ChemistryOPEN

Supporting Information
© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Methyl Perillate as a Highly Functionalized Natural
Starting Material for Terephthalic Acid

Esmer Jongedijk,™ Frits van der Klis,') Rozemarijn de Zwart," Daan S. van Es, and Jules Beekwilder*®

open_201700178_sm_miscellaneous_information.pdf


http://orcid.org/0000-0003-3238-4427
http://orcid.org/0000-0003-3238-4427

Supporting Information

Table of contents:

Supplemental figure S1.:
Supplemental figure S2:
Supplemental figure S3:
Supplemental figure S4:
Supplemental figure S5:
Supplemental figure S6:
Supplemental figure S7:

GC-MS chromatogram of Salvia dorisiana esssential oil
Oxidation of perillyl aldehyde with a silver oxide catalyst
Methylation reaction of perillic acid to methylperillate
Methylation of perillic acid with p-TSA
Dehydrogenation reaction of limonene to p-cymene
Methyl cumate formation from methyl perillate
Oxidation of methyl cumic acid to terephthalic acid

Supplemental scheme S1: Reaction scheme from MPAto MCA

Supplemental table S1: Quantification of monoterpenes in essential oil

Supplemental table S2: Reactions of biobased starting materials towards TA

Supplemental table S3: Different oxidations of (-)-perillaldehyde to PA, or directly to MPA
Supplemental table S4: Reaction conditions tested for dehydrogenation reactions
Supplemental table S5: Selectivity of dehydrogenation limonene to p-cymene
Supplemental Materials and Methods



100

=
=

Salvia dorisiana essential oil

n [=2) =1 oe
S & & &
Lovoelonnnl

.
=

Relative Abundance

W
=

-3
o

=
S o o
i ol

b4

Mix of standards

-1

R B
S & o & & & &
Lol

=

[

|||.||||||||||.||.| [T T T T [T T T T[T T T T [T T ]
14 15 16 17 18 19 20

||
TTT L e o
5 5] 7 8

: @ii

=

T1me (mm}

Figure S1 GC-MS chromatogram of Salvia dorisiana esssential oil and a mix of
standards. Essential oil concentration was 53.2 ug/mL in pentane, with 4.66
ug/mL cis-nerolidol (internal standard). Shown is total ion count (TIC), 100% =
5.13E6. Standard mix consisted of limonene (1) 8.36 ug/mL, perillyl aldehyde
(2) 5.36 ug/mL, perillyl alcohol (3) 5.27 pg/mL, methyl perillate (4) 6.68 pg/mL,
perilla acetate (5) 4.62 pug/mL and cis-nerolidol (6) 4.66 png/mL in pentane,
shown is TIC, 100%=2.20E7. ldentity of compounds a-f and x was determined
by library hit: a-myrcene (a), some monoterpenes (b), myrtenyl acetate (c), a
monoterpene acetate (d), caryophyllene (e), some sesquiterpenes (f), and in the
standard mix there was a small contamination of cuminyl acetate (x).
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Figure S2 Oxidation of perillyl aldehyde with a silver oxide catalyst yielded near
pure PA a. tH-NMR spectrum of product in CDCl;, PA peak numbers are
indicated, b. 13C-NMR spectrum in CDClI,, peak numbers indicated, c. GC-MS
chromatogram (product in CHCI; methylated with TMSH), peak of
methylperillate is visible at RT 15.75, d. Mass spectrum of the methylperillate
peak at RT 15.75.
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Fig. S3 GC-MS chromatograms of the methylation reaction of perillic acid (PA) to
methylperillate (MPA) at different time-points, reaction samples diluted in
chloroform and dried over MgSO4. The reaction yielded 8-methoxy-methyl
perillate (MMPA) as a by-product. The longer the reaction time, the more MMPA
was formed. At RT 17.75 a peak of another minor by-product is visible, the
amount of this by-product increased with time as well. A short reaction time of 21
h ensured complete conversion of PA to MPA and small amount of the by-
products, which could be readily separated by column-chromatography.



Fig. S4 Methylation of perillic acid with p-TSA yielded a mixture of
methylperillate (MPA) and methoxymethylperillate (MMPA). The mixture could
be readily separated with column chromatography or Kugelrohr distillation a.
GC-MS chromatograms of the reaction product mixture, MPA and MMPA
products after separation and an MPA reference standard, b-d. characterization of
MPA after separation, b. tH-NMR in CDCl; of MPA, c. 1*C-NMR (100.62 MHz,
CDCl,) of MPA, d. FT-IR of MPA, e-j. characterization of MMPA after
separation, e. MS spectrum of methoxy methyl perillate (GC peak at RT 18.85),
f. IH-NMR (CDCl;) of MMPA, g. *C-NMR (100.62 MHz, CDCl;) of MMPA, h.
FT-IR of MMPA, i. DEPT135 spectrum of MMPA, j. 2D-HSQC (CDCl,)
spectrum of MMPA
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Fig. S5 Dehydrogenation reaction of limonene to p-cymene at different reaction
times, presence of limonene, p-cymene, dehydrogenation intermediates and acetone
aldol-addition products was analyzed. a. GC-MS of dehydrogenation product at
different reaction times, b. 1H-NMR of time 1h, ¢. 13C-NMR of 1h, d. 1H-NMR
3.5h, e. 13C-NMR 3.5h, f. 1H-NMR 20.25h, g. 13C-NMR 20.25h
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Fig. S6. Methyl cumate, the product of dehydrogenation from MP.
Byproducts related to acetone are detected, and some other byproducts are
visible, b. tH-NMR (400.17 MHz, CDCI3), methyl cumate peaks are
indicated, and that of the acetone related by-products diacetone alcohol and
mesityl oxide, ¢.3C-NMR (100.62 MHz, CDCI3)
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Fig. S7 GC-MS chromatograms of dehydrogenation reaction on mixed Salvia
monoterpenes. The reaction yielded a mix of all the dehydrogenated forms,
together with the starting materials, diacetone alcohol and some non-identified
compounds.



Fig. S7 Oxidation of methyl cumic acid (MCA) with nitric acid yields
terephthalic acid (TA) in one step a. H-NMR of produced TA in DMSO, b. 13C-
NMR of produced TA in DMSO, c. DEPT135 of produced TA (DMSO-D6) d. FT-
IR of produced TA and TA reference compound, e. LC-MS and LC-MS/MS
chromatograms of produced TA and TA reference compound, f. quantification of
TA in product 69.7%, g. MS and MS/MS spectra of TA, h. MS and MS/MS
spectra of byproduct. i. GC-MS chromatogram of silylated product

Fig. 57a.
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Supplemental Scheme S1: Reaction scheme from MPAto MCA
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Table S1 Quantification of perillic acid related monoterpenes in Salvia
dorisiana hydrodistilled essential oil

Compound g per kg essential oil
(-)-Limonene 83 (x22)
Perillyl aldehyde 3.7 (£1.0)
Perillyl alcohol 11.9 (+4.8)
Methyl perillate 204 (+83)
Perilla acetate 4.2 (x0.6)

Quantification was done by linear fit to authentic reference compound standard curve. +
standard deviation, n=5. Oil yield was 1.26 g oil / 100 g DW biomass (+ 0.94 g, n=7).



Table S2. Reactions of biobased starting materials towards TA

Compound!?l Functional Reactions needed Natural Fermentative
groups source production
sugars oxygenated solubilization, hydrodeoxy- biomass n.a.
ring genation, oxidation (100-600 (sugars)
°C, 0.1-83 bar)
lignin and aromatic ring Grinding, drying, cooling, biomass n.a.
lignocellulose solubilizing, pyrolysis, (lignin)
separation, oxidation (50-
1000° C)
isobutanol (via oxygenated dehydration,  dimerization, biomass Yes!l
pX) carbohydrate dehydrocyclization, (sugars)
oxidation (175-225° C, 15—
30 bar) (existing
infrastructure Amoco
oxidation)
fructose (via oxygenated dehydration, biomass n.a.
DMF, pX) ring hydrodeoxygenation, Diels- (sugars)
Alder, dehydration, oxidation
(100-300° C, 10-100 bar)
muconic acid oxygenated microbial synthesis, biomass Yesl?
carbohydrate isomerization, Diels-Alder, (sugars)
catalytic  dehydrogenation
(150" C)
FDCA 2 acid groups dehydration, oxidation, biomass YesE!
Diels-Alder, dehydration (sugars)
(100-200° C, 5-20 bar)
limonene, oxygenated dehydrogenation, oxidation, essential  Yesl
pinene ring, oxidation oil
functionalized (Citrus)
p-position
malic acid oxygenated dimerization/condensation, biomass Yest!
carbohydrate esterification, Diels— (sugars)
Alder/retro-Diels—
Alder/elimination
methyl perillic oxygenated dehydrogenation, oxidation essential  Yesld
acid ring, acid oil
group, (Perilla,
functionalized Salvia)
p-position

[a] Overview existing TA processes from Collias et al.ll

1: E. N. Lamsen, S. Atsumi, Front Microbiol 2012, 3, 196.
2:J. W. Frost, K. M. Draths, US patent 5616496, 1997.

3: F. Koopman, N. Wierckx, J. H. de Winde, H. J. Ruijssenaars, Bioresour Technol 2010, 101, 6291-

6296.

4: E. Jongedijk, K. Cankar, M. Buchhaupt, J. Schrader, H. Bouwmeester, J. Beekwilder, Appl
Microbiol Biot 2016, 100, 2927-2938; E. Jongedijk, K. Cankar, J. Ranzijn, S. van der Krol, H.
Bouwmeester, J. Beekwilder, Yeast 2015, 32, 159-171.
5: E. Jongedijk, K. Cankar, M. Buchhaupt, J. Schrader, H. Bouwmeester, J. Beekwilder, Appl

Microbiol Biot 2016, 100, 2927-2938; A. E. Mars, J. P. Gorissen, |. van den Beld, G. Eggink, Appl
Microbiol Biot 2001, 56, 101-107.



Catal A: Chem

Method of | References Reaction details Result
oxidation
L Wang et al. - Ag20 catalyst made in-situ by AgNO3 + NaOH in water ,\/
Oxidation (1993) - 55°C, NaOH, filtered + washed with hot water, acidified with
with Ag20. | Tetrahedron Vol | 11 (PA precipitates) 66% yield
Product: PA ;’{93_'“ pp 619'?8 i \
ortmann an B n b R # or on
Ong (1970) J { i R > S
Org Chem Vol \ ! !
35:12 pp 4290- —_— poe
4292
Kadas et al. e
(1998) Org Prep
Proc Int Vol
30:1 pp 79-85
2. Dalcanale + /_
Pinnick (1986) J Org ° /"\, \ o H 0 o
oxidation Chem Vol 51 pp J\\, o — ¢ ,O’PO"SI WO+ L yields the
acetonitrile / | Y67-369 ROH T A R/'eLH 5 "R R™ 01 chlorinated
water. o ~o%o acid as a by-
Product: PA - Oxidation with HCLO2 (formed under acidic conditions from product
NaCl02) @
- H202 added as HOC] scavenger
HO' [e]
3. Bal et al. (1981) +/
Pinnick Tetrahedron Vol M~ o H -0 =
oxidation 37 pp 2019- f\\—/ Q). O ool | o, JOL low yield
2096 R H o AL H HC T e on| 704
tert-butyl . Gy RTH g %
Kitahara et al. o S D Ll
alcohol / 2- 1988) oo
methyl-2- El“ etrahedron Vol | - Oxidation with HCIO2 (formed under acidic conditions from
butene / 44:15 pp 4713- NaC]OZ)
water. 4720
Product: PA | Dong et al.
(2013) J Asian
Nat Prod Res
Vol 15:8 pp
880-884
4. Marsden et al. To PA: NaOH, water, Au/TiO, 5 bar O,, 80°C + /_
Oxidation (2007) Green The results suggest that the catalyst is not active, it might be that
on AwTi02. | Chem Vol 10pp | ;4 Cannizzaro reaction took place: [ | maximum
Product: PA ]13(?81'11 7(3[ 1 . yield ~20%.
1€lla et al. o H 1
0% MP (2003) I Mol H u o without |
directly Q o + . catalyst also
OH-

Vol 197 pp 207-
212

To MP directly: NaOMe (base). MeOH, AwTiO, 5 bar O,, 80°C

yield ~20%

+/ = perillyl
aldehyde in
end-product
(incomplete
conversion)

Table S3 Different oxidations of (-)-perillaldehyde to PA, or directly to MPA,

that were tested. These included Pinnick oxidations (method of oxidation

numbers 2 and 3) and oxidations catalyzed by gold/titanium oxide (number 4)
and silver oxide (number 1). Highest efficiency was achieved using oxidation
with silver oxide. Literature references, reaction details and the obtained result

of all oxidation methods are indicated in the table.




Table S4 Reaction conditions tested for dehydrogenation reactions of limonene to
p-cymene

Catalyst Temperature Yield of p-cymene (mol%)
5% Pd/C 100 °C 0

5% Pd/C 150 °C 80

5% Pd/Al, O, 150 °C 56

5% Pd/Al,O, 125 °C 69

5% Pd/Al,O, 100 °C 75

5% Pd/Al,O, 75°C 0

5% Pd/Al, O, 50 °C 0

Reaction time was 17-21 hours.
Limonene : acetone : Pd molar equivalents were 1 : 19 : 0.007.
Catalysts were dry and reduced. Reactions were performed under nitrogen.



Table S5 Selectivity of dehydrogenation limonene to p-cymene at different

reaction times

Catalyst Temperature | Time | Yield of p-cymene [ Ratio p-cymene : diacetone
(mole%o) alcohol : mesityl oxide

5% Pd/Al,O; [ 125°C 1h 82** 1:0.14:0.00

5% Pd/Al,O, [ 125°C 35h |82 1:0.13:0.00

5% Pd/Al,O; [ 125°C 20h |80 1:0.15:0.18

5% Pd/Al,O, | 125 °C 27h |77 1:0.19:0.21

**optimal conditions, optimized for limonene.




2. Materials and Methods

2.1 Chemicals

(R)-(+)-limonene (97%, Sigma Aldrich), perillyl alcohol (96%, Sigma Aldrich), (S)-(-)-
perillaldehyde (Sigma Aldrich), (S)-(-)-perillyl acetate (Wako), (S)-(-)-perillic acid (95%,
Sigma Aldrich), cis-nerolidol (98%, Fluka), pentane (>99.0%, CHROMASOLV® for HPLC,
Sigma Aldrich), cumic acid (4-isopropylbenzoid acid, >98%, Sigma Aldrich), magnesium
sulphate (dried, 1-2 mol hydration water, Alfa Aesar), ethyl acetate (pure, Acros Organics),
hydrochloric acid (37%, reag. Ph. Eur., VWR), p-toluenesulfonic acid monohydrate (p-TSA,
98.5%, ACS reagent, Sigma Aldrich), methanol (for analysis, Merck), petroleum ether (PE,
ACS reagent, boiling range 40-60°C, Acros Organics), trimethyl sulfonium hydroxide
solution (TMSH, ~0.25 M in methanol, Sigma Aldrich), sicapent (Merck), silica gel 60
(0.040-0.063 mm, 230-400 mesh, Alfa Aesar), acetone (>99.8%, Actu-All Chemicals),
palladium 5% on alumina powder (reduced, Escat 1241, Strem Chemicals), palladium 5% on
activated carbon (reduced, dry powder, Strem Chemicals), platinum on carbon (extent of
labelling 10wt% loading, matrix activated carbon support, Aldrich), ruthenium 5% on carbon
(Strem Chemicals), chloroform (HPLC grade, stabilized with ethanol, min. 99.9%, Actu-All
Chemicals), sodium chloride (VWR Chemicals), celite 545 (Sigma Aldrich), nitric acid (65%,
G.R. for analysis, Merck), sodium nitrite (puriss, p.a. ACS >99.0%, Fluka), silylation reagent
(BSTFA + TMCS, 99:1, Supelco), DMSO-Ds (99.5% D, containing 0.03 % v/v

trimethylsilane (TMS), Aldrich)

2.2 Plant growth, multiplication and measurements

Salvia dorisiana plants were obtained from a local nursery. Standard growth conditions were

12 h day / 12 h night, 20°C / 18°C in the greenhouse.

2.3 Leaf extraction



Fresh leaves < 3 cm were snap frozen in liquid nitrogen and ground with pestle and mortar.
139.8 mg of powder was extracted with 6 mL pentane containing 4.66 pg/mL cis-nerolidol as

internal standard for analysis by GC-MS.
2.4 Essential oil distillation

Hydrodistillation was performed on lab-scale according to Stahl (Stahl, 1962). Hundred grams
of fresh Salvia dorisiana leaves < 3 cm were cut. The leaves were cooked in 1 L demi water
ina 2 L round bottom flask for 1 h without organic solvent, and afterwards the pure essential
oil layer was removed from the 4°C cooling bulb with a long Pasteur pipette. The essential oil
was dried over a MgSO4 column, and the oil yield in w/w% of fresh weight (FW) of the

leaves determined, average yield from one distillation 0.13 g (0.13 w/w%).

Steam distillation was performed for larger-scale oil harvesting, in a home-made kettle and
cooling system [http://indekoperenketel.nl/]. Tap water (30 L) was heated to 100°C and the
steam lead through 16.34 kg of Salvia dorisiana prunings during 1 h. Steam with extracted
volatiles was then cooled-down gradually to 10-15°C. The water layer of the condensate was
continuously removed by a separation funnel during distillation. The water layer was
extracted one time with diethyl ether, and this was combined with the oil layer. The solvent

was evaporated and the essential oil was dried over MgSOQa, yield 10.7 g (0.065 w/w%).
2.5 Quantification of monoterpenes

The oil was diluted to 53.2 pg/mL in pentane for analysis by GC-MS. A standard series of
limonene, methylperillate, perillyl alcohol, perillyl aldehyde and perillyl acetate was prepared
ranging from 0.1- 50 pg/mL in pentane. Oil and leaf compounds were quantified using a

linear and 2" order polynomal fitted equation from the standard series.

2.6 GC-MS analysis



GC-MS analysis of essential oil was performed on a 7890A gas chromatograph (Agilent)
equipped with a mass selective detector (Model 5975C, Agilent) with settings as reported

previously (Jongedijk et al., 2015).

GC-MS analysis of syntheses products was performed on an Interscience TraceGC Ultra GC
with AS3000 Il autosampler, connected to an Interscience TraceDSQ Il XL quadrupole mass
selective detector with settings as reported previously (van der Klis et al., 2012; van der Klis

etal., 2017).
2.7 LC-MS analysis

LC-MS was performed on an Accela HPLC tower connected to a LTQ/Orbitrap hybrid mass
spectrometer (Thermo Fisher Scientific), conditions and settings as described previously (van

der Hooft et al., 2012).
2.8 NMR analysis

NMR spectra were recorded on a Bruker Avance |1l spectrometer operating at 400.17 MHz
(*H) and 100.62 MHz (*3C). Proton NMR chemical shifts are quoted in parts per million
(ppm) referenced to the appropriate solvent peak. Carbon NMR was fully decoupled by broad

band decoupling.
29 FT-IR

Fourier transform infrared (FT-IR) spectra were obtained on a Varian Scimitar 1000 FT-IR
spectrometer equipped with a Pike MIRacle ATR Diamond/ZnSe single reflection plate and a
DTSG-detector. The measurement resolution was set at 4 cm-1, and the spectra were collected

in the range 4000-650 cm-1 with 64 co-added scans.

2.10 Synthesis of methylperillate



Perillyl aldehyde (50 g) was oxidized to perillic acid using silver oxide, prepared in-situ from
silver nitrate and sodium hydroxide as described previously (Wang et al., 1993). After
oxidation, the combined filtrate and washings were acidified with dilute hydrochloric acid
until pH ~ 1.5 and filtered. Pure perillic acid was obtained, 33.65 g (yield 61%). The product
was characterized by *H-NMR and *C-NMR. The product was characterized by GC-MS after
derivatisation with TMSH. *H-NMR (400.17 MHz, CDCls): & 1.41 (2H, m, J=4.0Hz, H-
5,),1.68 (3H, s, H-10), 1.82 and 1.84 (2H, d, J=8.0Hz, H-6), 2,08 (2H, m, J=8.0Hz, H-3),
2.28-2.42 (1H, m, J=16.0Hz, H-4), 4.56 and 4.70 (2H, s, H-9), 7.07 (1H, s, H-2), 11.05 (1H, s,
H-11); ¥C-NMR (100.62 MHz, CDCls): § 20.69 (C-10), 24.15 (C-6), 26.95 (C-5), 31.26 (C-

3), 39.94 (C-4), 109.28 (C-9), 129.48 (C-1), 141.87 (C-2), 148.61 (C-8), 172.82 (C-7).

Perillic acid was esterified with excess methanol, using toluenesulfonic acid as catalyst (Dayal
etal., 1981). Perillic acid (3.00 mmol, 0.50 g) was dissolved in methanol (0.32 mol, 13 mL)
and p-toluenesulfonic acid (0.15 mmol, 0.029 g), stirred (350 rpm) and heated to reflux (65
°C) for 22 h under N2. The solution was cooled to room temperature and diluted with 12 mL
chloroform, washed twice with saturated sodium bicarbonate (15 mL) and once with brine (15
mL). The organic layer (bottom) was diluted with chloroform to 20 mL, dried with
magnesium sulphate and filtered. The solvent was removed using a rotary evaporator at 40 °C.
The slightly-yellow oil was identified by GC-MS. A by-product was detected, that was
identified as 8-methoxy-methylperillate by NMR and GC-MS. The product mixture was
separated on column (2.3 cm diameter, 10 g silica, eluent PE:EtOAc 90:10). Fractions were
evaporated and analysed with *H-NMR, *C-NMR and GC-MS. Methylperillate yield: 0.259 g
(47 mole%). The procedure was scaled up at least 10 times with similar results. *H-NMR
(400.17 MHz, CDCls): & 1.43-1.48 (1H, m, J=4.0Hz, H-5), 1.75 (3H, s, H-10), 1.82-1.84 (2H,
m, J=4.0Hz, H-5), 2,08 (2H, m, J=4.0Hz, H-6), 2.13-2.18 (2H, m, J=8.0Hz, H-3), 2.25-2.40

(1H, m, J=4.0Hz, H-4), 3.72 (3H, s, H-11), 4.66 and 4.70 (2H, s, H-9), 6.93 (1H, m, J=4.0Hz,



H-2); 3C-NMR (100.62 MHz, CDCls): & 20.53 (C-10), 24.44 (C-6), 26.92 (C-5), 30.93 (C-3),
39.93 (C-4), 51.30 (C-11), 109.05 (C-9), 129.78 (C-2), 138.90 (C-1), 148.53 (C-8), 167.55
(C-7). During methylation 8-methoxy-methylperillate (MMPA) was formed as a by-product.
Longer reaction times yielded more MMPA (Fig. 1, Fig. A3). A reaction time of 21h ensured
complete conversion of perillic acid to MPA with minimal MMPA formation. MMPA and
other minor by-products could readily be separated from MPA by column chromatography or
Kugelrohr distillation (Fig. A4). According to our knowledge the compound MMPA has not

been reported before, characterization data of MPA and MMPA are added in Fig. A4.

2.11 Dehydrogenation to methyl cumate

Dehydrogenation conditions were initially optimized for limonene (Table 2). Methylperillate
was dehydrogenated to methyl cumate using a supported palladium catalyst (Grau et al., 1999).
Purified methylperillate (96% pure), 2.66 mmol, 0.479 g, 0.5 mL, was dissolved in acetone
(0.300 mol, 22 mL) in a stirred (830 rpm) 75 mL reactor (MRS5000, Parr instrument company,
Illinois, USA) with 5% Pd/Al,Os catalyst (0.2038 g, ~0.096 mmol Pd), flushed 3 times with N
and then heated to 125 °C for 1 h under N2. Subsequently, the reactor was let to cool down to
room temperature. Then the solution was filtered over a Celite pad and washed with acetone.
The solvent was removed using a rotary evaporator at 40 °C. The product was analysed with
'H-NMR, BC-NMR and GC-MS. Some minor by-products related to acetone were observed,
among these were diacetone alcohol, that can be formed by aldol addition of two molecules of
acetone, and mesityl oxide, the dehydration product of diacetone alcohol. Yield: 0.721 g, 45%
pure (total yield methylcumate from methylperillate 69 mole%). *H-NMR (400.17 MHz,
CDCl3) & 1.25 (6H, s, H-9 and H-10), 2.92-2.98 (1H, m, J=8.0Hz, H-8), 3.89 (3H, 2, H-11),
7.27-7.29 (2H, m, J= 8.0Hz, H-3 and H-5), 7.94-7.96 (2H, m, J=8.0Hz, H-2 and H-6); 1*C-

NMR (100.62 MHz, CDCls) § 23.63-23.64 (C-9 and C-10), 30.83 (C-8), 34.19 (C-7), 51.85(C-



11), 126.40 (C-3 and C-5), 127.74 (C-1), 129.67 (C-2 and C-6), 154.24 (C-4), 167.09 (C-7).

NMR characterization matches that reported in literature (Zhu et al., 2013).
2.12 Oxidation of cumic acid to terephthalic acid

A 50 mL round bottom flask was equipped with a magnetic stirring bar and a Liebig
condenser. The round bottom flask was placed on a stirring plate with an aluminium heating
mantle. The flask was charged with water (20 mL), followed by 65% nitric acid (14.4 g) and
sodium nitrite (10 mg) to initiate the reaction. The mixture was stirred and gently heated to
~40 °C until the mixture became yellow. Next, cumic acid (5.0 g) was added to the stirred
nitric acid solution, to give a white suspension. The suspension was heated to reflux, and
became clear after ~30 min at reflux. After 24 h reflux, the reaction mixture had turned into a
white suspension again. The mixture was allowed to cool down to room temperature, and the
white solid was collected from the suspension by filtration (type 3 glass filter). The filter cake
was washed with demineralized water, and dried under vacuum to constant weight (40 °C,
~50 mbar, in the presence of Sicapent). The product was obtained as a white powder. Yield:
4.5 g (89 mole%). The product was analysed with GC-MS after silylation, and with *H-NMR
and 3C-NMR. 'H-NMR (400.17 MHz, DMSO-Dg¢) & 13.32 (2H, s, H-7 and H-8), 8.03 (4H, s,
H-2, H-3, H-5 and H-6); 3C-NMR (100.62 MHz, DMSO-Ds) § 129.43 (C-2, C-3, C-5, C-6),

134.44 (C-1, C-4), 166.64 (C-7, C-8).
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