Supplementary Materials

Table S1. Details of the lethal equivalent estimates for marine animals from Figure 1.^aLethal equivalents in a haploid genome estimated from *B*, the rate of decline in fitness with inbreeding or from molecular marker data. ^bLethal equivalent estimates from molecular marker data (haploid). Estimates from Launey and Hedgecock 2001 are from four different lines, while estimates from Plough and Hedgecock 2011 are from 2 different inbred families. See File S1 for full citation information.

Group	Species	Inbreeding	Trait	LE ^a	Citation
Invert	Purple sea urchin	0, 0.25	larval growth	1.32	Anderson and Hedgecock 2010
	Catarina scallop	0, 0.25	larval survival	1.06	Ibarra et al., 1995
	Pacific abalone	0, 0.25	post set survival	2.53	Kobiashi and Kijima 2010
	Pacific abalone	0, 0.25	% metamorphosis	1.15	Deng et al., 2005
	White shrimp	0, 0.25, 0.375	hatch rate	1.68	Moss et al., 2009
	White shrimp	0, 0.25, 0.375	hatchery survival	1.38	Moss et al., 2009
	Eastern oyster	0, 0.25	larval survival	0	Mallet and Haley 1983
	Eastern oyster Pacific oyster	0, 0.25 0.25	survival to day 2 viability	6.08 3.77 ^b	Longwell and Stiles 1973 Launey and Hedgecock 2001
	Pacific oyster	0.25	viability	2.27 ^b	Launey and Hedgecock 2001
	Pacific oyster	0.25	viability	4.03 ^b	Launey and Hedgecock 2001
	Pacific oyster	0.25	viability	3.77 ^b	Launey and Hedgecock 2001
	Pacific oyster	0.25	viability	3.02 ^b	Plough and Hedgecock 2011
	Pacific oyster	0.25	viability	2.67 ^b	Plough and Hedgecock 2011
Fish	Atlantic Cod	0, 0.25	hatch survival	0.94	Puckrin 2015
	Rainbow trout	0, 0.25, 0.5	fry survival	0.08	Kincaid 1983
	Steelhead Salmon	0, 0.25	0-3 month survival	0.2	Thrower and Hard 2009

File S1. List of references used to generate LE estimates for marine animals in table S1

- Anderson D, Hedgecock D, 2010. Inbreeding depression and growth heterosis in larvae of the purple sea urchin *Stronglyocentrotus purpuratus* (*Stimpson*). J. Exp. Mar. Biol. Ecol. 384: 68–75.
- Deng YW, Liu X, Zhang GF, Guo XM, 2005. Inbreeding depression and maternal effects on early performance of Pacific abalone. N. Am. J. Aquacult. 67: 231–236.
- Ibarra AM, Cruz P, Romero BA, 1995. Effects of inbreeding on growth and survival of self-fertilized Catarina scallop larvae *Argopecten circularis*. Aquaculture 134: 37–47.
- Kobayashi T, Kijima A, 2010. Effects of inbreeding depression in Pacific abalone *Haliotis discus hannai*. J. Shellfish Res. 29: 643–649.
- Kincaid HL, 1983. Inbreeding in fish populations used for aquaculture. Aquaculture 33: 215-227.
- Launey S, Hedgecock D, 2001. High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159: 255-265.
- Longwell AC, Stiles SS, 1973. Gamete cross incompatibility and inbreeding in the commercial American oyster *Crassostrea* virginica Gmelin. Cytologia (Tokyo) 38: 521.
- Mallet AL, Haley LE, 1983. Effects of inbreeding on larval and spat performance in the American oyster. Aquaculture 38: 521-533.
- Moss DR, Arce SM, Otoshi CA, Moss SM, 2008. Inbreeding effects on hatchery and growout performance of Pacific white shrimp *Penaeus* (*Litopenaeus*) vannamei. J. World Aquacult. Soc. 39: 467–476.
- Plough LV, Hedgecock D, 2011. Quantitative trait locus analysis of stage-specific inbreeding depression in the Pacific oyster Crassostrea gigas. Genetics 189: 1473–1486.
- Puckrin OA, 2015. Incidence of Sib Mating, Test for Inbreeding Depression and Potential Application for Reducing the Impact of Escaped Cultivated Cod on Wild Atlantic Cod Gadus morhua. Masters thesis, Department of Biology Memorial University of Newfoundland.
- Thrower FP, Hard JJ, 2009. Effects of a single event of close inbreeding on growth and survival in steelhead. Conserv. Genet. 10: 1299–130

Author	Species	Taxa group	Segregation Distortion	Proportion of Markers	Marker type	Comments
Wang et al. 2007a	Bay scallop	bivalve	yes	0.19	µsats ¹ and AFLPs ²	
Wang et al. 2012	Bay scallop	bivalve	yes	0.60	μsats	No linkage map
Qin et al. 2007	Bay scallop	bivalve	yes	0.14	µsats and AFLPs	Clustered across three linkage
Lallias et al. 2007b	Blue mussel	bivalve	yes	0.28	AFLPs	groups
Yu and Guo 2003	Eastern oyster	bivalve	yes	0.08	µsats and AFLPs	
Lallias et al. 2007a	Flat oyster	bivalve	yes	0.33	AFLPs	
Peterson et al. 2012	Pacific lion-paw scallop	bivalve	yes	0.07	µsats and AFLPs	
Yuan et al. 2010	Noble scallop	bivalve	yes	0.11	µsats and AFLPs	
Hedgecock et al. 2015	Pacific oyster	bivalve	yes	0.49	µsats and SNPs ³	
Li and Guo 2004	Pacific oyster	bivalve	yes	0.27	AFLPs	
Plough et al. 2016	Pacific oyster	bivalve	yes	0.56	µsats and SNPs	
Bai et al. 2015	Pearl mussel	bivalve	yes	0.20	μsats	
Jones et al. 2013	Pearl oyster	bivalve	yes	0.14	SNPs	121/877 SNPs across 16 families - FDR corrected
Li and He 2014	Pearl oyster	bivalve	yes	0.31	RADseq ⁴	
Shi et al. 2009	Pearl oyster	bivalve	yes	0.13	µsats and AFLPs	
Xu et al. 2008	Yellow scallop	bivalve	yes	0.08	µsats and AFLPs	
Wang et al. 2003	Zhikong scallop	bivalve	yes	0.35	AFLPs	
Wang et al. 2005	Zhikong scallop	bivalve	yes	0.06	AFLPs	
Zhan et al. 2009	Zhikong scallop	bivalve	yes	0.30	μsats	
Nossa et al. 2014	Horseshoe crab	crustacean	not reported	NA	Whole genome SNPs	Tested, but results not reported
Cui et al. 2015	Mitten crab	crustacean	culled/not reported	NA	RADseq	
Liu et al. 2012b	Swimming crab	crustacean	yes	0.10	μsats	
Baranski et al. 2014	Tiger shrimp	crustacean	yes	0.07	SNPs	
Staelens et al. 2008	Tiger shrimp	crustacean	yes	0.21	AFLPs	Averaged across three families
You et al. 2010	Tiger shrimp	crustacean	ves	0.14	usats and AFLPs	28/85 aflp, 19/256 usats

Author	Species	Taxa group	Segregation Distortion	Proportion of Markers	Marker type	Comments
Du et al. 2010	White Shrimp	crustacean	not reported	NA	SNPs	apparently tested but not reported
Zhang et al. 2007	White shrimp	crustacean	yes	0.39	µsats and AFLPs	
Tian et al. 2015	Sea cucumber	echinoderm	not reported	NA	RADseq	Filtering for % geno and Mendel: SNP # reduced from 32,000 to 11,000
Yan et al. 2013	Sea cucumber	echinoderm	yes	0.22	µsats and SNPs	
Wang et al. 2007b	Asian seabass	fish	yes	0.11	μsats	Clustered on 3 lgs.
Wang et al. 2015a	Asian seabass	fish	yes	0.15	RADseq	removed, culled before mapping
Hubert et al. 2010	Atlantic cod	fish	low	0.03	SNPs	
Reid et al. 2007	Atlantic halibut	fish	low	0.02	µsats and AFLPs	
Gonen et al. 2014	Atlantic salmon	fish	not reported	NA	RADseq	
Wang et al. 2010	Blue gill sunfish	fish	yes	0.02	AFLPs	
Hermida et al. 2014	Brill	fish	yes	0.18	μsats	
Li et al. 2014	Channel catfish	fish	not reported	NA	SNPs	
Lui et al. 2003	Channel catfish	fish	yes	0.17	AFLPs	
Christiakov et al. 2005	European seabass	fish	not reported	NA	μsats	
Palaiokostas et al. 2015	European seabass	fish	not reported	NA	RADseq	
Kai et al. 2005	Fugu	fish	not reported	NA	μsats	
Tsigenopoulos et al. 2014	Gilthead sea bream	fish	not reported	NA	µsats and SNPs	Not reported, likely culled by Crimap
Kai et al. 2014	Japanese eel	fish	low	0.01	RADseq	
Nomura et al. 2011	Japanese eel	fish	low	0.05	µsats and AFLPs	
Castano-Sanchez et al. 2010	Japanese flounder	fish	not reported	NA	µsats and SNPs	
Coimbra et al. 2003	Japanese flounder	fish	not reported	NA	µsats and AFLPs	
Song et al. 2012b	Japanese flounder	fish	yes	0.38	μsats	
Kessuwan et al. 2016	Kelp grouper	fish	not reported	NA	μsats	not reported, but apparently tested
Liu et al. 2013	Kelp grouper	fish	not reported	NA	μsats	

	a		Segregation	Proportion of		
Author	Species	Taxa group	Distortion	Markers	Marker type	Comments
You et al. 2013	Orange spotted grouper	fish	yes	0.30	MSG ⁶	Could be other artifacts (nulls, non-Mendelian segregation)
Hollenbeck et al. 2015	Red drum	fish	low	~0.00	μsats	
Diopere et al. 2014	Common sole	fish	yes	0.04	usats and SNPs	
Liao et al. 2009	Half-smooth sole	fish	yes	0.33	µsats and AFLPs	
Song et al. 2012a	Half-Smooth sole	fish	yes	0.31	μsats	
Amores et al. 2011	Spotted gar	fish	not reported	NA	RADseq	
Liu et al. 2012a	Striped bass	fish	not reported	NA	μsats	
Piechel et al. 2001	three-spine stickleback	fish	not reported	NA	μsats	
Bouza et al. 2007	Turbot	fish	yes	0.10	μsats	Reported as "scattered"
Bouza et al. 2012	Turbot	fish	yes	0.27	µsats and SNPs	
Wang et al. 2015b	Turbot	fish	culled/not reported	NA	RADseq	
Dor et al. 2014	White grouper	fish	low	0.02	μsats	Reported at $\alpha = 0.01$ level
Ao et al. 2015	Yellow croaker	fish	culled/not reported	NA	RADseq	From 30K to 10K snps that fit Mendel
Ning et al. 2007	Yellow croaker	fish	yes	0.33	µsats and AFLPs	
Xiao et al. 2015	Yellow croaker	fish	not reported	NA	Transcriptome SNPs	23,000 to 8,300 SNPs passing test for Mendel?
Aoki et al. 2015	Yellowtail	fish	not reported	NA	SNPs	not reported, but they tested for chi-square
Portnoy et al. 2010	Red drum	fish	low	0.04	μsats	Only Bonferroni corrected reported; distortions clustered on
Liu et al. 2006	Pacific abalone	gastropod	low	0.05	µsats, AFLPs, RAPDs	a few linkage groups Only Bonferroni corrected reported

Web of Science (WOS) search was performed for articles with titles containing words about segregation/linkage (any of the following key words; linkage map*, genetic map*, QTL, QTL-map*, segregation, segregation distortion, transmission ratio distortion) and marine animal groups (any key words; *fish, fish*, shellfish, oyster, mussel, mollus*, shrimp, crab, decapod, clam, crustacean, scallop, hexapod, lobster, marine, ocean, sea*, barnacle, copepod, *bass, urchin, snail, echinoderm), where 'word*' denotes a match of the proceeding word and any length string of any characters after it. Studies that used specific common or scientific names (e.g. Halibut or Salmo) were not identified with this search but were retrieved manually with more specific searches (see text for detail). Up to three data points per species were included and only outbred F_1 segregation data was considered. ¹microsatellite markers; ²amplified fragment length polymorphisms; ³single nucleotide polymorphisms; ⁴restriction digest associated DNA markers; ⁵multiplexed shotgun sequencing; ⁶ random amplified DNA polymorphisms.

File S2. List of references used in literature survey of segregation distortion

- Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH, 2011. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188: 799–808.
- Ao J, Li J, You X, Mu Y, Ding Y et al., 2016. Construction of the high-density genetic linkage map and chromosome map of large yellow croaker *Larimichthys crocea*. Int. J. Mol. Sci 16: 26237–48
- Aoki J-Y, Kai W, Kawabata Y, Ozaki A, Yoshida K et al., 2105. Second generation physical and linkage maps of yellowtail *Seriola quinqueradiata* and comparison of synteny with four model fish. BMC Genomics 16: 406.
- Bai Z, Han X, Luo M, Lin J, Wang G et al., 2015. Constructing a microsatellite-based linkage map and identifying QTL for pearl quality traits in triangle pearl mussel *Hyriopsis cumingii*. Aquaculture 437: 102–110.
- Baranski M, Gopikrishna G, Robinson NA, Katneni VK, Shekhar MS et al., 2014. The development of a high density linkage map for black tiger shrimp *Penaeus monodon* based on cSNPs. PLoS ONE 9: e85413.
- Bouza C, Hermida M, Pardo BG, Fernández C, Fortes GG et al., 2007. A microsatellite genetic map of the turbot *Scophthalmus maximus*. Genetics 177: 2457–2467.
- Bouza C, Hermida M, Pardo BG, Vera M, Fernández C et al., 2012. An expressed sequence tag (EST)-enriched genetic map of turbot *Scophthalmus maximus*: a useful framework for comparative genomics across model and farmed teleosts. BMC Genet. 13: 54.
- Castano-Sanche C, Fuji K, Ozaki A, Hasegawa O, Sakamoto T et al., 2007. High-density linkage map of the Japanese flounder *Paralichthys olivaceus*. Aquaculture 272: S248-S248.
- Chistiakov D, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS et al., 2005. Microsatellite linkage map of the European sea bass *Dicentrarchus labrax*. Genetics 170 1821–1826
- Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E et al., 2003. A genetic linkage map of the Japanese flounder *Paralichthys olivaceus*. Aquaculture 220: 203–218.
- Cui Z, Hui M, Liu Y, Song C, Li X et al., 2015. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab *Eriocheir sinensis*. Heredity 115: 206–215.
- Diopere E, Maes GE, Komen H, Volckaert FAM, Groenen MAM, 2014. A genetic linkage map of sole *Solea solea*: a tool for evolutionary and comparative analyses of exploited (flat) fishes. PLoS ONE 9: e115040.
- Dor L, Shirak A, Gorshkov S, Band MR, Korol A et al., 2014. Construction of a microsatellites-based linkage map for the white grouper *Epinephelus aeneus*. G3 (Bethesda) 4: 1455–1464.
- Du ZQ, Ciobanu DC, Onteru SK, Gorbach D, Mileham AJ et al., 2010. A gene-based SNP linkage map for pacific white shrimp *Litopenaeus vannamei*. Anim. Genet. 41: 286–294.
- Gonen S, Lowe N, Cezard T, Gharbi K, Bishop S et al., 2014. Linkage maps of the Atlantic salmon *Salmo salar* genome derived from RAD sequencing. BMC Genomics 15: 166
- Hedgecock D, Shin G, Gracey AY, Van Den Berg D, Samanta MP, 2015. Second-generation linkage maps for the Pacific oyster Crassostrea gigas reveal errors in assembly of genome scaffolds. G3 (Bethesda) 5: 2007–2019.
- Hermida M, Rodriguez-Ramilo ST, Hachero-Cruzado I, Herrera M, Sciara AA et al., 2014. First genetic linkage map for comparative mapping and QTL screening of brill *Scophthalmus rhombus*. Aquaculture 420: S111–S120.
- Hollenbeck CM, Portnoy DS, Gold JR, 2015. A genetic linkage map of red drum *Sciaenops ocellatus* and comparison of chromosomal syntenies with four other fish species. Aquaculture 435: 265–274.
- Hubert S, Higgins B, Borza T, Bowman S, 2010. Development of a SNP resource and a genetic linkage map for Atlantic cod *Gadus morhua*. BMC Genomics 11: 191.
- Jones DB, Jerry DR, Khatkar MS, Raadsma HW, Zenger KR, 2013. A high-density SNP genetic linkage map for the silver-lipped pearl oyster *Pinctada maxima:* a valuable resource for gene localisation and marker-assisted selection. BMC Genomics 14: 810.

- Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A et al., 2005. Genetic linkage map for the tiger pufferfish *Takifugu rubripes*. Genetics 171: 227–238
- Kai W, Nomura K, Fujiwara A, Nakamura Y, Yasuike M et al., 2014. A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel *Anguilla japonica* provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics 15: 233.
- Kessuwan K, Kubota S, Liu Q, Sano M, Okamoto N et al., 2015. Detection of growth-related quantitative trait loci and highresolution genetic linkage map using simple sequence repeat markers in the kelp grouper *Epinephelus bruneus*. Mar. Biotechnol. 18: 57–84.
- Lallias D, Beaumont AR, Haley CS, Boudry P, Heurtebise S et al., 2007a. A first-generation genetic linkage map of the European flat oyster *Ostrea edulis* (L.) based on AFLP and microsatellite markers. Anim. Genet. 38: 560–568.
- Lallias D, Lapegue S, Hecquet C, Boudry P, Beaumont AR, 2007b. AFLP-based genetic linkage maps of the blue mussel *Mytilus edulis*. Anim. Genet. 38: 340–349.
- Li L, Guo XM, 2004. AFLP-based genetic linkage maps of the Pacific oyster *Crassostrea gigas* Thunberg. Mar. Biotechnol. 6: 26–36.
- Li Y, He M, 2014. Genetic mapping and QTL analysis of growth-related traits in *Pinctada fucata* using restriction-site associated DNA sequencing. PLoS ONE 9: e111707.
- Li Y, Liu SK, Qin ZK, Waldbieser G, Wang RJ et al., 2015. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res. 22: 39–52.
- Liao XL, Ma HY, Xu GB, Shao CW, Tian YS et al., 2009. Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole *Cynoglossus semilaevis*. Mar. Biotechnol. 11: 699–709.
- Liu S, Rexroad CE III, Couch CR, Cordes JF, Reece KS et al., 2012a. A microsatellite linkage map of striped bass *Morone saxatilis* reveals conserved synteny with the three-spined stickleback *Gasterosteus aculeatus*. Mar. Biotechnol. 14: 237–244.
- Liu L, Li J, Liu P, Zhao F, Gao B et al., 2012b. A genetic linkage map of swimming crab *Portunus trituberculatus* based on SSR and AFLP markers. Aquaculture 344: 66–81.
- Liu Q, Sakamoto T, Kubota S, Okamoto N, Yamashita H et al., 2013. A genetic linkage map of kelp grouper *Epinephelus bruneus* based on microsatellite markers. Aquaculture 414: 63–81.
- Liu ZJ, Karsi A, Li P, Cao D, Dunham R, 2003. An AFLP-based genetic linkage map of channel catfish *Ictalurus punctatus* constructed by using an interspecific hybrid resource family. Genetics 165: 687–694.
- Liu XD, Liu X, Guo X, Gao QK, Zhao HG et al., 2006. A preliminary genetic linkage map of the pacific abalone *Haliotis discus hannai* Ino. Mar. Biotechnol. 8: 386–397.
- Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T et al., 2000. A detailed linkage map of medaka *Oryzias latipes*: comparative genomics and genome evolution. Genetics 154: 1773–1784.
- Ning Y, Liu X, Wang ZY, Guo W, Li Y et al., 2007. A genetic map of large yellow croaker *Pseudosciaena crocea*. Aquaculture 264: 16–26.
- Nomura K, Ozaki A, Morishima K, Yoshikawa Y, Tanaka H et al., 2011. A genetic linkage map of the Japanese eel *Anguilla japonica* based on AFLP and microsatellite markers. Aquaculture 310:329–342.
- Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY et al., 2014. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience 3: 9.
- Palaiokostas C, Bekaert M, Taggart JB, Gharbi K, McAndrew BJ et al., 2015. A new SNP-based vision of the genetics of sex determination in European sea bass *Dicentrarchus labrax*. Gen. Sel. Evol. 47: 68.
- Qin Y, Liu X, Zhang H, Zhang G, Guo X, 2007. Genetic mapping of size-related quantitative trait loci (QTL) in the bay scallop *Argopecten irradians* using AFLP and microsatellite markers. Aquaculture 272: 281–90.

- Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF et al., 2001. The genetic architecture of divergence between threespine stickleback species. Nature 414: 901–905.
- Petersen JL, Baerwald MR, Ibarra AM, May B, 2012. A first-generation linkage map of the Pacific lion-paw scallop *Nodipecten subnodosus*: initial evidence of QTL for size traits and markers linked to orange shell color. Aquaculture 350: 200–209.
- Plough LV, Shin G, Hedgecock D, 2016. Genetic inviability is a major driver of type-III survivorship in experimental families of a highly fecund marine bivalve. Mol Ecol. 25: 895–910.
- Portnoy DS, Renshaw MA, Hollenbeck CM, Gold JR, 2010. A genetic linkage map of red drum *Sciaenops ocellatus*. Anim. Genet. 41: 630–641
- Reid DP, Smith CA, Rommens M, Blanchard B, Martin-Robichaud D et al., 2007. A genetic linkage map of Atlantic halibut (*Hippoglossus hippoglossus* L.). Genetics 177: 1193–1205.
- Shi Y, Kui H, Guo X, Gu Z, Wang Y et al., 2009. Genetic linkage map of the pearl oyster *Pinctada martensii* (Dunker). Aqua. Res 41: 35–44.
- Song W, Li Y, Zhao Y, Liu Y, Niu Y et al., 2012a. Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole *Cynoglossus semilaevis*. PLoS ONE 7: e52097.
- Song W, Pang R, Niu Y, Gao F, Zhao Y et al., 2012b. Construction of high-density genetic linkage maps and mapping of growthrelated quantitative trait loci in the Japanese flounder *Paralichthys olivaceus*. PLoS ONE 7: e50404.
- Staelens J, Rombaut D, Vercauteren I, Argue B, Benzie J et al., 2008. High-density linkage maps and sex-linked markers for the black tiger shrimp *Penaeus monodon*. Genetics 179: 917–925.
- Tian M, Li Y, Jing J, Mu C, Du H et al., 2015. Construction of a high-density genetic Map and quantitative trait locus mapping in the sea cucumber *Apostichopus japonicus*. Sci. Rep. 5: 14852.
- Tsigenopoulos CS, Louro B, Chatziplis D, Lagnel J, Vogiatzi E et al., 2014. Second generation genetic linkage map for the gilthead sea bream *Sparus aurata* L. Mar. Genomics 18 (Pt A): 77–82.
- Wang S, Bao Z, Pan P, Zhang Q, 2003. AFLP linkage map of an intraspecific cross in Chlamys farreri. J. Shellfish Res. 23: 491-499.
- Wang LL, Song LS, Chang Y, Xu W, Ni D et al., 2005. A preliminary genetic map of Zhikong scallop (*Chlamys farreri* Jones et Preston 1904). Aqua. Res. 36: 643–653.
- Wang L, Song L, Zhang H, Gao Q, Guo X, 2007a. Genetic linkage map of bay scallop *Argopecten irradians irradians* (Lamarck 1819). Aquacult. Res. 38: 409–19.
- Wang CM, Zhu ZY, Lo LC, Feng F, Lin G et al., 2007b. A microsatellite linkage map of Barramundi *Lates calcarifer*. Genetics 175: 907–915.
- Wang W-J, Wang H-P, Yao H, Wallat GK, Tiu LG et al., 2010. A first genetic linkage map of bluegill sunfish *Lepomis macrochirus* using AFLP markers. Aquacult. Int. 18:825–835.
- Wang Y, Li L, Zhang S-D, Zheng H-P, Zhang G, 2012. Microsatellite segregation distortion analysis of the out bred, inbred and selfed families of the bay scallop *Argopecten irradians*. Marine Sciences (Beijing) 36: 109–115.
- Wang L, Wan ZY, Bai B, Huang SQ, Chua E et al., 2015a. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci. Rep. 5:16358.
- Wang W, Hu Y, Ma Y, Xu L, Guan J et al., 2015b. High-density genetic linkage mapping in turbot (*Scophthalmus maximus* L.) based on SNP markers and major sex- and growth-related regions detection. PLoS ONE 10: e0120410.
- Xiao S, Wang P, Zhang Y, Fang L, Liu Y et al., 2015. Gene map of large yellow croaker *Larimichthys crocea* provides insights into teleost genome evolution and conserved regions associated with growth. Sci. Rep. 5: 18661.
- Xu K, Li Q, Kong L, Yu R, 2008. A first-generation genetic map of the Japanese scallop *Patinopecten yessoensis*-based AFLP and microsatellite markers. Aqua. Res. 40: 35–43.
- Yan J, Jing J, Mu X, Du H, Tian M et al., 2013. A genetic linkage map of the sea cucumber *Apostichopus japonicus* based on microsatellites and SNPs. Aquaculture 404: 1–7.

- You EM, Liu KF, Huang SW, Chen M, Groumellec ML et al., 2010. Construction of integrated genetic linkage maps of the tiger shrimp *Penaeus monodon* using microsatellite and AFLP markers. Anim. Genet. 41: 365–376.
- You X, Shu L, Li S, Chen J, Luo J et al., 2013 Construction of high-density genetic linkage maps for orange-spotted grouper *Epinephelus coioides* using multiplexed shotgun genotyping. BMC Genet. 14: 113.
- Yu ZN, Guo XM, 2003. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol. Bull. 204: 327–338.
- Yuan T, He M, Huang L, Hu J, 2010. Genetic linkage maps of the noble scallop *Chlamys nobilis* (reeve) based on AFLP and microsatellite markers. J. Shellfish Res. 29: 55–62.
- Zhan A, Hu J, Hu X, Hui M, Wang M et al., 2009. Construction of microsatellite-based linkage maps and identification of sizerelated quantitative trait loci for Zhikong scallop *Chlamys farreri*. Anim. Genet. 40: 821–831.
- Zhang L, Yang C, Zhang Y, Li L, Zhang X et al., 2007. A genetic linkage map of Pacific white shrimp *Litopenaeus vannamei*: sexlinked microsatellite markers and high recombination rates. Genetica 131: 37–49.