
S1 Approximating a Poisson Process using Beta

random variables

Consider approximating a Poisson process on (0, 1) with intensity ⌫(�) = ↵�
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n

, 1/2�
✏

n

) where ✏

n

< 1/2. Denote the Poisson process as N(t) and the approximating
process as N 0

n

(t), we first calculate the probability of having m points in interval (�, t],
where m  n, t < 1 and 0 < � ⌧ 1,

P [N((�, t]) = m] =

hR
t

�

↵�

�1(1� �)�1/2
d�

i
m

m!
exp

✓
�
Z

t

�

↵�

�1(1� �)�1/2
d�

◆
,

P [N 0
n

((�, t]) = m] =

✓
n

m

◆✓
1

Beta(✏
n

, 1/2� ✏

n

)

Z
t

�

�

�1+✏n(1� �)�1/2�✏n
d�

◆
m

⇥
✓
1� 1

Beta(✏
n

, 1/2� ✏

n

)

Z
t

�

�

�1+✏n(1� �)�1/2�✏n
d�

◆
n�m

.

The moment generating functions (MGFs) of N((�, t]) and N

0
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These two MGFs will be the same asymptotically if
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n!1

n

Beta(✏
n

, 1/2� ✏

n

)

Z
t

�

�

�1+✏n(1� �)�1/2�✏n
d� = ↵

Z
t

�

�

�1(1� �)�1/2
d�. (S1)

This will be satisfied when ✏

n

= ↵/n. Indeed, under this assumption, we have

lim
n!1

n (�/(1� �))✏n

Beta(✏
n

, 1/2� ✏

n

)
= ↵.

In addition, since when n is large enough, the map n 7! n(�/(1��))✏n

Beta(✏n,1/2�✏n)
is a non-

increasing function, by Lebesgue’s monotone convergence theorem, we can estab-
lish the convergence of the left hand side of (S1) to the right hand side. Using
this result, we can prove the weak convergence of the finite dimension distribution:

(N 0(�, t1], . . . , N 0(�, t
n

])
d! (N(�, t1], . . . , N(�, t

n

]). This follows by a direct application
of the multinomial theorem.

Now we need to verify the tightness condition, this is automatically satisfied as
N

n

(t)0 is a càdlàg process (Daley and Vere-Jones, 1988) (Theorem 11.1. VII and
Proposition 11.1. VIII, iv, Volume 2). Therefore we prove the weak convergence of
the process N 0

n

(t) to the Poisson process N(t) when n ! 1 and ✏

n

= ↵/n.
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S2 Proof of Proposition 1

We use the notation P
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derive an expression for the covariance
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Therefore the correlation is independent of the set A.

S3 Proof of Proposition 2

We follow the framework of proofs for Theorem 1 and Theorem 3 in Barrientos et al.
(2012). Let P(Z) be the set of all Borel probability measures defined on (Z,F) and
P(Z)J the product space of J P(Z). Assume ⇥ ⇢ Z is the support of G. To show
the prior assigns strictly positive probability to the neighbourhood in Proposition 2,
it is su�cient to show such neighbourhood contains certain subset-neighbourhoods
with positive probability. As in Barrientos et al. (2012), we consider the subset-
neighbourhoods U :
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i

is a probability measure absolutely continuous w.r.t. G for i = 1, . . . , J ,
A
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i
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⇤
> 0. The

existence of such subset-neighbourhoods is proved in Barrientos et al. (2012). We
then define sets B
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where A

1
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and A

0
i,j

= A

c

i,j

. Set

J

⌫

= {⌫1,1 . . . ⌫mJ ,J : G(B
⌫1,1,...,⌫mJ,J ) > 0},

and let M be a bijective mapping from J

⌫

to {0, . . . , k} where k = |J
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⇤. The derivation in Barrientos et al. (2012) suggests a su�cient
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Here ⇧ is the prior.
Now consider the following conditions

C.1 w
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for i = 1, . . . , J and l = 0, . . . , k. This system of inequalities can be satisfied when k is
large enough. If conditions (C.1) to (C.3) hold, it follows that [P i(A0), . . . , P i(A

k

)] 2
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) are multivariate normal random vectors with strictly posi-
tive definite covariance matrix and �

l

are always positive, the vector (�
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+2
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1, . . . , J) has full support on R+J and will assign positive probability to any subset of
the space. If follows that

⇧(w
i,l

� ✏0 < �

l+1Q
+2
l+1,i < w

i,l

+ ✏0, i = 1, . . . , J) > 0 for l = 0, . . . , k.

Using the Gamma process argument, we know
P

l>k+1 �l

Q

+2
l,i

is the tail probability
mass for a well-defined Gamma process and thus will always be positive and continuous
for all i. It follows that

⇧(
X

l>k+1

�

l

Q

+2
l,i

< ✏0, i = 1, . . . , J) > 0.

Since Z is the topological support of G, it follows that P (Z
i+1 2 A

i

) > 0 and P (Z
i

2
Z) = 1. Combining these facts, we prove that Equation (S2) holds.

S4 Total variation bound of Laplace approximate

of p(Q
i,j

|Q
i,�j

,�,T,n)

We consider the class of densities g(x; k, µ, s2)

g(x; k, µ, s2) / I(x � 0)x2k
f(x;µ, s2), k 2 N+

where f(x;µ, s2) is the density function of N(µ, s2). The Laplace approximation
of g(x; k, µ, s2) is written as f(x; bµ, bs2). Here bµ = argmax

x

g(x; k, µ, s2) and bs2 =
� ((@2 log(g)/@x2) |bµ)�1. We want to calculate the total variation distance between
density f(x; bµ, bs2) and g(x; k, µ, s2), denoted as d

TV

(f(x; bµ, bs2), g(x; k, µ, s2)).
Define class of functions V (x; k, µ) for k 2 N+

, µ > 0:

V (x; k, µ) =

⇢
2k
⇥
log(x/µ)� (x/µ� 1) + 1

2(x/µ� 1)2
⇤

x > 0
�1 x  0

This function is non-decreasing and when x = µ, V (x; k, µ) = 0, dV/dx = 0 and
d

2
V/dx

2 = 0.
It follows that

log g(x; k, µ, s2)� log f(x; bµ, bs2) = V (x; k, bµ) + a0 + a1x+ a2x
2
.

Moreover, since the bµ is the mode of both g(x; k, µ, s2) and f(x; bµ, bs2), and the second
derivative of log g(x; k, µ, s2) and log f(x; bµ, bs2) are identical at x = bµ, we can find
that a1 = a2 = 0. Hence,

log g(x; k, µ, s2)� log f(x; bµ, bs2) = V (x; k, bµ) + a0

and g(x; k, µ, s2) = exp (V (x; k, bµ) + a0) f(x; bµ, bs2).
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Since V (x; k, bµ) is monotone increasing, the total variation distance between g(x; k, µ, s2)
and f(x; bµ, bs2) can be expressed as

d

TV

(g(x; k, µ, s2), f(x; bµ, bs2)) =
Z +1

x0

[exp (V (x; k, bµ) + a0)� 1] f(x; bµ, bs2)dx

=

Z
x0

�1
[1� exp (V (x; k, bµ) + a0)] f(x; bµ, bs2)dx

where V (x0; k, bµ) = �a0. If a0  0, we have x0 � bµ and
Z +1

x0

[exp (V (x; k, bµ) + a0)� 1] f(x; bµ, bs2)dx


Z +1

x0

[exp (V (x; k, bµ))� 1] f(x; bµ, bs2)dx


Z +1

bµ
[exp (V (x; k, bµ))� 1] f(x; bµ, bs2)dx

Similarly, if a0 � 0, we have
Z

x0

�1
[1� exp (V (x; k, bµ) + a0)] f(x; bµ, bs2)dx 

Z bµ

�1
[1� exp (V (x; k, bµ))] f(x; bµ, bs2)dx

To summarize, we have

d

TV

(g(x; k, µ, s2), f(x; bµ, bs2))  max

✓Z +1

bµ
[exp (V (x; k, bµ))� 1] f(x; bµ, bs2)dx,

Z bµ

�1
[1� exp (V (x; k, bµ))] f(x; bµ, bs2)dx

◆

As we have shown in Equation (12) of the main manuscript, bs2 =
⇣

2k
bµ2 + C

⌘�1

,

where C > 0. This suggests that bs  bµ/
p
2k. Therefore

d

TV

(g(x; k, µ, s2), f(x; bµ, bs2))  max

✓Z +1

bµ
[exp (V (x; k, bµ))� 1] f(x; bµ, bµ/2k)dx,

Z bµ

�1
[1� exp (V (x; k, bµ))] f(x; bµ, bµ/2k)dx

◆

Since V (x;µ, s2) and f(x;µ, s2) are location-scale families, the above expression
can be made free of bµ and thus µ and s

2:

d

TV

(g(x; k, µ, s2), f(x; bµ, bs2))  max

✓Z +1

1

[exp (V (x; k, 1))� 1] f(x; 1, 1/2k)dx,

Z 1

�1
[1� exp (V (x; k, 1))] f(x; 1, 1/2k)dx

◆

(S3)
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This upper bound on the total variation distance decreases as k increases and it
goes to 0 as k ! 1. This suggests the convergence of the approximating normal
distribution to the density family g in total variation sense. We also plot this upper
bound as a function of k to verify the conclusion. It is shown in the supplemental
Figure S1.
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Figure S1: Upper bound of the total variation distance of Laplace approximation in
(12) to the density in (11) as given in (S3) when frequency k increases.

S5 Details of self-consistent estimates in Section

3.1

First we estimate � and then we transform the data n

i,j

into
p
n

i,j

/�

i

. If n

i,j

is
representative and � is estimated accurately, we have

p
n

i,j

/�

i

= c

j

Q

+
i,j

. If the co-

variance matrix of Q
i

is ⌃, then the covariance matrix of (
p
n

i,j

/�

i

, j = 1, . . . , J) will

be e⌃ = ⇤⌃⇤ where ⇤ = diag{c1, . . . , cJ}.
It is obvious that (

p
n

i,j

/�

i

, j = 1, . . . , J) is MVN and the correlation matrix will

6



be the same as the induced correlation matrix from ⌃. Methods on identifying the
covariance matrix using this truncated dataset are abundant and well-studied. One
way to do it is the EM algorithm. This estimated covariance matrix will by no means
to be the same as ⌃, but the induced correlation matrix will be very close to the true
correlation matrix induced by ⌃. Hence if our interest is on estimating correlation
matrix, we can just treat (

p
n

i,j

/�

i

, j = 1, . . . , J) as the truncated version of the true
Q

i

and proceed.

The EM algorithm should then be derived for the following settings. Let Q

i

iid⇠
MVN(0,⌃). Instead of observing I independent Q

i

, we only observe the positive
entries in each Q

i

and know the rest of the entries are negative. Denote the observed
data vector as eQ

i

. We want to estimate ⌃ from the data eQ
i

, i = 1, . . . , I. A standard
EM algorithm can be easily formulated as following:

E-step Get the conditional expectation of full data log likelihood, given the observed
data. Define two index sets, A

i

= {j| eQ
i,j

> 0} and B
i

= {j| eQ
i,j

= 0}. For an
arbitrary index set I, denote QI = (Q

i,j

|j 2 I). Denote A = {(i, j)|j 2 A
i

, i =
1, . . . , I} and B = {(i, j)|j 2 B

i

, i = 1, . . . , I}. The E-step function at t + 1
iteration is,

L(⌃|⌃
t

) = E
"
�I

2
log |⌃|� 1

2
Tr(⌃�1

X

i

Q

i

Q

0
i

)|⌃
t

, QA = e
QA, QB < 0

#
.

Notice this expectation is not easy to calculate in general. We use instead
Monte Carlo method to approximate it. We sample K copies of Q

i

from the
conditional distribution (Q

i

|QAi = e
QAi , QBi < 0) where Q

i

⇠ MVN(0,⌃
t

).
The conditional distribution is a truncated multivariate normal distribution and
we use the R package tmvtnorm (Wilhelm, 2015) to sample from it. If we denote
by Q

1
i

, . . . ,Q

K

i

the K samples of Q
i

, L can be approximated as

b
L(⌃|⌃

t

) = � 1

K

KX

k=1

"
Tr(⌃�1

X

i

Q

k

i

(Qk

i

)0)

#
� I

2
log |⌃|.

M-step We seek to maximize bL with respect to ⌃. Due to a well-known fact on the
maximum likelihood estimate of covariance matrix of multivariate normal, it is
straightforward to get

⌃

t+1 =
1

IK

X

i,k

Q

k

i

(Qk

i

)0.

We applied this algorithm to the simulated datasets generated for Figure 3(a) to
estimate the normalized Gram matrix S. A summary of the RV-coe�cients between
the estimates from the above algorithm and the truth is shown in Figure S2. We also
compared the estimates from this algorithm with those from MCMC simulations in
Figure S2. The estimates of S from MCMC simulation are always better than those
given by the self-consistent algorithm but both perform very well.
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Figure S2: (Left) Box-plots compare the distributions of RV-coe�cients between
estimates from our self-consistent algorithm and between estimates from MCMC sim-
ulation and truth. (Right) Scatter plot to show per simulation comparison of RV
coe�cients for the self-consistent algorithm and MCMC sampling. Dashed line indi-
cates where the two algorithms have identical accuracy.

S6 Standard PCoA for ordination of simulated dataset,

Global Patterns dataset and Ravel’s vaginal mi-

crobiome dataset

In this section, we include three sets of ordination figures generated using the standard
PCoA method in microbiome studies. We first calculate the dissimilarity matrix
of biological samples by applying Bray-Curtis dissimilarity metric on the empirical
microbial distributions. We then perform classic Multi-dimensional Scaling (MDS) to
ordinate biological samples based on the dissimilarity matrix. In Figure S3, we show
the PCoA result for the simulated dataset generated for Figure 3(f). In Figure S4 and
S5, we illustrate the PCoA results for the Global Patterns dataset and Ravel’s vaginal
microbiome dataset respectively. To be consistent with the main results, we show
the ordination results based on the first three principal coordinates for the Global
Patterns dataset and Ravel’s vaginal microbiome dataset.

S7 Benchmarking the MCMC sampler

In this section, we focus on evaluating the computational performance of our MCMC
sampler. We first consider the computational time of the sampler under di↵erent
scenarios. We then illustrated a convergence diagnosis to check whether the sampler
has reached mixing in the setting of our simulation study in the main manuscript. In
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Figure S3: PCoA result for the simulated dataset generated for Figure 3(f).
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Figure S5: PCoA results for Ravel’s vaginal microbiome dataset. We show the three
two-dimensional representations of the ordination given by the first three principal
coordinates.

addition, we created two larger datasets to verify the number of iterations needed to
reach mixing will not be compromised if the underlying latent structure remains low
dimensional.

S7.1 Computation time of the MCMC sampler

In Table S1 we listed the elapsed time in seconds for the MCMC sampler to finish
1, 000 iterations under di↵erent scenarios. All the scenarios are run with a single
thread on a MacBook Pro with 2.7GHz Intel Core i5 and 8 GB 1867 MHz DDR3
RAM. In particular, we evaluated the e↵ect of the number of biological samples (J),
the number of species (I), the dimension of the latent factors (m), and the total counts
per biological sample (nj).

Table S1: Computation time (in seconds) of 1,000 iterations for the MCMC sampler

I = 68 I = 500 I = 1000

m = 5 m = 10 m = 20 m = 5 m = 10 m = 20 m = 5 m = 10 m = 20

J = 22
nj = 103 2.3 2.8 2.4 5.7 5.8 7.0 11.4 10.4 12.6
nj = 104 1.3 1.6 1.9 5.7 5.5 6.4 8.7 8.8 11.3
nj = 105 1.1 1.4 1.5 4.7 3.9 6.3 7.2 8.2 11.5

J = 100
nj = 103 3.6 3.7 5.5 11.5 14.6 17.1 21.8 21.0 30.2
nj = 104 3.3 3.7 5.4 11.5 12.1 20.4 18.1 21.1 29.5
nj = 105 3.4 4.0 5.5 12.3 18.9 17.8 19.2 21.5 31.1

J = 1000
nj = 103 31.4 34.3 49.6 121.2 118.4 152.1 152.1 173.8 251.0
nj = 104 28.2 33.4 53.1 96.3 144.3 159.7 143.7 164.8 254.2
nj = 105 40.1 38.2 52.2 129.1 111.5 138.2 163.2 171.7 246.0

Increasing the total number of reads per biological sample (nj) does not a↵ect
the computation time. On the other hand, there is a weak e↵ect associated with
the dimension of the latent factors (m). In general, the computation time tends to
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increase with m. The number of species (I) and the number of biological samples (J)
a↵ect the speed of computation significantly. These results illustrate that the MCMC
sampler can finish 50, 000 iterations for a dataset with 100 samples and 1000 species
in less than 20 minutes.

The table illustrates that it is possible to apply our model to microbiome datasets
with comparable numbers of biological samples. It is rare to have datasets with more
than a thousand confidently assigned OTUs (Callahan et al., 2016).

S7.2 Convergence diagnosis of the MCMC sampler

We evaluate the convergence of the MCMC sampler in the setting of Section 5 (sim-
ulation study). The number of biological samples is fixed at J = 22. We ran three
parallel chains for three scenarios I = 68, I = 500 and I = 1, 000. For each di↵erent I,
we obtain the posterior samples of the first three eigenvalues of the normalized Gram
matrix S in all three chains and use bR statistics (Gelman and Rubin, 1992) to check
if the chains reached mixing. We chose to visualize the eigenvalues of S since in our
model S is identifiable. The results are shown in Figure S6.

The bR statistics are all close to one supporting good MCMC mixing after 20,000
iterations, so our choice of 50,000 total iterations seems reasonable for providing pos-
terior inference.
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Figure S6: Traceplots for the posterior samples of the first three eigenvalues of S.
Each row corresponds to a di↵erent I and each column to a di↵erent eigenvalue. The
b
R statistics are shown in the title of each figure.
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