Effects of Echo Time on IVIM Quantification of the Normal Prostate

Zhaoyan Feng^{1#}, Xiangde Min^{1#}, Liang Wang^{1*}, Xu Yan², Basen Li¹, Zan Ke¹, Peipei Zhang¹, Huijuan You¹

 ¹ Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
²MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
[#]These authors contributed equally to this work.
*Corresponding author

E-mail: wang6@tjh.tjmu.edu.cn

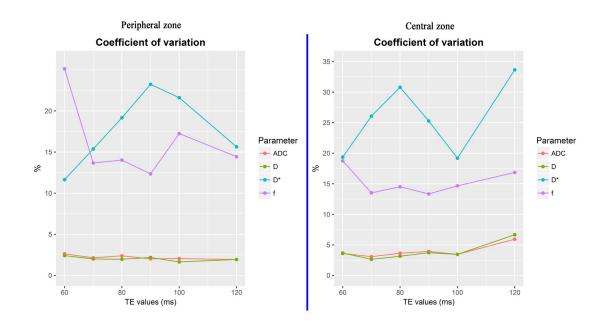


Figure S1. Mean coefficient of variation (CV, in %) for the ADC, D, D* and f from ROI analysis of 17 healthy volunteers in the peripheral zone and central zone. With TE values in the range of 60-120 ms, the CV of the ADC, D, D* and f

values in the peripheral zone were in the range of 1.928%-2.635%, 1.641%-2.407%, 11.640%-23.230%, 12.337%-25.108%; the CV of the ADC, D, D* and f values in the central zone were in the range of 3.070%-5.918%, 2.632%-6.661%, 19.189%-33.644%, 13.338%-18.741%.

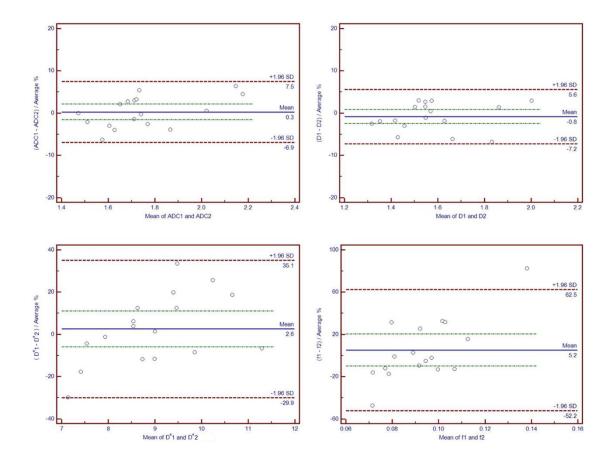


Figure S2. Bland-Altman plots of reproducibility of ADC, D, D* and f for the prostate peripheral zone. Bland-Altman plots of mean of differences of ADC, D, D* and f (Y-axis) against mean ADC, D, D* and f (X-axis) of the first and second DWI series examination (TE = 60 ms), with mean difference (blue dashed line) and 95% confidence interval of the mean difference (limits of agreement) (red dashed lines). The data unit of the X-axis is 10^{-3} mm²/s for ADC, D, and D*; f has no units.

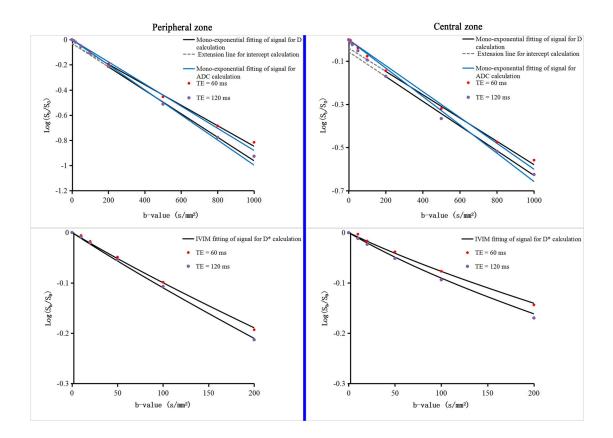


Figure S3. The measured DWI signals and fitting curves of the normal prostate. The ADC was calculated from all the b values (0-1000 s/mm²) using the mono-exponential equation $S_b = S_0 \times exp$ ($-b \times ADC$). The diffusion coefficient (D) and S_0 ' were calculated using the mono-exponential equation $S_b = S_0$ ' exp ($-b \times D$). S_b is the signal intensity with the gradient, and S_0 ' is the b=0 intercept of the mono-exponential fit of high b value data ($\geq 200 \text{ s/mm}^2$). The perfusion fraction (f) was calculated by $f = (1 - S_0')/S_0$. At last, the calculated D and f were applied in the IVIM equation fit of all b values (0-200 s/mm²) to measure D*. The ADC, D, D* and f were 2.027×10⁻³ mm²/s, 1.875×10⁻³ mm²/s, 10.334×10⁻³ mm²/s, 0.072 (TE =60 ms); 2.295×10⁻³ mm²/s, 2.148×10⁻³ mm²/s, 10.656×10⁻³ mm²/s, 1.245×10⁻³ mm²/s, 10.473×10⁻³ mm²/s, 0.085 (TE=60 ms); 1.514×10⁻³ mm²/s, 1.320×10⁻³ mm²/s, 10.566×10⁻³ mm²/s, 0.121 (TE=120 ms) in the central zone.