Supplementary Information

Supplementary Figures

Supplementary Figure 1. (a-b) C57BL/6 mice and SHP-KO mice were fasted for 12 h and then, treated with GW4064 for 6 h. Livers were collected and mRNA levels of 1C cycle genes (a) or 1C cycle metabolites levels (b) were determined by q-RTPCR or LC-MS, respectively. Means +/- SD are shown (n=5 mice), and statistical significance was measured by two-way ANOVA with the FDR post-test and *P<0.05, **P<0.01, and NS, not statistically significant.

Supplementary Figure 2. Hepa1c1c7 cells were transfected with a *Pemt-luc* construct containing the WT AhR binding site in the *Pemt* promoter along with expression plasmids as indicated, treated with FGF19 for 2 h and luciferase activity was measured and normalized to β -galactosidase activity. Means +/- SD are shown (n=5), and statistical significance was measured using one-way ANOVA with the FDR post-test. *P<0.05, **P<0.01, and NS, not statistically significant.

Supplementary Figure 3. (a) HepG2 cells were grown in low-glucose, serum-free media for 12 h and transferred for 15 min to complete medium or treated with insulin, FGF19, or CDCA for 15 min, then cells were harvested. (b) Cells were pre-treated with a PKB inhibitor, PKB124005, or an ERK inhibitor, PD98059, for 30 min prior to insulin treatment as indicated. Levels of AhR and SHP in the cytoplasmic and nuclear fractions were determined by IB. Full size immunoblots are in Supplementary Figure 13a.

b Subcellular localization (HepG2)

Supplementary Figure 4. Chromatin isolated from Hepa1c1c7 cells treated with insulin for 1 h was immunoprecipitated with AhR antibody, then eluted, and re-precipitated with ARNT antibody to examine the occupancy of ARNT in AhR-bound chromatin at the *Pemt* promoter. Means +/- SD are shown (n=5), and statistical significance was measured using two-way ANOVA with the FDR post-test. *P<0.05, **P<0.01, and NS, statistically not significant.

Re-ChIP (Pemt)

Supplementary Figure 5. Hepa1c1c7 cells were transfected with a *Pemt-luc* or *Gnmt-luc* promoter construct containing AhR binding sites along with expression plasmids as indicated. After 2 days, luciferase activities were measured. Means +/- SD are shown (n=5), and statistical significance was measured using one-way ANOVA with the FDR post-test. *P<0.05, **P<0.01, and NS, statistically not significant.

Supplementary Figure 6. Hepa1c1c7 cells were transfected with a *AhR-luc* construct containing the WT AhR binding site in the *AhR* promoter along with expression plasmids as indicated. After 2 days, cells were treated with FGF19 for 1 h, and luciferase activities were measured and normalized to β -galactosidase activity. Means +/- SD are shown (n=5), and statistical significance was measured using one-way ANOVA with the FDR posttest. *P<0.05, **P<0.01, and NS, statistically not significant.

Supplementary Figure 7. Mice (n=5/group) were fed a high-fat diet for 14 weeks and Ad-GFP control or Ad-SHP were injected via the tail vein. Two weeks later (total = 16 weeks), livers were isolated. (a) Effects of SHP overexpression on lipid regulation in liver were determined by liver histology detected by Oil-Red-O staining and hematoxylin and eosin (H&E) staining. Scale bar: 100 μ M (b) Triglyceride (TG) levels in liver were measured. Means +/- SD are shown (n=5 mice), and statistical significance was measured using by the Student's t-test. *P<0.05, **P<0.01, and NS, statistically not significant.

Supplementary Figure 8. Effects of expression of SHP or downregulation of *Pemt* on the CA-AhRmediated increase in liver weight/body weight. Mice (n=5/group) were fed a HF/HF diet for 8 weeks, infected with the indicated adenovirus, and after 3 weeks, body and liver weights were measured. The ratio of liver weight/ body weight is plotted. Means +/- SD are shown (n=5 mice), and statistical significance was measured using one-way ANOVA with the FDR post-test. *P<0.05, **P<0.01, and NS, statistically not significant.

Supplementary Figure 9. Effects of a chronic HF/HF diet on hepatic expression of *Pemt, Gnmt, AhR, and Cyp1a1.* Mice (n=5/group) were fed either a normal chow diet (ND) or a high fat/high fructose (HF/HF) diet

for 11 weeks, and then, mice were sacrificed and livers were collected. The mRNA levels of *Pemt, Gnmt, AhR, and Cyp1a1* were determined by q-RTPCR. Means +/- SD are shown (n=5 mice), and statistical significance was measured using the Student's t-test, *P<0.05, **P<0.01, and NS, statistically not significant.

Supplementary Figure 10. Hepa1c1c7 cells were transfected with empty vector or pCMX-CA-AhR expressing human CA-AhR. Human HepG2 cells were also grown in normal media. After 2 days, protein was isolated from the cells as well as from human liver tissue and AhR or actin was detected by immunoblotting. As expected human CA-AhR and mouse WT AhR have similar mobilities. Full size immunoblots are in Supplementary Figure 13b.

Supplementary Figure 11. Levels of individual PC or PE molecules in liver samples of 15 normal, 15 simple steatosis, and 15 severe NASH-fibrosis patients were determined by LC-MS. Means +/- SD are shown (n=15 human).

a Full size immunoblots of cropped blots for Fig. 4a and 4b

Supplementary Figure 12. Full size immunoblots of cropped blots in the main manuscript figures.

b Full size immunoblots of cropped blots for Fig. 5f

c Full size immunoblots of cropped blots for Fig. 6c

Supplementary Figure 12. Full size immunoblots of cropped blots in the main manuscript figures.

d Full size immunoblots of cropped blots for Fig. 7b

Supplementary Figure 12. Full size immunoblots of cropped blots in the main manuscript figures.

e Full size immunoblots of cropped blots for Fig. 8b

Supplementary Figure 13. Full size immunoblots of cropped blots in the Supplementary figures.

a Full size immunoblots of cropped blots for Supplementary Figure 3a and 3b

Supplementary Figure 13. Full size immunoblots of cropped blots in the Supplementary figures.

- Hepalclc7 Human Human HepG2 liver Emp CA-AhR cells tissue Ahr AhR AhR -50 -37 Actin
- **b** Full size immunoblots of cropped blots for Supplementary Figure 10

Supplementary Tables

Species	Туре	Gene	Sequence
mouse	ChIP	AhR	AGTCCGTCCACCAGTTCG
mouse	ChIP	AhR	TCTTGATGTCTGGGTTACAAGG
mouse	ChIP	Ahcyl2	GGAGGAGGGACGAAAGGAC
mouse	ChIP	Ahcyl2	CAGAACCTGTAGTGCGCTTG
mouse	ChIP	Mthfr	CGCCATCTTCCTCCTTTG
mouse	ChIP	Mthfr	CACATCTACGAGACGAGACGAC
mouse	ChIP	Ahcyl2	GGAGGAGGACGAAAGGAC
mouse	ChIP	Ahcyl2	CAGAACCTGTAGTGCGCTTG
mouse	ChIP	Atic	CTGTCCGTCCCTTGACTCC
mouse	ChIP	Atic	TTCTCATTACTCGCGGCTTC
mouse	ChIP	Mtfmt	GTGGCTGATGGGAAGGAG
mouse	ChIP	Mtfmt	GGAGATGGAGGGTCTGCTG
mouse	ChIP	Cyp1a1	CGGTTGTGAGTTGGGTAGC
mouse	ChIP	Cyp1a1	TAAGCCTGCTCCATCCTCTG
mouse	ChIP	Gnmt	TCTCCCATGCCCATACTACC
mouse	ChIP	Gnmt	CCGTACCGCAGAGTACAAGG
mouse	ChIP	Pemt	GGAGCTGTACCTGCCTGAAG
mouse	ChIP	Pemt	ATGCCCTAGTCCCTCTCTCC
mouse	ChIP	Aldh1a1	TTTCTTCTCCAGTTGATTTCT
mouse	ChIP	Aldh1a1	CGCTTATATCTATCCTTCTATTCT
mouse	ChIP	Dhfr	GCAAGTGGTACACAGCTCAGG
mouse	ChIP	Dhfr	CCAGGGTAGGTCTCCGTTC

Supplementary Table 1. Sequences of the primers used in ChIP assays

Supplementary Table 2. Sequences of the primers used in q-RTPCR assays

Species	Туре	Gene	Sequence
Mouse	mRNA	36B4 (control)	TGCTGAACATGCTCAAC
Mouse	mRNA	36B4 (control)	GTCGAACACCTGCTGGATGAC
Mouse	mRNA	AhR	TCCACAACTGGCTTTGTTTG
Mouse	mRNA	AhR	CCAGAATAAGCTGCCCTTTG
Mouse	mRNA	Mtfmt	CAGACTCTCAGACTTCCA
Mouse	mRNA	Mtfmt	TGTCATCTTCTTGCTTGTAA
Mouse	mRNA	Aldh1a1	TTTCTTCTCCAGTTGATTTCT
Mouse	mRNA	Aldh1a1	CGCTTATATCTATCCTTCTATTCT
Mouse	mRNA	Gnmt	GCTTTCAGGAGATGGCTTTG
Mouse	mRNA	Gnmt	GTGGGCTTTGTTGTTGACTG
Mouse	mRNA	Pemt	AGCAGAGAACTCGGAAGCTG
Mouse	mRNA	Pemt	CCAGGAAGTAGGTGGTGTGG
Mouse	mRNA	Ahcyl2	GTCCCACGGTCTTCTAGTCG
Mouse	mRNA	Ahcyl2	CTGACTCTCGCACCAGCTC
Mouse	mRNA	Atic	CTGTCCGTCCCTTGACTCC
Mouse	mRNA	Atic	TTCTCATTACTCGCGGCTTC
Mouse	mRNA	Mthfr	GTGGTCCTCTGTGCCTCTTC
Mouse	mRNA	Mthfr	AGCCAGCCTCTGCTTAGATG
Mouse	mRNA	Cyp1a1	CAGCATCCTCTTGCTACTTGG
Mouse	mRNA	Cyp1a1	TGAGGCTGTCTGTGATGTCC
Mouse	mRNA	Dhfr	GCTGGGTGCAGTCTTAGGAG
Mouse	mRNA	Dhfr	AGGGAGCACTGAAGAAGTGG
Mouse	pre-mRNA	Pemt	AAATACGAGCCCGACAACTG
Mouse	pre-mRNA	Pemt	ACCACTACCACCACCAATCG
Mouse	pre-mRNA	AhR	TTTCGTCGGTAGAGCAGTCC
Mouse	pre-mRNA	AhR	CTGTGTCGCTTAGAAGGATTTG
Mouse	pre-mRNA	Cyp1a1	TTCCTGTCCTCCGTTACCTG
Mouse	pre-mRNA	Cyp1a1	CCTAACTGCTTCCCATCACC
Human	mRNA	hPEMT	GCTCTCCAGCTTCTTTGCAC
Human	mRNA	hPEMT	AGGTAGTTGGCTGTGCTTCC
Human	mRNA	hGNMT	AGCCAACTGGATGACTCTGG
Human	mRNA	hGNMT	GTCTGGCAAGTGAGCGAAAC
Human	mRNA	hAHR	ACTCCACTTCAGCCACCATC
Human	mRNA	hAHR	CTTCCTTTGGCATCACAACC
Human	mRNA	hSHP	CAGAGATCAGGTGGGCAGAG
Human	mRNA	hSHP	TGTGGCTGAGTGAAGAGCTG

Supplementary Table 3. Sequences in the indicated genes of binding motifs that were identified by Jaspar and summarized in Fig. 3.

C	A	
Gene	IVIOTITS	predicted site sequence
AhR	Ahr::Arnt	CGCGIG
AnR	Ahr::Arnt	CGCGTG
hR	Nr1h3::Rxra	TGACGCTCGGTGCCCCACG
hR	Ahr::Arnt	TGTGTG
hR	Ahr::Arnt	TGTGTG
\hR	Ahr::Arnt	CGTGTG
AhR	Ahr::Arnt	AGCGTG
hR	Ahr::Arnt	TGCGCG
\hR	Ahr::Arnt	CACGTG
\hR	Ahr::Arnt	CACGTG
AhR	CREB1	TGACGCAG
hR	Ahr::Arnt	TGCGTC
1hR	SREBE1	ΔΓΓΑΓΓΓΓΑΓ
NHP	SPEPER	erecerteet
	FOXA1	CTCCTCTTCCCCCAC
	FUXAL	ACCTOTTTEC
ANK	FOXOL	ACCIGITITCC
AhR	SREBF1	CICACACCCC
AhR	CREB1	TGAGGCCA
AhR	FOXA1	AAGGAATTTGCCTAG
AhR	CREB1	TGATGTCT
Pemt	Model name	predicted site sequence
Pemt	Ahr::Arnt	TGCCTG
Pemt	Foxo1	TCGTATTTTCT
Pemt	SREBE1	ATCACGCGAG
emt	SPERES	
enit lomt	Abs: Ares	
remt	Anr::Arnt	
'emt	Anr::Arnt	
Pemt	Ahr::Arnt	CACGTG
Pemt	Ahr::Arnt	CGCATG
Pemt	FOXA1	GGCCTCTTGGCATTT
Pemt	Ahr::Arnt	СТССТС
Dnmt3a	Model name	predicted site sequence
Domt3a	SREBF1	ACCACCCGAG
)nmt35	Ahr. Arnt	CGGGTG
nmt25	Pharg-Dyra	6466666646466666
Junit2 -	r parg::RXIa	
onmt3a	Ahr::Arnt	
Onmt3a	Ahr::Arnt	TGCCTG
Ahcyl2	Model name	predicted site sequence
Ahcyl2	SREBF1	ATGACGCGAC
Ahcyl2	SREBF1	GTCGCGTCAT
Ahcyl2	SREBF2	ATGACGCGAC
Ahcyl2	CREB1	TGACGCGA
Ahcyl2	FOXA1	TCCGTTTTTATACTT
hcvl2	Nr5a2	AACTCCCAGGACAGC
Ahcyl?	Pparg: Ryra	GTGGGGGGATAGGCCG
hcyl?	Δhr…Δrnt	TGGGTG
	AllAll	Techetecertecertece
	Nr1n3::Kxra	IGLACIGUGUIUGU
	111 50×44	CAAGIIGGIIGC
Ahcyl2	FOXA1	AAGIIGGIIGCIGAG
ancyl2	CREB1	IGAGGICC
Ahcyl2	Ahr::Arnt	CGCGTG
Ahcyl2	Ahr::Arnt	CGCTTG
Ahcyl2	Ahr::Arnt	CGCGTG
Ahcyl2	SREBF1	CTCGCCCCAC
hcvl2	SREBF2	GTGGGGCGAG
Ahcyl?	Ahr::Arnt	CGAGTG
hcyl2	AhrArnt	TGCGAG
heyl2	CDED1	CEACATCA
haula	CREDI	
AriCyl2	CKERT	
Ancyl2	FUXA1	
hcyl2	Ahr::Arnt	IGCCTG
hcyl2	YY1	TACCATGGCGCC
Ahcyl2	Ahr::Arnt	CGGGTG
Snmt	Ahr::Arnt	TGGGTG
Snmt	FOXA1	GCAATATCTGCATTA
Snmt	Pparg::Rxra	TTAGGGTAGGGGCCA
anmt	SREBF1	CTCAGGCAAT
Gnmt	Ahr: Arnt	тасста
Somt	Nr1h3Dvra	GGGCTTGAAGTCACCCAGC
nnit Inmt	CDED1	TEACTICA
	CREBI	
onmt	CREBI	
inmt	Ahr::Arnt	IGGGTG
inmt	Ahr::Arnt	TGCGAG
inmt	Ahr::Arnt	TCCGTG
anmt	CREB1	AGACGCCA
inmt	YY1	CAACAGGGCCCC
inmt	CREB1	TGAGGCCA
ninit Somt	Nr1L2	TEECCTCACCTCTCCCCAC
Jimic	INTINS::KXra	
nmt	SKEBF1	GILILLLAL
inmt	SREBF2	GTGGGGAGAC
inmt	Pparg::Rxra	GCAGGAGAGAGGTGG
nmt	SREBF1	ACCACGTCAT
inmt	SREBF2	ATGACGTGGT
inmt	CREB1	TGACGTGG
inmt	CREB1	CCACGTCA
Gnmt	CREB1	TGAAGCCA
	and a second of the	

Gene	Motifs	predicted site sequence
Mthfr	Ahr::Arnt	CGTGTG
Mthfr	Ahr::Arnt	TCCGTG
Mthfr	YY1	GAAGATGGCGGG
Mthfr	Ahr::Arnt	TGGGTG
Mthfr	SREBF1	GTCACGTGAG
Mthfr	SREBF1	CICACGIGAC
Mthfr	SREBF2	
Mahfr	CREBI	TCACGTGA
Mthfr	AbruArnt	CACGTGA
Mthfr	Ahr::Arnt	CACGIG
Mthfr	Ahr.:Arnt	CACGIG
Mthfr	Ahr::Arnt	CACGTG
Mthfr	Ahr::Arnt	CGGGTG
Mthfr	SREBF1	CTCGCCCCAC
Mthfr	SREBF2	GTGGGGCGAG
Mthfr	SREBF1	CTCGCGTCAC
Mthfr	CREB1	TGACGCGA
Mthfr	SREBF1	GTCACATGAC
Mthfr	SREBF2	GTCATGTGAC
Mthfr	CREB1	TGACGCAG
Mthfr	Ahr::Arnt	TGCGTC
Mthfr	YY1	CAACATGGCCGC
Mthfr	Ahr::Arnt	CGCCTG
Mithfr Math f	FUXA1	
withfr Mthfr	FOX01	
withir Mthfr	AbruAret	
Mthfr	Auf::Afrit Abr::Arnt	тесен
Mthfr	SRERE1	
Mthfr	SREBE?	GIGGIGIGIT
Mthfr	Ahr::Arnt	CGCCTG
Mthfr	Ahr::Arnt	CACGTG
Mthfr	Ahr::Arnt	CACGTG
Mtfmt	SREBF1	ATCACCTCGG
Mtfmt	SREBF2	CCGAGGTGAT
Mtfmt	CREB1	GGAGGCCA
Mtfmt	Ahr::Arnt	AGCGTG
Mtfmt	Ahr::Arnt	TGCTTG
Mtfmt	Ahr::Arnt	CGGGTG
Mtfmt	Ahr::Arnt	TGCGGG
Mtfmt	Ahr::Arnt	GGCGTG
Mtfmt	Ahr::Arnt	GGCGTG
Mtfmt	Nr1h3::Rxra	TGCCCTGGGGTCGCCACCG
Mtfmt	YY1	CAACAGGGCGCC
Atic	Ahr::Arnt	GGCGTG
Atic	Nr1h3::Rxra	CGACCCCACGTGACCCCGA
Atic	Ahr::Arnt	CACGTG
Atic	Ahr::Arnt	CACGTG
Atic	Anr::Arnt	GGCGTG
Atic	Anr::Arnt	
Atic	Anr::Arnt	GLGTA
Atic	AhruArnt	CACGIG
Atic	Ahr:Arnt	TACGIN
Atic	VV1	CAGCATGGCTCC
Atic	Ahr::Arnt	TGCCTG
Atic	Ahr::Arnt	TGGGTG
Atic	Ahr::Arnt	TGAGTG
Atic	Ahr::Arnt	TGGGTG
Aldh1l1	Ahr::Arnt	TGGGTG
Aldh1l1	Ahr::Arnt	TGGGTG
Aldh1l1	YY1	CAAGATAGCACC
Aldh1l1	CREB1	TGAAGCCA
Aldh1l1	Nr1h3::Rxra	TGTACCCTGTTGACCTCAG
Aldh1l1	FOXA1	ACCCTGTTGACCTCA
Aldh1l1	Foxo1	CCCTGTTGACC
Aldh1l1	CREB1	TGAGGTCA
Aldh111	CREB1	IGACCICA
Aldh111		GTCACCAGAC
	SREBEL	GEGETCLAGGCCAAC
	Foxo1	TECTEGTEACA
NULT	10/01	