µ∗ = µ0
√
N ; σ∗ = s0

√
N . Considering ω as a location-scale trans-

formation of Z, we can write the posterior probability in terms of the standard normal CDF, F (·)

as follows:

Pr(H0 | P-value) = Pr(H0 | Z) = 1− F
(
Z − µZ
σZ

)
, (S1)

where

σZ =

√
1 +

σ2

[σ∗]2
=

√
1 +

σ2

Ns20

µZ = − µ∗σ[√
Ns0

]2 = − µ0 σ

s20
√
N
.

An impartial prior that gives equal weight to the positive and the negative parts of the distributions,

implies that the prior mean for the mean difference is zero, µ0 = 0. With such a prior, the posterior
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probability simplifies to

Pr(H0 | P-value) = 1− F

 Z√
1 + σ2

Ns20


= 1− F

 Z√
1 + 1

Nϑ2

 (S2)

where ϑ2 =
[
s0
σ

]2
is the prior variance for the distribution of the standardized mean. As N

increases, or as s0 increases and µ0 approaches zero, the posterior probability approaches the one-

sided P-value, given by

P-value = 1− F (Z). (S3)

Simulations

A statement where Pobt is given any value, such as 0.05, is a type of selection that induces selection

bias, commonly described as the winner’s curse. Our simulations are designed to demonstrate

that sort of bias for P-intervals. On the other hand, when we are equipped with knowledge about

the actual underlying effect size distribution, the resulting intervals are expected to be immune

to selection bias. The most straightforward scenario is to restrict computation of the intervals to

P-values in a narrow interval around a value, such as 0.05, and see empirically what the actual

coverage is, compared to the declared 80%. We proceeded with this scenario as follows. Let the

prior distribution for the mean of a Z-statistic be µ ∼
√
NΦ(m0, s

2
0). In our simulations we set

m0 = 0. Simulation steps are as follows:

1. Draw a value of µ from its assumed distribution. Simulate data by taking two samples of

normal observations with the population means 0 and µ and compute a Z-statistic, zobt (this

step can be simplified by drawing zobt directly from Φ(µ, 1)). Calculate the P-value, Pobt,

from zobt. If Pobt does not fall within a specified range, e.g., 0.045 to 0.055, discard zobt.

Repeat this step until Pobt falls within the predefined range.

3



2. Simulate data as in the previous step or draw zrep directly from Φ(µ, 1).

3. Calculate the P-interval using the prediction distribution Φ(zobt, 2). Check whether the repli-

cation value falls within the interval.

4. Calculate Bayesian prediction intervals and check whether the replication value falls within

these interval.

Next, we repeat the above steps 50,000 times. At the end, we calculate the proportion of times

when the replication value was within the studied intervals.

We studied two additional types of P-value selection: (i) inclusion of P-values that are smaller

than a predefined threshold, that is, we kept only those P-values that are less than some value, e.g.

Pobt ≤ 0.05; (ii) selection of the minimum P-value from a multiple testing experiment with L tests

(in this modification we draw L statistics zobt and keep the maximum one that corresponds to the

smallest P-value).

Effect size distribution in genetic association studies

The distribution of the absolute value or squared value of the effect size in genetic association

studies is often referred to as “L-shaped”.5 A meta-analysis of six ulcerative colitis genome-wide

association studies increased the number of ulcerative colitis-associated loci to 47.6 The authors of

the the study provided results for the discovery panel, which consisted of 6,687 cases and 19,718

controls of European descent for at least 1.1 million SNPs with the corresponding discovery P-

values. In our Figure 3, we constructed a Manhattan plot based on the ulcerative colitis-associated

SNPs on chromosome 6. Further, in Fig. 3 we highlighted P-values that passed the genome-wide

significance threshold (i.e., P-value < 10−8) with green color. To obtained the standardized effect

sizes (as measured by log2(OR)) corresponding to this Manhattan plot, we back-transformed each

P-values using an inverse chi-squared density function with one degree of freedom. Next, we plotted

a histogram of the obtained log2(OR) values, which has a distinct “L-shaped” appearance. Such

shape, commonly found in genome-wide studies can be described by a mixture of two distributions

where the major component accounts for majority of effect sizes that are very small, and the second

distributional component allows for occasional variants that carry larger effect sizes than the bulk

of the mixture distribution.7
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Supplementary tables

Type of P-value selection Prior variance (σ20) Mixture Bayes coverage

0 ≤ P-value ≤ 1 0.25 79.7%
(no selection) 0.50 79.8%

1.00 80.1%
3.00 80.1%
5.00 79.9%
10.00 79.9%

0.045 ≤ P-value ≤ 0.055 0.25 79.4%
0.50 79.7%
1.00 80.5%
3.00 80.5%
5.00 80.7%
10.00 79.5%

0 ≤ P-value ≤ 0.05 0.25 79.9%
0.50 79.7%
1.00 80.7%
3.00 79.7%
5.00 80.0%
10.00 79.9%

0 ≤ P-value ≤ 0.001 0.25 79.9%
0.50 79.0%
1.00 80.2%
3.00 80.5%
5.00 79.9%
10.00 79.6%

Table S1: The empirical coverage probabilities of the 80% mixture-Bayes prediction intervals for a
two-sample t-test under selection of P-values.
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Number of tests Prior variance (σ20) Mixture Bayes coverage

L = 10 0.25 79.2%
0.50 79.9%
1.00 80.3%
3.00 79.8%
5.00 80.1%
10.00 79.3%

L = 100 0.25 80.3%
0.50 79.9%
1.00 79.9%
3.00 80.7%
5.00 80.1%
10.00 80.4%

L = 1000 0.25 79.1%
0.50 80.0%
1.00 80.4%
3.00 80.1%
5.00 79.9%
10.00 79.9%

L = 10 000 0.25 79.6%
0.50 80.2%
1.00 79.2%
3.00 79.8%
5.00 79.9%
10.00 79.3%

Table S2: The empirical coverage probabilities of the 80% mixture-Bayes prediction intervals con-
structed for the most significant results out of L two-sample t-tests.
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