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Skillful forecasting of seasonal (H3N2) influenza incidence ahead of the season is shown 

to be possible by means of a transmission model that explicitly tracks evolutionary change 

in the virus, integrating information from both epidemiological surveillance and readily 

available genetic sequences. 
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ABSTRACT 

Inter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of 

human health and economic impact. Incidence prediction ahead of season remains a 

challenge largely because of the virus’ antigenic evolution. We propose here a forecasting 

approach that incorporates evolutionary change into a mechanistic epidemiological model. 

The proposed models are simple enough that their parameters can be estimated from 

retrospective surveillance data. These models link amino-acid sequences of hemagglutinin 

epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 

levels. With a monthly time series of H3N2 incidence in the United States over 10 years, 

we demonstrate the feasibility of prediction ahead of season and an accurate real-time 

forecast for the 2016/2017 influenza season. 
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INTRODUCTION 

Inter-pandemic or seasonal influenza exacts an enormous public health burden around the 

globe, with an average of about 1 billion cases, including 3 to 5 million cases of severe 

illness and 250 000 to 500 000 deaths annually (1). Since its first occurrence in 1968, 

seasonal H3N2 influenza has continually circulated in the human population, and is 

currently the major cause of seasonal influenza morbidity and mortality (2). The sustained 

‘success’ of influenza viruses responsible for seasonal outbreaks stems from their ability 

to evolve and escape the immune system by modifying their surface proteins (3). 

Phylogenetic trees depicting evolutionary changes in (H3N2) influenza viruses illustrate 

rapid drift with successive and punctuated replacement of one antigenic type by another (4, 

5). The last decade has seen significant conceptual advances in the understanding of these 

phylogenetic patterns, enabled by computational and statistical advances at the interface of 

transmission dynamics and virus evolution (5-12). There is now considerable interest in 

translating these conceptual advances into actual prediction at the population level that 

would inform the update of vaccines and epidemic preparedness.  

The challenge of influenza prediction has progressed largely along two separate tracks. On 

the one hand, there are computational methods based on phylogenies and mutation patterns 

in the surface protein hemagglutinin (HA), whose goal is to predict evolutionary change 

(13-17). The resulting predictions of successful lineages and their relative frequencies for 

the future season do not, however, provide precise information on absolute incidence. On 

the other hand, mathematical models describing the transmission dynamics of influenza 

viruses allow real-time incidence forecasts of influenza-like illness (ILI) (18, 19). With 

data assimilation methods (20), these models must be fitted within each season because of 
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season-to-season viral evolution (21-25). In other words, with such models, the fact that 

one needs to wait until the outbreak starts limits the lead time of epidemiological prediction. 

In this study, we bridge the gap between these two approaches and propose an 

epidemiological model specifically for seasonal H3N2 influenza that incorporates 

information on the evolutionary change of the virus. The resulting model is sufficiently 

parsimonious that parameter estimation based on retrospective surveillance records is 

possible. A novel feature is its use of an evolutionary index of virus innovation constructed 

using readily available sequence data. The goal is to generate H3N2 incidence forecasts 

before the season begins, significantly earlier than what is currently possible. We illustrate 

two model formulations for H3N2 in the United States (US) between 2002 and 2016, and 

produce a forecast for the upcoming 2016/2017 influenza season. We emphasize prediction 

of interannual disease risk rather than finer-scale outbreak timing during the season; in 

other words, we seek to forecast whether or not the upcoming season will be anomalously 

large or small. Timing itself has been the target of existing within-season prediction efforts, 

which are better suited for this purpose and could be applied in tandem with our approach. 
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RESULTS 

The monthly incidence variability from 2002 to 2016 for the whole US is shown in Figure 

1A for reported cases of influenza type A, for subtypes H3N2 and H1N1 (including both 

seasonal H1N1 and pandemic H1N1), as well as type B. The time series are computed as 

the product of the ILI positive rate, the influenza positive rate, the subtype proportion, and 

the US population size. Thus, incidence data are extrapolated to the US population from 

outpatients in a network of healthcare providers, with un-typed influenza specimens 

assigned to H3N2, H1N1 and B respectively based on the proportions from the US 

surveillance system (see Materials and Methods for details). The temporal variability of 

H3N2 exhibits seasonal outbreaks whose size varies considerably from one year to the next. 

This interannual variability can result from epidemiological processes such as the loss of 

immunity to a specific variant of the virus (26), but also to a large degree, from the 

antigenic evolution of the virus (27) and the combined and complex interactions of the two 

(28, 29). 

Before examining predictions of the ‘full’ model that considers both epidemiology and 

evolution, we evaluate the ability of different models, encapsulating different degrees of 

complexity, to retrospectively explain the temporal patterns in the data from 2002 to 2016. 

To establish a baseline against which to evaluate the full model, we begin with a simpler 

formulation for the population dynamics of H3N2 that describes influenza epidemiology 

and the seasonality of transmission but does not yet include evolutionary change (Fig. 1B). 

This basic model follows the structure of the well-known compartmental susceptible-

infected-recovered-susceptible (SIRS) formulation which divides the population into 

classes for susceptible (non-immune), infected, and recovered (immune) individuals. For 
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the purpose of model comparisons, we rely initially on the whole temporal extent of the 

data (2002-2016) to fit the models and infer parameter values. Figure 2A shows that 

simulations of the basic model reproduce the average seasonality of incidence but fail to 

capture its interannual variation.  

Several variants of the epidemiological model were considered next, starting with the effect 

of temporal variation in the incidence of H1N1 (Fig. 1B). We find a significant negative 

correlation between annual incidence of H3N2 and H1N1 (𝑟 = −0.60, 𝑝 𝑣𝑎𝑙𝑢𝑒 = 0.02), but 

no clear relationship between annual incidence of type B and H3N2 or H1N1 (𝑟 = 0.42 and 

𝑟 = −0.33 , 𝑝 𝑣𝑎𝑙𝑢𝑒𝑠 = 0.13 𝑎𝑛𝑑 0.25 , respectively). Given these findings and the 

observation that disease burden due to type B in humans is typically lower than that due to 

H3N2 or H1N1 in the US (30, 31), we postulate an effect of H1N1, but not B, on the 

dynamics of H3N2, and do so as a covariate affecting the system as an external observed 

variable (in the ‘basic-H1’ model, Fig. S1A). We return to this simplification in the 

discussion. We also allow measurement error to differ between the summer (April 1st to 

September 30th) and winter (October 1st to March 31st) seasons, reasoning that the reporting 

rate is more variable outside the winter (transmission) season (32). (Hereafter, we refer to 

the year/year+1 influenza ‘season’ as the period from July 1st of the current calendar year 

to June 30th of the following calendar year, for example, the 2008/2009 influenza season). 

Additionally, we relax the assumption of a linear dependence of the force of infection on 

the number of current infected individuals, allowing a nonlinear functional form and the 

potential for sub-exponential growth of the epidemic curve (in the ‘refined’ model, Fig. 

S1B). This functional form has been found effective in the modeling of a number of 

different infectious diseases, as a means of parameterizing processes operating at scales 
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smaller than can be explicitly represented (33-35). Finally, we consider a version of the 

refined model in which the (non-parametric) periodic function in the transmission rate is 

replaced by a function of specific humidity (the ‘humidity’ model, Fig. S1C) (21, 36, 37). 

Although all these model variants improve the fit of the data (Table 1), they still fail to 

properly capture the interannual variability in incidence (Fig. S1). Of these purely 

epidemiological models, we retain the best, viz. the refined model, which includes H1N1, 

season-dependent measurement error, and sub-exponential epidemic growth, and turn next 

to whether the inclusion of an index of evolutionary change can improve upon this 

foundation. 

We measure antigenic innovation or evolutionary change of the virus at a given time 

(relative to a window of time in the past) using a novel evolutionary index readily computed 

from available sequences. The idea is to use amino-acid sequences to quantify change of 

the virus’ antigenic properties relative to those the human population has recently 

experienced. We therefore focus on sequences that encode epitopes known to be important 

for antibody binding and in which antigenic evolution is commonly observed (14, 38, 39). 

We define the index as a weighted average distance between the current virus to its 

predecessors in the past. So that more recent sequences are weighted more heavily than 

older ones, the weights are taken to be a decaying function of the inter-sequence interval. 

Figure 1C illustrates the estimated index. Since evolutionary novelty increases the 

probability that a virus escapes existing protective immunity and thereby achieves more 

efficient transmission, we incorporated this index as an external driver of the SIRS model, 

by allowing it to modulate either the duration of immunity or the transmission rate, or both. 

The model that includes evolutionary change in duration of immunity was best able to 
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explain the data (the ‘continuous’ model) (Table 1). Simulations with the estimated 

parameters further demonstrate the improved performance of this formulation, with the 

median incidence reproducing the main trends in the interannual variation (Fig. 2B). As a 

general result (Table 1), the models that incorporate evolutionary information are 

significantly better than those that do not. Among the former, the models incorporating 

evolutionary change just in the immunity loss, or in both this parameter and transmission 

(the ‘immunity loss/transmission’ model) are comparable to each other, but perform 

significantly better than that with an effect only in transmission (the ‘transmission’ model). 

A degree of similarity between the two best models is to be expected in view of the fact 

that these two epidemiological parameters determine the overall infection rate so that it is 

difficult to disentangle an effect on the number of susceptibles from one on the per-

susceptible risk of infection. At any rate, our results here indicate that inclusion of the 

evolutionary driver as a modulator of the duration of immunity is sufficient. 

Our best model so far included a smoothly changing measure of evolutionary change based 

purely on virus genotype. It is recognized, however, that the genotype-phenotype map for 

antigenic properties of the virus is discontinuous, such that virus strains cluster 

antigenically and switches between clusters affect the population dynamics and 

phylodynamics of H3N2 in punctuated fashion (4, 10). In particular, recorded antigenic 

cluster transitions are consistently followed by larger outbreaks (Fig. 1A). We found that 

our estimated index of evolutionary change followed observed antigenic cluster transitions: 

higher index values usually preceded a winter season with an antigenic cluster transition 

(compare Fig. 1A and Fig. 1C). This observation and what is known about the genotype-

phenotype map of the virus (4, 40, 41) led us to a second evolutionary change index based 
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on cluster transitions. In this ‘cluster’ model, the effect of a cluster transition is punctuated 

and localized in time: the rate of immunity loss is varied only during the summer season 

that precedes the winter season with an antigenic cluster transition. Specifically, the rate of 

immunity loss only during that time becomes a function of the degree of evolutionary 

change; with this change now measured by comparing current virus sequences to those two 

years ago, a time scale characteristic of cluster transitions (4). The resulting model 

performs better than the best model with continuous evolutionary change (Table 1 and Fig. 

2C), although the most significant difference is between purely epidemiological models 

and those that incorporate evolutionary information (Table 1). 

With our best model, the cluster model, we now turn to the task of predicting H3N2 

incidence before the influenza season begins. For this purpose, we divide the data into a 

‘training’ section (2002-2011) used to fit the models and an ‘out-of-fit’ one (2011-2016) 

used to evaluate their prediction accuracy. The implementation of the model for forecasting 

purposes requires particular assumptions on the drivers in the system since these observed 

quantities will by definition not yet be available over the time windows we wish to predict. 

For H1N1 incidence, we make the simplifying assumption that monthly averages for this 

quantity over the training set provide a sufficient approximation. Additionally, for the 

cluster model, an upcoming season dominated by a novel antigenic cluster needs to be 

anticipated in the summer before the transmission season. For this, we developed and tested 

a rule based on a published genotype-phenotype map for prediction of new antigenic 

variants. Specifically, when the proportion of antigenic variants accumulated during the 

summer season exceeded a given threshold, we took this to be predictive of a cluster 

transition in the following winter season (Fig. S2/S3; see Materials and Methods for 
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details). Figure 3 shows the resulting retrospective predictions together with observations 

for each of the last five influenza seasons from 2011/2012 to 2015/2016. Two criteria were 

used to quantify prediction accuracy. The first compared the absolute monthly observed 

incidence to the medians of monthly predicted incidence from 1000 simulations. 

Predictions and observations are significantly correlated (𝑟 = 0.87 and 𝑟2 = 0.76 for the 

monthly data; 𝑟 = 0.95 and 𝑟2 = 0.91 for the seasonal data; see Fig S4 for the data that 

include the most recent 2016/2017 season). Moreover, the observations mostly fell within 

the 97.5% confidence intervals (Fig. 3). Although the models tend to under-predict the 

absolute value of peak incidence, they do capture the overall interannual behavior of the 

trends reflected in both low and high seasons. The second criterion evaluates the model’s 

ability to predict an outbreak season by computing the probability of surpassing a selected 

incidence value deemed high by public health practitioners. We are interested here in 

evaluating the risk of an anomalous ‘high’ season relative to a typical season in the past 

and relative to a threshold level of cases of interest to public health. We consider first a 

threshold equal to the 50% quantile (median) of seasonal totals observed over the training 

dataset. A given flu season is forecasted as high or low risk level depending on the 

proportion of simulations that exceed the median, with the critical proportion that separates 

low and high levels chosen based on Receiver Operating Characteristic (ROC) curves (Fig. 

S5). Specifically, we predict a high risk level when more than 40% of the 1000 simulations 

surpass the median. All five seasons were predicted accurately based on this criterion 

(Table 2). 

To further evaluate prediction ability, we considered hindcast predictions, by removing one 

season at a time during the period from influenza season 2003/2004 to 2010/2011 and 
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predicting its incidence, with the model parameters re-estimated each time based on the 

remaining data and exactly the same search strategy. Because there are multiannual 

correlations in the data, this test is less stringent and realistic than one based on multiple 

sequential out-of-fit seasons at the end of the time series. Nevertheless, it allows us to 

extend prediction evaluation and demonstrates high prediction accuracy (Fig. S6 and Table 

S1). 

Encouraged by these results, we present a ‘real-time’ forecast prepared before the 

2016/2017 influenza season and based on the data available up to June 2016, by the end of 

the 2015/2016 influenza season. Significant evolutionary change relative to previous 

viruses is indicated by our evolutionary index during the 2015-2016 influenza season (Fig. 

1C), consistent with the observation that a number of antigenic variants were also 

accumulating over this period (Fig. S2). Concurrently, H1N1 dominated the 2015/2016 

influenza season which would have resulted in an increased number of individuals 

susceptible to H3N2. The cluster model predicts that the risk level for seasonal H3N2 

influenza should be high in the 2016/2017 influenza season for the US (Table 2), with a 

predicted annual incidence rate of 0.11 ([0.07, 0.15] for 2.5%-97.5% quantiles) (Table S2), 

consistent with the available observations (Fig. 3 and Table 2).  

Forecast results based on the continuous model also capture the interannual trend in the 

size of epidemics (Fig. S7), and correctly predict risk levels above the 50% epidemic 

thresholds for the period between 2011 and 2017 (Table S3). The quality of the forecasts 

is lower however than that obtained with our best model (the cluster model) (compare Fig. 

3 and Fig. S7). We also note that the 2016/2017 season is correctly predicted as high risk 

but that its peak size is over-estimated and its timing is earlier than that observed (Fig. S7). 
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Finally, to further test the general approach, we applied it to a chosen region of the US - 

Department of Health & Human Services (HHS) region 3 (see Materials and Methods for 

details). A robust result is that the models with evolutionary information are significantly 

better at capturing the dynamics of seasonal H3N2 influenza than those without it (Table 

S4), although which particular evolutionary index is best can differ. Forecasts based on the 

best cluster and continuous models capture both the interannual variation of the outbreaks 

and disease risk for this US region (Fig. S8 and Table S5).  
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DISCUSSION 

Our results demonstrate the feasibility of improving epidemiological forecasts by 

incorporating information on evolutionary change into mechanistic models. Comparisons 

between models with and without this information show significant differences in their 

ability to capture the interannual variation in incidence data (Table 1), which underscores 

the importance of evolutionary change in the epidemiological dynamics of seasonal 

influenza. Our best models are able to capture the temporal behavior of observed incidence 

for H3N2 in the recent past in the US, and they provide the means to lengthen the lead time 

of prediction so that effective forecasts can be based in the summer, before the transmission 

season begins. Thus, this approach complements within-season forecasting efforts (22-25) 

and further informs public health preparedness. Earlier forecasts of incidence dynamics 

can aid public health efforts by indicating when to expect a surge in demand for healthcare 

resources and infrastructure. They can also contribute to the development of control 

strategies that take risk levels into consideration.  

The use of evolutionary drivers in epidemiological dynamics follows an earlier study by of 

Axelsen and colleagues on long-term ILI incidence prediction in Tel Aviv, Israel (42). 

Their model incorporated the timing of known discrete antigenic changes in seasonal 

influenza, and demonstrated the importance of considering these discrete antigenic jumps 

and their interaction with the waxing and waning of immunity levels in the population. 

Prediction of multiannual temporal patterns over multiple seasons was shown possible after 

the observation of such an event and as long as another one did not recur, which is an 

impediment to real-time forecasting. A number of more mechanistic models coupling 

evolution and transmission dynamics have also been developed to address theoretical 
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questions on the phylodynamics of seasonal influenza (6, 7, 10, 12). Because these 

individual-based, stochastic formulations are high-dimensional and computationally 

expensive to work with, they are not well-suited for the repeated estimation of parameters 

from time series data on reported cases or for epidemiological prediction. We have sought 

to construct much simpler epidemiological models suited for parameter inference based on 

surveillance, and for assimilating new data recurrently. Another approach to predict 

specific H3N2 incidence is based on its correlation with antigenic change as measured by 

the hemagglutination inhibition (HI) assay (43). Our approach exhibits a higher (Pearson) 

correlation between seasonal observations and predictions (0.83 for the whole US dataset 

from 2002 to 2016 and 0.90 for the testing dataset from 2011 to 2017, compared to 0.52 

between antigenic change and H3N2 incidence for the period between 1998 and 2009) (Fig. 

S4B and Fig. S9).  

Here, we have shown that readily available sequences of the virus can be used to construct 

an evolutionary covariate in both continuous and discrete versions. In the continuous model, 

the time scale of virus antigenic evolution is relatively short, with an average effective time 

of about 16 months (Fig. S10). At the same time, the estimated duration of homotypic 

immunity is relatively long: 30 years or even longer (Fig. S11). The importance of 

incorporating the short-term changes emphasizes the critical role of timely virological 

surveillance for identifying new emerging variants. Another intriguing observation related 

to the continuous measure of evolutionary change applied in our model is that the H1N1 

pandemic of 2009 coincided with a valley in H3N2 fitness (Fig. 1C). This suggests that 

such times may provide a window of opportunity for the emergence of new types 

(including for cluster transitions of H3N2 itself). Thus, our evolutionary index, together 
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with the proposed method for identifying and anticipating antigenic cluster transitions, 

could provide useful complements to the current surveillance system. 

Our models made several simplifying assumptions, which can be investigated further and 

used to improve the approach in the future. The compartmental model did not include age 

structure (44) or social structure (45), proper inclusion of which might help to correct the 

underestimation of incidence peaks in this study. The evolutionary indices mainly consider 

antigenic change based on mutations in HA; these measures could be improved by further 

knowledge of antigenic phenotype (46, 47), including other viral segments like protein 

neuraminidase (NA) (48). Also, other factors affecting the fitness of the virus could be 

considered (14, 49), including receptor binding ability related to cell entry and transmission 

(50). Vaccination information could also be incorporated in the population dynamics. We 

decoupled the two-way interaction between subtypes H1N1 and H3N2 by including the 

effect of the former as a driver on the population dynamics of the latter. Although we 

observed that the dynamics of H3N2 was most strongly determined by its own evolutionary 

change, a more realistic model incorporating interactions between H3N2 and H1N1, and 

perhaps type B, could be considered (51). Our model can also be applied at finer spatial 

resolution and to other regions, especially in Asia, where the likely source of evolutionary 

novelty for the seasonal influenza virus is to be found (5, 52). Preliminary investigation 

indicates that the general framework could be used in capturing and forecasting regional 

population dynamics of seasonal H3N2 influenza in US. Since immigration and emigration 

are also important processes in determining the local dynamics of seasonal influenza (53-

56), a further step would consist of coupling regional dynamics to represent the effect of 

movement and the dependencies between adjacent regions. Similarly, at a larger scale one 
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could incorporate information on global influenza circulatory patterns into the model. 

Finally, ways to better extrapolate the evolutionary covariate itself beyond the summer 

should be addressed. Overall, the fact that incorporation of pathogen evolution into 

epidemiological models increases forecasting skill should embolden future efforts to 

further improve on the model presented here.  

The limits to lead times in influenza prediction are not set by chaotic dynamics as is the 

case for the weather system; they are determined instead by the stochastic nature of virus 

evolution. Formulating ways to take advantage in epidemiological prediction of the 

increased availability of genetic sequence data in surveillance efforts around the globe, is 

a promising area. One key limitation identified in our work is the low and variable number 

of sequences outside the transmission season, when this information would be most critical. 

Improvements to the general idea presented here will result from current efforts on purely 

evolutionary forecasting, which can provide better means to quantify antigenic change of 

the virus (13, 14, 17, 40, 46, 47), and to lengthen lead times further by concatenating 

evolutionary and evo-epidemiological prediction. Similarly, increased understanding of the 

virus’ genotype-phenotype map will also further inform this kind of effort. Ultimately, in 

the same way that routine weather forecasting provided the impetus for much better 

sampling of the climate system, incidence prediction is computationally feasible but will 

ultimately depend on the quality, depth and resolution of epidemiological and genetic 

surveillance. 
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MATERIALS AND METHODS 

Data 

HA Protein sequences of seasonal H3N2 influenza virus from US were downloaded from 

the Global Initiative on Sharing Avian Influenza Data (GISAID) (57). Sequences were then 

aligned with MUSCLE v3.7 using default settings (58). Undetermined amino acids were 

replaced by gaps, and only the HA1 domain was retained for further analysis. Outliers 

based on a reconstructed phylogenetic tree using FastTree 2 (59) with default settings, were 

manually removed. 

Outpatient illness surveillance data and viral surveillance data were downloaded from 

FluView of the US Centers for Disease Control and Prevention (CDC) (60). Outpatient 

illness surveillance data includes information on patient visits to health care providers for 

ILI, which is collected through the US Outpatient Influenza-like Illness Surveillance 

Network (ILINet). The percent of patients presenting with ILI among all patient visits each 

week were used as indication of ILI in the US population. Viral surveillance data, including 

weekly influenza positive rate and subtype specific percentage data, were both from the 

US World Health Organization (WHO) Collaborating Laboratories and National 

Respiratory and Enteric Virus Surveillance System (NREVSS) laboratories. Seasonal and 

pandemic H1N1 influenza were combined together as seasonal H1N1 influenza, and the 

two lineages of seasonal B influenza were combined as seasonal B influenza. Un-typed 

influenza-positive specimens were assigned to either H3N2, H1N1 or B according to their 

proportions from typed specimens. The final weekly subtype specific incidence was 

calculated as the product of ILI positive rate, influenza positive rate, subtype specific 

proportion, and population size. Weekly incidence data was then aggregated to monthly 
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data. Only incidence data from October 2002 to June 2016 was used in this study to focus 

on a period long enough to inform inference of model parameters, but to avoid earlier 

periods for which the sampling effort of genetic sequences was considerably lower and 

without surveillance data for the summer season. Monthly national level population 

estimates for the US were downloaded from the United States Census Bureau (61). Specific 

humidity data for the US were obtained from the National Land Data Assimilation System 

Phase 2 (NLDAS-2) products (62). These primary measurements are provided on a 0.125 

degree grid. National data were averaged over all grids for the monthly data.  

Epidemiological model 

We used a compartmental SIRS model to follow the flow of the population in susceptible, 

infected (and infectious) and recovered classes for seasonal H3N2 influenza. The model is 

given by the following equations:  

 
𝑑𝑆

𝑑𝑡
= (𝜇𝑁(𝑡) +

𝑑𝑁(𝑡)

𝑑𝑡
) − 𝛽(𝑡)𝑆 (

𝐼

𝑁(𝑡)
)

𝜶
+

𝑅

𝜀(𝑡)
− 𝜏 − 𝜇𝑆 − 𝛬𝐻1(𝑡) +

𝑅𝐻1

𝜀𝐻1
, (1) 

 
𝑑𝐼

𝑑𝑡
= 𝛽(𝑡)𝑆 (

𝐼

𝑁(𝑡)
)

𝛼
+ 𝜏 −

𝐼

𝛾
− 𝜇𝐼, (2) 

 
𝑑𝑅

𝑑𝑡
=

𝐼

𝛾
−

𝑅

𝜀(𝑡)
− 𝜇𝑅, (3) 

 
𝑑𝑅𝐻1

𝑑𝑡
= 𝛬𝐻1(𝑡) −

𝑅𝐻1

𝜀𝐻1
− 𝜇𝑅𝐻1. (4) 

Where 𝑆, 𝐼 and 𝑅 denote the number of susceptible, infected and recovered individuals in 

the population, and 𝑁(𝑡) is the population size at time 𝑡. The death rate 𝜇 was fixed to 

0.015 per year (about 67 years lifespan). The total birth rate was quantified as 

(𝜇𝑁(𝑡) +
𝑑𝑁(𝑡)

𝑑𝑡
) to reproduce the observed population increase over time. The exponent 𝛼 
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is used to implement the nonlinear dependence of the force of infection on 𝐼, and the 

resulting sub-exponential growth of seasonal epidemics. 𝜏 is the external importation rate 

of H3N2 influenza cases which was fixed to 36.5 per year (1 import per 10 days) (24). The 

contact rate 𝛽(𝑡) is given by: 

 𝛽(𝑡) = 𝑒(∑ 𝑤𝑖𝑠𝑖(𝑡)+𝑤𝛽𝐸(𝑡))6
𝑖=1 〈

𝑑Γ

𝑑𝑡
〉, (5) 

which includes three components: (𝑖) seasonality implemented through six b-splines 𝑠𝑖(𝑡) 

with coefficients 𝑤𝑖; (𝑖𝑖) evolutionary change 𝐸(𝑡) (see below for details) with coefficient 

𝑤𝛽; (𝑖𝑖𝑖) and environmental noise simulated by a gamma distribution Γ (63). Under this 

model, the basic reproductive number is given by: 

 𝑅0(𝑡) =
𝛽(𝑡)
1

𝛾
+𝜇

. (6) 

For the humidity-forced model, 𝛽(𝑡) is given instead by the following expression based on 

(21, 23, 24): 

 𝛽(𝑡) =
𝑒−180𝐻(𝑡)(𝑅0 𝑚𝑎𝑥−𝑅0 𝑚𝑖𝑛)+𝑅0 𝑚𝑖𝑛

𝛾
〈

𝑑Γ

𝑑𝑡
〉, (7) 

where 𝐻(𝑡) is the specific humidity at time 𝑡, and 𝑅0 𝑚𝑎𝑥 and 𝑅0 𝑚𝑖𝑛 denote the maximum 

and minimum basic reproductive numbers and the basic reproductive number is here given 

by (21, 23, 24): 

 𝑅0(𝑡) = 𝑒(−180𝐻(𝑡)(𝑅0 𝑚𝑎𝑥−𝑅0 𝑚𝑖𝑛)+𝑅0 𝑚𝑖𝑛). (8) 

𝜀(𝑡) is the average latent period at time 𝑡, given by: 

 𝜀(𝑡) = 𝜀0𝑒−𝑤𝜀𝐸(𝑡), (9) 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/198168doi: bioRxiv preprint first posted online Oct. 4, 2017; 

http://dx.doi.org/10.1101/198168
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

where 𝜀0 is the basic latent period and 𝑤𝜀 is the scaling factor. 𝛾 is the average infectious 

period. An additional 𝑅𝐻1 class was designed to track the reduction in susceptibles for 

H3N2 influenza due to cross-immunity, and therefore the protected population due to 

infection by seasonal H1N1 influenza. The rate of susceptible individuals temporarily 

moved to the 𝑅𝐻1 class was measured by: 

 𝛬𝐻1(𝑡) =
𝐶𝐻1(𝑡)

𝑤𝐻1𝜑
, (10) 

where 𝐶𝐻1(𝑡) is the observed incidence due to seasonal H1N1 influenza, 𝜑 is the reporting 

rate for H3N2, which is scaled here for H1N1 with the factor 𝑤𝐻1. The average latent 

period for individuals in the 𝑅𝐻1 class returning to the susceptible class is denoted by 𝜀𝐻1.  

A measurement model is implemented that transforms the incidence in the transmission 

model to the actual observations by the reporting system. Specifically, reported cases were 

sampled from a normal distribution such that  

 �̃�(𝑡) = 𝑛𝑜𝑟𝑚𝑎𝑙(𝜑𝐼, 𝜌𝐼), (11) 

where 𝜑 denotes the reporting rate and defines the mean of observed cases, and the factor 

𝜌 defines the standard deviation as proportional to the size of the infected population. In 

addition, we impose the condition: 

 𝐶(𝑡) = {
[�̃�(𝑡)], 𝑖𝑓 �̃�(𝑡) ≥ 0

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

We note that the parameters of the measurement error model are fitted as part of the 

inference process. This is important since the value of the reporting rate can often be 

confounded with the degree of population immunity. As a result, we constrained its value 

to remain under 1, but also obtained a profile likelihood for this key parameter (Fig. S12).  
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Evolutionary index 

Two quantities were formulated to incorporate information on virus evolution into the 

epidemiological model. The first one, which varies continuously in time, is described here; 

the second, which varies discontinuously to reflect the punctuated antigenic change of the 

virus, is described below under ‘Antigenic cluster transitions and discrete evolutionary 

index’.  

An evolutionary index, 𝐸(𝑡), was used to measure the degree of evolutionary change of 

the virus at current time 𝑡 (in months) compared to historical strains in the past. This index 

is therefore formulated as an weighted sum of normalized distance between current viruses 

and those in the past for amino-acid sequences encoding epitopes of the hemagglutinin 

protein on the surface of the virus (that is, parts of these protein recognized by the immune 

system in its antibody response). To begin, we can write the general expression: 

 𝐸(𝑡) = ∑ 𝑑(𝑠, 𝑡)̃ 𝑒−
𝑠+1

𝜃𝑛
𝑠=0 , (13) 

where 𝑑(𝑠, 𝑡)̃  denotes a normalized distance between sequences at month 𝑡 and those in 

previous season 𝑠 back in time for epitope regions of HA1, and 𝑛 is the total number of 

previous seasons including the current one for which we set 𝑠 = 0. Thus, here, 𝑛 = 19 and 

𝑡 = 1, … 𝑙  (where 𝑙  is the length of the incidence time series in months starting from 

October 2002). For the US, we defined the influenza season 𝑠 as starting on July 1st of one 

calendar year and ending on June 30th of the following calendar year. Also, we refer to the 

summer season for the period between April 1st and September 30th, and to the winter or 

‘transmission’ season for that between October 1st and March 31st. In the formula for 𝐸(𝑡), 

changes relative to more recent viruses circulating in the population have a stronger weight 
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than those relative to earlier viruses, and this weight decays exponentially back in time 

(scaled by 𝜃 in equation 13). Only a total of twenty years were considered to make sure 

there were no data missing for calculating 𝐸(𝑡) of each month starting from October 2002. 

Distances 𝑑(𝑠, 𝑡)̃  for a given month 𝑡 were calculated relative to previous seasons (and not 

individual months) in the past because fewer viruses are typically sequenced during the 

summer season due to lower levels of incidence and associated weaker surveillance efforts. 

Also, early previous years exhibit multiple months without any reported sequence due to 

weaker sampling and sequencing efforts. Months and previous years were assigned based 

on date information that is at least monthly for sequences after 1992. For the earlier period 

between 1982 and 1992, although there are enough sequences for our calculations 

(described below), most of them lack detailed monthly information. As a result, 

approximate previous season assignments were made based on the reported calendar year 

(with calendar year 1990 assigned to season 1989/1990 and so on). Finally, in the formula 

for 𝐸(𝑡) we sum these distances over time after weighting them back in time with an 

exponential decaying factor whose time scale is defined by the parameter 𝜃.  

The biology behind 𝐸(𝑡) relates to the immune memory or protection existing at a given 

time in the human population for a new virus: the more similar this variant is to viruses in 

the past, the less likely it will be to infect people, since a higher probability exists that 

antibodies induced by viruses from previous infections will bind to it and stop the infection. 

Thus, the idea of a sum of weighted distance in sequence space is that of a quantity 

reflecting the movement of the virus away from variants the human population has been 

exposed to in the past. We include a decay function (controlled by a parameter 𝜃 that needs 

to be estimated) so that distances to more recent viruses have a higher weight when 
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computing this average, given a time decay of antibody-mediated immunity. In other words, 

movement away from more recently observed antigenic variants would result in a higher 

evolutionary index and reflect a virus that is more novel from the perspective of the 

immunity landscape in the current human population.  

We recognize that the weights can implicitly reflect additional processes that are not 

explicitly represented in the model, including the complex interaction of the age structure 

of the infected population (and contacts) and the effects on immune memory of age of 

exposure. The proposed quantity is intended to measure with a simple expression how 

much the virus has moved away from its recent predecessors in the sequence space that to 

the best of our knowledge reflects changes in the phenotype of interest. We note that since 

the rate of the decay backwards in time is one of the parameters inferred as part of fitting 

the overall model to the incidence time series, a possible outcome is for the decay to be 

negligible. In that sense, the inference process (and not an a priori assumption) determines 

the relevant time extent over which to evaluate the change in the virus. Although the idea 

is simple, the actual computation requires a series of steps because of geographic and 

temporal biases in numbers of sampled sequences, and the consideration of months and 

seasons in computing distances as we explain below. 

First, an average distance 𝐷(𝑠, 𝑡) was calculated based on 1000 distances (𝑑𝑚,𝑠𝑡) among 

1000 random pairs of sequences sampled from month 𝑡 and previous season 𝑠. The actual 

value of 𝑑𝑚,𝑠𝑡 is calculated as the number of amino acid differences for epitope regions of 

HA1 (38). For distances to the current season (𝑠 = 0), distances were calculated based only 

on comparisons to sequences from earlier months. To avoid geographical and temporal 

sampling biases, we followed the practice of subsampling each random pair of sequences 
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from sequences in both month 𝑡 and previous season 𝑠, respectively, with equal probability 

from different states and from different months (or different previous seasons for earlier 

period before 1992) (13, 14). This subsampling process was repeated 1000 times to get a 

mean value: 

 𝐷(𝑠, 𝑡) =
∑ 𝑑𝑚,𝑠𝑡

1000
𝑚=1

1000
. (14) 

We note that 𝐷(𝑠, 𝑡) is a matrix whose rows are previous seasons (from 𝑠 = 0 in row 1, to 

𝑠 = 19 in the last row) and whose columns correspond to the months of interest in the time 

series of incidence to be analyzed (starting with October 2002 in column 1). We now 

proceed to normalize the entries of this matrix for each row, to correct for the effect of the 

passing of time within each season, which introduces an artificial trend in the unnormalized 

metric. Specifically, we normalize each term of the matrix by a mean value as follow: 

 𝐷𝑎𝑣(𝑠, 𝑡) = ∑ 𝐷(𝑠, 𝑡′)𝑡′ |  𝑚𝑜𝑑(𝑡′,12)=𝑚𝑜𝑑(𝑡,12) / ∑ 1𝑡′ |  𝑚𝑜𝑑(𝑡′,12)=𝑚𝑜𝑑(𝑡,12) , (15) 

where the numerator sum is over all entries of the given row 𝑠 that fall in the same month 

(as specified by the condition using the modulo operation 𝑚𝑜𝑑), and the denominator sum 

simply counts the number of corresponding months. We then normalize the distances to 

obtain 𝑑(𝑠, 𝑡): 

 𝑑(𝑠, 𝑡) =
𝐷(𝑠,𝑡)

𝐷𝑎𝑣(𝑠,𝑡)
. (16) 

Finally,  𝑑(𝑠, 𝑡)  was interpolated (for months without sequences after October 2002, 

including March/May/July in 2004, May/July/September in 2005, May/June/July in 2006, 

December in 2009, February in 2010 and June in 2011) and smoothed by a cubic smoothing 

spline at a monthly scale (using the smooth.spline function in R package stats which uses 
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a leave-one-out test to determine the smoothing parameter) to calculate 𝑑(𝑠, 𝑡)̃  in equation 

13. 

Antigenic cluster transitions and discrete evolutionary index 

Antigenic cluster transitions were identified based on influenza season summary reports 

for seasons between 2003 and 2013 (64), and Morbidity and Mortality Weekly Reports 

(MMWR) for seasons between 2013 and 2016 (65-68), from US CDC. An influenza season 

summary report is produced after a season based on all available data for that season. In 

the report, CDC antigenically characterizes influenza viruses received in the past season, 

and assigns them to different groups based on antigenic similarity to the previous vaccine 

strain and also to a new vaccine strain. Here, different vaccine strains represent different 

antigenic clusters. We defined here an antigenic cluster transition as a season when more 

than half of the viruses were antigenically similar to the new vaccine strain. We note that 

the influenza ‘season’ used by US CDC is not necessarily the same as the one used in this 

study, but is instead variable often covering the transmission season. But because the vast 

majority of the data are from the transmission season, we can still apply an antigenic cluster 

transition to its corresponding influenza season, as defined in this study. Based on this 

criterion, antigenic cluster transition seasons are 2003/2004, 2004/2005, 2007/2008, 

2009/2010, 2012/2013 and 2014/2015. For the 2006/2007 influenza season, although there 

was a change in vaccine strain, most of the circulating strains were not antigenically similar 

to the new vaccine strain (64). As a result, we considered that there was no antigenic cluster 

transition for the 2006/2007 influenza season. For the 2013/2014 influenza season, 

although there was a change in vaccine strain from A/Victoria/361/2011 to 
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A/Texas/50/2012, the vaccine strains were antigenically similar (68). Thus, here too, we 

do not consider this vaccine strain change as an indication of an antigenic cluster transition.  

For the model that incorporates evolutionary change through cluster transitions, we need 

to identify cluster transitions based on sequences, and when one such transition is identified, 

to quantify the degree of the change, which will influence model parameters (rate of 

immunity loss here) in the form of a step-function. That is, in the cluster model, an effect 

of evolutionary change in the virus is only applied to the epidemiological parameters when 

a cluster transition is identified (or predicted), and at this time, a measure of the magnitude 

of the change in the virus relative to the recent past is used as a covariate. In practice when 

implementing the model for actual prediction, we need to first predict that a new cluster 

will emerge and become establish to affect the transmission dynamics during the 

transmission season. This first step is implemented with a cluster transition rule based on 

a genotype-phenotype map for H3N2 previously published by one of us for both identifying 

and predicting antigenic cluster transitions purely based on sequence data without having 

to rely on antigenic assay data (40). (The latter concerns only a subsample of the virus 

circulating in the human population at a given time, and is typically available with a delay 

relative to sequence data). Although the genotype-phenotype map relies on sequences, it 

uses a number of properties of the hemagluttinin protein derived from the sequences 

including biophysical properties, and not just amino-acid distances at epitope sites. A brief 

description of this map and how it is used here for prediction purposes is included below 

in the section on Forecasts. Here, we note that this first step allows us to implement 

prediction of an antigenic cluster transition ahead of the transmission season, during the 

summer. Having identified (for retrospective data) or predicted (for ‘out-of-fit’ 
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data/forecasting purposes) the emergence of a new antigenic cluster, we proceed in a 

second step to quantify how much the new viruses differ from those in the recent past.  

We specifically define the following quantity to measure evolutionary change (at the 

monthly scale) for the month of September: 

𝐸𝐷(𝑡) = {

𝑑2,𝑆𝑒𝑝𝑡.(𝑡),      𝑡 ∈ 𝑠𝑢𝑚𝑚𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑎 𝑤𝑖𝑛𝑡𝑒𝑟

                   𝑠𝑒𝑎𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑛𝑡𝑖𝑔𝑒𝑛𝑖𝑐 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

, (17) 

where 𝑑2,𝑆𝑒𝑝𝑡. was calculated as a normalized distance based on epitope regions of HA1 

between sequences for September of the current season and sequences of the previous 

second season (for example, 𝑑2,𝑆𝑒𝑝𝑡  in 2000 was calculated based on sequences from 

September of current 2000/2001 influenza season and 1998/1999 influenza season, that is 

𝑠 = 2 in the notation introduced above). We chose September because a new antigenic 

cluster would need to be established before the winter season to effectively influence the 

dynamics of that transmission season. We chose a comparison between September and the 

previous second season (our ‘reference’ season) for two reasons: first, the average effective 

period back in time estimated with parameter 𝜃 for the evolutionary index is about two 

years (Fig. S10), and second, this period is close to the average time of cluster replacements 

(4).  

Because there are typically a limited number of sequences for the summer season, distances 

calculated based on those sequences can vary considerably depending on sampling effort. 

Therefore, to obtain a final value of 𝑑2,𝑆𝑒𝑝𝑡., we used a similar procedure than that used for 

calculating 𝑑(𝑠, 𝑡)̃  above. First, with the same subsampling procedure to address 

geographical and temporal sampling biases, we calculated an average hamming distance 
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for strains in each month (from October of the previous year to September of the current 

year) and those from the corresponding reference season (𝑠 = 2). Then we normalized 

these values to calculate 𝑑(𝑠, 𝑡), here 𝑑(𝑠 = 2, 𝑡) Finally, in order to lower the impact of 

stochasticity in the data, especially for data from summer seasons, 𝑑2,𝑆𝑒𝑝𝑡. was computed 

as the fitted value (or extrapolated if missing) for September, based on a linear regression 

of distances 𝑑(𝑠 = 2, 𝑡) for months between October of the previous year and September 

of the current year.  

For the purpose of fitting the time series data, the resulting 𝐸𝐷(𝑡) was introduced in the 

model as described in equation 9. When the goal is instead that of specifically forecasting 

ahead of the transmission season, we need to anticipate cluster transitions and the value of 

𝐸𝐷(𝑡) accordingly. We describe the approach we take for this purpose in the section below 

on Forecasts.  

Parameter estimation 

The resulting SIRS model was fitted to the data using Likelihood Maximization by Iterated 

particle Filtering (MIF) in the R package pomp (69, 70). Both parameters and initial 

conditions (for 𝑆, 𝐼, 𝑅 and 𝑅𝐻1) were estimated based on the likelihood function: 

 𝐿(𝑡) = 𝑝𝑛𝑜𝑟𝑚𝑎𝑙(𝐶(𝑡), 𝜑𝐼, 𝜌𝐼), (18) 

with 𝐶(𝑡) > 0. If 𝐶(𝑡) = 0, 𝐿(𝑡) was set to a very small value equal to -10000 (log scale) 

as a penalty. The search of parameters and initial conditions was started with a grid of 

10,000 random combinations sampled using the Latin Hypercube sampling (71) from wide 

ranges. This step was followed with additional phases of increasingly localized searches. 

Confidence intervals were estimated separately for each parameter with the target 
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parameter fixed at different values while allowing estimation of all other parameters also 

using MIF (69, 70). The Akaike information criterion (AIC) was used to measure goodness 

of a model (72). The AIC score takes into account model complexity and penalizes the 

likelihood based on the number of parameters. The likelihood ratio test was used for model 

selection for nested models (73). 

US regional models 

For a test of robustness of our general framework, we applied it to data from one US region, 

the US Department of Health & Human Services (HHS) region 3, which includes Delaware, 

District of Columbia, Maryland, Pennsylvania, Virginia and West Virginia. The 

epidemiological, virological and population data were downloaded from the same websites 

as for the national data. We note that the regional data (ILI positive rate, influenza positive 

rate and type/subtype specific proportion) is sparser with frequent data missing during the 

low season. Because the regional data are therefore noisier, we need to smooth it for further 

use. We did so by smoothing the incidence data from peak (time point with highest 

incidence during a winter season) to peak by local linear regression using a 4-weeks 

window. We also slightly revised our model to make its fitting less sensible to the data 

during the low seasons, which are mostly interpolated. We did this by adding a constant 

(200) to the reporting error through 𝜌 in equations 11 and 18 so that likelihoods calculated 

based on the low seasons vary less and contribute less in differentiating model performance. 

We also increased the importation rate from 0.1/day to 10/day to allows for the more 

frequent movement of people between regions within US (53, 55). Additionally, we used 

the national sequence data for the evolutionary covariate, under the assumption that from 

the perspective of evolutionary change the whole country would be largely synchronized 
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(5, 53). The choice of spatial scale could be examined further in the future, although more 

limited sequences are available for the regional level. 

Forecasts 

Forecasts of incidence dynamics were obtained for a given season through three steps. First, 

the cluster model was trained based on the dataset before the target season using exactly 

the same procedure described above. Second, the model with the best likelihood was 

chosen and used to estimate the initial conditions for the forecasts. These initial conditions 

require estimates of the ‘hidden’ (un-measured) variables in the model, 𝑆, 𝐼, 𝑅 and 𝑅𝐻1 in 

June of the year for which the predictions will be made. MIF allows one to estimate these 

variables as the filtered states of the system at that time given the observations of the cases. 

Third, forecasts were obtained through forward simulations for the target season with the 

selected model and starting from these initial conditions.  

Because the system of equations in our models is non-autonomous, including external 

variables or drivers whose values must be specified independently from the dynamics, real 

forecasts (vs retrospective ones) require specifying assumptions for these drivers whose 

observation in the future is by definition unavailable. Specifically, we require information 

on both 𝐶𝐻1(𝑡) in Λ𝐻1(𝑡) and 𝑑2,𝑆𝑒𝑝𝑡. in 𝐸𝐷(𝑡) for the simulations. First, for 𝐶𝐻1(𝑡), the 

average monthly value from the training dataset was used. This is a simplification and a 

rough approximation but a reasonable choice in the absence of modelling the coupled 

dynamics of H1N1 and H3N2. This approximation is most likely to be sufficient, when 

predictability of our models is evaluated, if the population dynamics of H3N2 is most 

strongly driven by its own evolutionary change rather than by the precise levels of H1N1 

(our results suggest that this is indeed the case). Second, the evolutionary change between 
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new and old clusters is also needed, and this quantity can be extrapolated linearly as the 

value for September using the same procedure for calculating 𝑑2,𝑆𝑒𝑝𝑡. above, but based on 

sequences only from October of the previous year to June of the current year. 

In addition and importantly, the weekly reports used to identify antigenic cluster transitions 

will not yet be available at the time of forecasting. Previously, a naive Bayes model was 

developed as a genotype-phenotype to translate sequence changes in HA to antigenic 

changes, and specifically calculate an odd ratio measuring antigenic similarity between a 

pair of strains given their sequences (40). Instead of only relying on the number of amino 

acid changes in epitopes of HA, this method employs several additional features that are 

related to intrinsically physiochemical mechanisms of antigenic change to predict the 

antigenic stasis of a strain variant (40). Based on this method, quarterly measures of the 

proportion of antigenic variants (PAV) were calculated here. This quantity provides the 

proportion of pairs that are antigenically different (odd ratio < 1) among all pairs between 

sequences of a specific quarter and those in the previous year. Again, the same subsampling 

process was applied, but based on time points for quarters not months. 

To predict a cluster transition, we examined rules that combine a local increase in PAV 

with this quantity exceeding a threshold. This cutoff value was selected based on Receiver 

ROC curves (lower bound of best accuracy, see Fig. S3). Again, because a new antigenic 

cluster would need to be established before the winter season, we chose to evaluate PAV 

in the third quarter (July 1st to September 30th) right before the coming winter season: PAV 

for the third quarter was linearly extrapolated based on data in the previous three quarters 

(first and second quarter of the current year and the fourth quarter in the previous year; that 

is from October 1st to June 30th. The rule we constructed on the basis of PAV was meant 
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to combine a requirement that there is sufficient novel viruses accumulating, at a time in 

which novelty is rising. Specifically, based on data from the current season, if PAV 

increases from the first quarter to the second quarter and crosses the selected cutoff of 0.11 

for the third quarter (whose value was extrapolated as explained above), an antigenic 

cluster transition was identified for the upcoming season. If PAV decreases from the first 

quarter to the second quarter, but is still higher than the cutoff value of 0.11 for the third 

quarter (again, extrapolated), a cluster transition will also be assigned for the upcoming 

season, with the additional requirement that an antigenic cluster transition was not already 

assigned for the current season. Otherwise, no cluster transition will be anticipated for the 

upcoming season. With this rule and for data between 2002 and 2012, we would have 

correctly anticipated all antigenic cluster transitions (true positive rate equal to 1 and false 

positive rate equal to 0) with a cutoff value of PAV ranging from 0.11 to 0.2. The lower 

bound of 0.11 was chosen as the cutoff in this study.  

For the continuous model, we also need to know 𝐶𝐻1(𝑡) and 𝐸(𝑡). For 𝐶𝐻1(𝑡), the average 

monthly values of H1N1 incidence were used. 𝐸(𝑡)  was linearly extrapolated up to 

September using the data available until June of the current season, then kept constant. 

When predicting the risk level (high or low) of a target season, we first define an epidemic 

relative to a reference threshold, defined initially as the median (50% quantile) of the 

seasonal total incidence in the training dataset. We then calculated the percentage of 

simulations above this threshold among 1000 simulations for the given target season. This 

percentage provides a probability of exceeding the given epidemic level. We can again use 

ROC curves and the training data set to establish which probability should be exceeded to 

predict a high risk. If the percentage is above a cutoff (upper bound of best accuracy), the 
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target season is predicted with high risk; otherwise, it is a low risk season (see Fig. S5 for 

the US national data based on the cluster model, Fig. S13 for the US national data based 

on the continuous model, and Fig. S14 for the HHS region 3 data). Although a natural 

choice might be 50% of the simulations, ROC curves can indicate that lower percentages 

should indicate risk given the tendency of the model to under-predict the size of the peaks. 

Cross-validation (hindcast) 

In order to test predicting ability further, and specifically for different patterns of 

alternating dominant subtypes in adjacent seasons, we conducted a cross-validation 

analysis for the training dataset itself covering the period from 2002 to 2011. For each 

influenza season from from 2003/2004 to 2010/2011, one at a time, the cluster model was 

fitted de novo by removing the target year and using the same search strategy than for the 

full data set before. With the resulting specific parameters, a prediction was generated using 

the same strategy described above and calculating mean H1N1 incidence with all years 

except the target one. In practice, the fitting of the model is implemented in MIF with 

parameters prevented from performing a random walk during the window of time that 

contains the target year (so that the corresponding data is not used in the filtering process), 

and with the likelihood evaluated by setting 𝐿(𝑡) = 0 (in the log scale) in equation 18. 
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SUPPLEMENTARY MATERIALS 

Table S1-S5 

Figs. S1-S14 
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Table 1. Model comparison. See Figure 1 for a diagram of the general epidemiological 

model. The ‘basic’ model is the well-known SIRS model with the transmission rate 𝛽(𝑡) 

including only the seasonal forcing function and the loss of immunity rate 𝜀(𝑡) set to a 

constant. The ‘basic-H1’ model includes 𝑅𝐻1 as an additional class to incorporate the loss 

of susceptible due to previous infection by H1N1, and use the observed incidence of H1N1 

as a covariate determining the flux of individuals into this class. The ‘refined’ model 

additionally considers a different reporting error for the summer and winter seasons, and 

allows for the sub-exponential growth of the epidemic curve with an exponent 𝛼 (smaller 

than 1) on 𝐼  in the force of infection. The ‘humidity’ model replaces the spline-based 

seasonal forcing function with a humidity-based function. The next series of models 

includes the influence of the evolutionary index 𝐸(𝑡) on the transmission rate 𝛽(𝑡) and/or 

the loss of immunity 𝜀(𝑡) . Among these evolutionary models (the ‘immunity 

loss/transmission’ model, the ‘transmission’ model, and the ‘immunity loss’ model), the 

best model (the ‘continuous’ model, compared to models without evolutionary 

compartment) based on the Akaike information criterion (AIC) is the one that incorporates 

a continuous dependence on 𝐸(𝑡) only in the loss of immunity. A further improvement is 

achieved by the cluster model which incorporates evolutionary change as a discrete event 

for seasons with an antigenic transition (the ‘cluster’ model). AIC was calculated as: 𝐴𝐼𝐶 =

2𝑘 − 2𝑙𝑛 (𝐿), where 𝑘 is the number of parameters and 𝐿 is the maximum likelihood. The 

likelihood ratio test was used for model selection. Based on p values (smaller than 0.05), 

the basic-H1 and refined models are significantly better than the basic model, and the 

refined model is in turn significantly better than the basic-H1 model. Models with evolution, 

include the cluster model, are significant better than those without it (shaded). Among 
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models with evolutionary information, the continuous and cluster model is significant 

better than the transmission model. 

 

  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/198168doi: bioRxiv preprint first posted online Oct. 4, 2017; 

http://dx.doi.org/10.1101/198168
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

Table 2. H3N2 risk level forecasts for the US based on the cluster model. Seasonal risk 

level for H3N2 influenza virus is defined as high or low for each season from the out-of-

fit period (2011-2017) compared to a reference level defined as the 50% quantile of the 

seasonal total H3N2 incidence cases in the corresponding training dataset. We defined an 

observed season as H3N2 high risk, when the observed total H3N2 incidence surpasses the 

reference level; and a H3N2 low risk season otherwise. For the forecasts, the percentage of 

1000 simulations that exhibit a H3N2 high risk was obtained. When this percentage 

exceeded 40% (chosen based on Fig. S5), we forecasted a H3N2 high risk season. 

Otherwise, a H3N2 low risk season was predicted. 

 

* Based on the updated data from the weekly US influenza surveillance report until week 

14 ending on April 8, 2017  
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Figure 1. Data and model. (A) Monthly influenza incidence data for the US between 

October 2002 and June 2016. Red, blue and green curves are for subtype H3N2, subtype 

H1N1 and type B respectively. Seasons with an antigenic cluster transition were marked 

with asterisks. (B) Diagram for the epidemiological model. A classical susceptible-

infected-recovered-susceptible (SIRS) epidemic model was used to represent the 

population dynamics of H3N2 incidence. The SIRS model is a compartmental formulation 

that follows the number of individuals into three classes, for susceptible (𝑆), infected (𝐼) 

and recovered (𝑅) individuals respectively. People die at a constant rate 𝜇. 𝑁(𝑡) is the 

population size and the birth of individuals was specified as 𝜇𝑁(𝑡) +
𝑑𝑁(𝑡)

𝑑𝑡
 to capture the 

observed increase of the population. Susceptible individuals in 𝑆 move to the 𝐼 class after 

contact with an infective and transmission of the disease at rate 𝛽(𝑡). This transmission rate 

includes a seasonal component, a dependency on the antigenic change of the virus, and 

environmental noise. Infected individuals eventually recover with an average infectious 

period of 𝛾  and move to the 𝑅  class where they are protected by acquired immunity. 

Specific immunity is temporary and will be lost after an average latent period 𝜀(𝑡), with 

individuals in 𝑅 returning to the 𝑆 class. Parameter 𝜏 is the rate of external importation of 

H3N2 cases. An additional 𝑅𝐻1 class was designed to track the protected population due to 

infection by H1N1. The rate of transition to the 𝑅𝐻1  class is given by 𝛬𝐻1(𝑡) , which 

depends on the observed incidence of H1N1 scaled to take into account the estimated 

reporting error. Individuals in the 𝑅𝐻1 return back to the R class after an average latent 

period of 𝜀𝐻1. (C) Monthly evolutionary change 𝐸(𝑡). The transmission rate 𝛽(𝑡) in our 

first model incorporating evolutionary change depends on this evolutionary index. 𝐸(𝑡) 

was calculated based on epitope sites of HA, as a weighted sum of normalized amino acid 
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distances (hamming distances) between strains in month 𝑡  and previous strains. Those 

distances were weighted by a decaying function back in time whose time scale was 

estimated as part of the model fitting. Details are described in the Evolutionary Index 

section of the Materials and Methods.  

Figure 2. Illustration of the best model fits for the (A) basic, (B) continuous and (C) cluster 

models. See Table 1 for the specification and statistical comparison of the different models 

considered. Here, monthly simulations of the respective models with the MLE (Maximum 

Likelihood Estimates) parameters are shown for the median (in red) and 2.5-97.5% 

quantiles (shaded red) of 1000 simulations starting from estimated initial conditions in 

October 2002. For comparison, the observed monthly H3N2 incidence data for the US are 

shown in black. The basic model which incorporates only a fixed seasonality and no 

information on H1N1 in (A) fails to capture the temporal variability in the size of seasonal 

outbreaks; whereas the two models that include a dependence on the levels of H1N1 and 

on the evolutionary change of the virus (in a continuous fashion in B, and a discrete one in 

C) do represent this interannual variation.  

Figure 3. H3N2 incidence forecasts based on the cluster model for the US. Both 

retrospective forecasts (for each influenza season from 2011/2012 to 2015/2016) and a real 

forecast for the coming 2016/2017 influenza season are represented. These forecasts are 

simulated on a seasonal basis from estimated initial conditions starting in June and based 

on parameters estimated with all the data up to that point in time. The average monthly 

H1N1 incidence from this training dataset was used for forecasting purposes as the 

observation of this driver quantity would not be available. Similarly, the quantities 

specifying the evolutionary change of the virus was extrapolated as the sequences required 
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for their computation would not be available. The black curve is the monthly observed 

H3N2 incidence; the red curve is the predicted monthly median incidence with shaded 2.5-

97.5% quantiles from 1000 random simulations with the best models. The cluster model 

captures the occurrence of low and high seasons and forecasts high H3N2 incidence risk 

level for the 2016/2017 influenza season. The observed incidence data for the 2016/2017 

influenza season, which were not yet available when this study was conducted, are shown 

with the dotted line (and based on data from the weekly US influenza surveillance report 

until week 14 ending on April 8, 2017). 
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