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Supplementary Note 1: Microscopic Laser Model 

Our theoretical analysis comprises the input-output characteristics, the zero delay time second-order photon 

correlation function 𝑔(2)(𝜏 = 0) and the coherence time obtained from a two-time calculation of the first-order 

autocorrelation function 𝑔(1)(𝑡, 𝜏). The model accounts for quasi-continuous 𝑘-states of the two-dimensional 

quantum well (QW) gain material, the lowest-energy mode that is provided by the cavity and their mutual 

interaction. We use a quantized light field in order to access the statistical properties of the emission via 𝑔(2)(𝜏 =

0) and to naturally include spontaneous emission in our model. The operators 𝑏† and 𝑏 create or annihilate a 

photon in the laser mode and operators 𝑣𝑘  and 𝑐𝑘  refer to carriers in the valence- and conduction-band states 

of the gain material. In this notation the Hamiltonian of the system is written as  

 

 𝐻 = 𝐻carr + 𝐻ph + 𝐻I, (1) 

 

where 𝐻carr and 𝐻ph are the Hamiltonians of the charge carriers and photons  

 

 𝐻carr = ∑𝑘 𝜀𝑘
e𝑐𝑘

†𝑐𝑘 + ∑𝑘 𝜀𝑘
h𝑣𝑘

†𝑣𝑘 , (2) 

  

 𝐻ph = ℏ𝜔 (𝑏†𝑏 +
1

2
), (3) 

 

and 𝐻I is the interaction Hamiltonian  

 

 𝐻I = i ∑𝑘 (𝑔𝑏𝑣𝑘𝑐𝑘
† − 𝑔∗𝑏†𝑣𝑘

†𝑐𝑘). (4) 

 

Energies 𝜀𝑘
e and 𝜀𝑘

h are the electron and hole energies for different momenta 𝑘 and ℏ𝜔 is the photon energy of 

the cavity mode. For a solid quantum well, as it is found e.g. in a VCSEL structure, we define the light-matter 

coupling constant 𝑔 as  

 

 𝑔 = ∑𝐪∥
2𝐸ph𝛤𝑧𝒅cv𝒖

~
(𝒒∥). (5) 

 

𝐸ph = √
ℏ𝜔

2𝜀0𝑉res
 is the field per photon in the cavity mode with 𝑉res the resonator volume, 𝛤𝑧  the confinement 

factor in 𝑧-direction (vertical to the QW), 𝒅cv the dipole moment between valence and conduction band and 

𝒖
~

(𝐪∥) the Fourier transform of the (cavity-) mode function inside the QW plane. 

An approximate relation between the light-matter coupling constant and the spontaneous emission time can be 

established by adiabatically solving Eqn. (10) and inserting it into Eqns. (8) and (9) while neglecting all terms but 

the one corresponding to spontaneous emission into the lasing mode and only considering the 𝑘-value in spectral 

resonance with the optical mode. For 𝑘-values other than the ones close to resonance, the detuning reduces the 

light-matter interaction. One arrives at the expression  



 

 

 𝑔 = √
𝜅+𝛤

2𝜏l
 (6) 

 

where 𝜅 is the inverse cavity lifetime, 𝛤 is the dephasing rate and 𝜏l is the spontaneous emission time into the 

cavity. 

In addition, dissipative processes enter the following equations of motion via Lindblad terms. 

 

Coupled Laser Equations 

Using Heisenberg’s equation of motion and a truncation of the arising hierarchy of coupled equations along the 

lines of Ref. [1], we arrive at dynamical equations for the mean photon number 〈𝑏†𝑏〉 and the carrier-distribution 

functions 𝑓𝑘
e, 𝑓𝑘

h (for electrons e and holes h separately),  

 

 (ℏ
d

d𝑡
+ 2𝜅) 〈𝑏†𝑏〉 = 2|𝑔|2 ∑𝑘′ Re[〈𝑏†𝑣𝑘′

† 𝑐𝑘′〉], (7) 

 

 

 ℏ
d

d𝑡
𝑓𝑘

e = −2|𝑔|2Re[〈𝑏†𝑣𝑘
†𝑐𝑘〉] − 𝛾nl𝑓𝑘

e𝑓𝑘
h − 𝛾rel

e (𝑓𝑘
e − 𝑓𝑘

F.D.) − 𝐴nr𝑓𝑘
e + 𝑃𝑓𝑘

(0)
(1 − 𝑓𝑘

e), (8) 

 

 

 ℏ
d

d𝑡
𝑓𝑘

h = −2|𝑔|2Re[〈𝑏†𝑣𝑘
†𝑐𝑘〉] − 𝛾nl𝑓𝑘

e𝑓𝑘
h − 𝛾rel

h (𝑓𝑘
h − 𝑓𝑘

F.D.) − 𝐴nr𝑓𝑘
h + 𝑃𝑓𝑘

(0)
(1 − 𝑓𝑘

h), (9) 

 

where 𝑃  is the pump rate. Their dynamics are governed by the photon-assisted polarization 〈𝑏†𝑣𝑘
†𝑐𝑘〉  that 

describes the process of photon emission via a carrier transition from a conduction-band to a valence-band state 

𝑘. Photon losses expressed by the 𝑄-factor of the mode are accounted for by the cavity loss rate 𝜅 = 𝐸ph/𝑄. The 

carrier dynamics is subject to both radiative and non-radiative losses at rates 𝛾nl and 𝐴nr as well as pumping.  

 

To simulate the experimental situation of carrier excitation in the barrier material the subsequent capture into 

the QW quasi-continuum states, we assume a carrier generation that is Gaussian distributed higher above the 

band edge from where carriers relax to the band edges. Carrier relaxation towards quasi-equilibrium is treated 

in terms of a relaxation-time approximation against respective Fermi-Dirac distributions 𝑓𝑘
F.D. for electrons and 

holes at rates 𝛾rel
e  and 𝛾rel

h . The carrier distribution functions 𝑓𝑘
e, 𝑓𝑘

h that enter the theory are generally non-

equilibrium distributions and reflect effects such as hole burning at the cavity-mode energy in the presence of 

stimulated emission, which is indicative for lasing and discussed in the context of Supplementary Figure 2 below. 

 

In standard laser theory, radiative losses are typically associated with the 𝛽-factor, which is a measure for the 

fraction of the spontaneous emission directed into the laser mode. At the same time, the 𝛽-factor relates to the 

occurrence of a jump in the input-output curve. If radiative losses are small in comparison to emission into the 

laser mode, the 𝛽-factor can approach unity and the input-output curve becomes thresholdless. As radiative 

recombination requires the presence of an electron and a hole, radiative losses are proportional to 𝑓𝑘
e𝑓𝑘

h. Non-



 

 

radiative losses, on the other hand, arise from different physical effects, such as Shockley-Read-Hall 

recombination or Auger processes. We use a general loss rate 𝐴nr that is proportional to the respective carrier 

population functions 𝑓𝑘
e and 𝑓𝑘

h [2]. As a general property, non-radiative losses lead to an increased slope - larger 

than one - in the double logarithmic input-output curve in the low-excitation regime. Furthermore, it is worth 

noting that both, radiative and non-radiative losses, if sufficiently strong, give rise to a jump in the input-output 

curve and cannot easily be separated without further investigations. 

 

The non-Markovian equation for the photon-assisted polarization is the central quantity that contains the light-

matter interaction of the gain material with photons in the laser mode. Its equation of motion is given by  

 

 (ℏ
d

d𝑡
+ 𝜅 + 𝛤) 〈𝑏†𝑣𝑘

†𝑐𝑘〉 = −i(𝜀𝑘
e − 𝜀𝑘

h − ℏ𝜔)〈𝑏†𝑣𝑘
†𝑐𝑘〉 

 +𝑓𝑘
e𝑓𝑘

h + 〈𝑏†𝑏〉(𝑓𝑘
e + 𝑓𝑘

h − 1) + 𝛿〈𝑏†𝑏𝑐𝑘
†𝑐𝑘〉 − 𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉. (10) 

 

The light-matter interaction Hamiltonian gives rise to spontaneous emission proportional to 𝑓𝑘
e𝑓𝑘

h , and 

stimulated processes proportional to 〈𝑏†𝑏〉(𝑓𝑘
e + 𝑓𝑘

h − 1)  plus correlation terms due to carrier-photon 

correlation functions 𝛿〈𝑏†𝑏𝑐𝑘
†𝑐𝑘〉 and 𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉. Depending on the sign of the population term, it represents 

stimulated emission (gain) or absorption proportional to the mean intra-cavity photon number. The free 

evolution of this equation is governed by the detuning of each electronic transition 𝜀𝑘
e − 𝜀𝑘

h to the cavity-mode 

energy ℏ𝜔. The bandwidth of the interaction is determined by the broadening of the cavity-mode resonance 

(passive cavity 𝑄 -factor) and the linewidth of the gain material that we describe by the phenomenological 

constant 𝛤 (representing the dephasing rate of the gain medium). 

 

The carrier-photon correlation terms 𝛿〈𝑏†𝑏𝑐𝑘
†𝑐𝑘〉 and 𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉 can have a significant impact on the emission 

characteristics of nanolasers with strong light-matter interaction. Their calculation is a prerequisite to access the 

photon autocorrelation function  

 

  𝑔(2)(𝜏 = 0) = 2 +
𝛿〈𝑏†𝑏†𝑏𝑏〉

〈𝑏†𝑏〉2 , 

 

which requires to include four additional equations:  

 

 (ℏ
d

d𝑡
+ 4𝜅) 𝛿〈𝑏†𝑏†𝑏𝑏〉 = 4|𝑔|2 ∑𝑘′ Re[〈𝑏†𝑏†𝑏𝑣𝑘′

† 𝑐𝑘′〉], (11) 

 

(ℏ
d

d𝑡
+ 3𝜅 + 𝛤) 𝛿〈𝑏†𝑏†𝑏𝑣𝑘

†𝑐𝑘〉 = −i(𝜀𝑘
e − 𝜀𝑘

h − ℏ𝜔𝑙)𝛿〈𝑏†𝑏†𝑏𝑣𝑘
†𝑐𝑘〉  

 −2|𝑔|2〈𝑏†𝑣𝑘
†𝑐𝑘〉2 − (1 − 𝑓𝑘

e − 𝑓𝑘
h)𝛿〈𝑏†𝑏†𝑏𝑏〉 

 +2𝑓𝑘
h𝛿〈𝑏†𝑏𝑐𝑘

†𝑐𝑘〉 − 2𝑓𝑘
e𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉 (12) 

 +2〈𝑏†𝑏〉(𝛿〈𝑏†𝑏𝑐𝑘
†𝑐𝑘〉 − 𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉) 

 −2 ∑𝑘′ 𝛿〈𝑏†𝑏𝑐𝑘′
† 𝑣𝑘

†𝑣𝑘′𝑐𝑘〉 + ∑𝑘′ 𝛿〈𝑏†𝑏†𝑣𝑘′
† 𝑣𝑘

†𝑐𝑘′𝑐𝑘〉, 

 



 

 

 

(ℏ
d

d𝑡
+ 2𝜅) 𝛿〈𝑏†𝑏𝑐𝑘

†𝑐𝑘〉 = −2|𝑔|2Re[𝛿〈𝑏†𝑏†𝑏𝑣𝑘
†𝑐𝑘〉 + ∑𝑘′ 𝛿〈𝑏†𝑣𝑘′

† 𝑐𝑘
†𝑐𝑘′𝑐𝑘〉 + (〈𝑏†𝑏〉 + 𝑓𝑘

e)〈𝑏†𝑣𝑘
†𝑐𝑘〉], (13) 

 

 

(ℏ
d

d𝑡
+ 2𝜅) 𝛿〈𝑏†𝑏𝑣𝑘

†𝑣𝑘〉 = 2|𝑔|2Re[𝛿〈𝑏†𝑏†𝑏𝑣𝑘
†𝑐𝑘〉 − ∑𝑘′ 𝛿〈𝑏†𝑐𝑘′

† 𝑣𝑘
†𝑣𝑘′𝑣𝑘〉 + (〈𝑏†𝑏〉 + 𝑓𝑘

h)〈𝑏†𝑣𝑘
†𝑐𝑘〉].  (14) 

 

By truncating higher-order correlation functions (see Ref. [1]), Eqns. (7)-(14) form the closed system of coupled 

laser equations that are used for obtaining the results presented in the main text. We model the quasi-

continuous 𝑘-states by using a discrete grid of ~350 equally spaced points, which leads to a system of about 

1400 coupled equations.  

 

Discussion of the 𝜷-factor 

The 𝛽-factor plays a fundamental role in rate equation theories and is often considered as a central device 

characteristic. While in rate equations it directly enters as a parameter, the intricate physical processes that 

determine the behavior of the introduced laser model do not allow one to treat the impact of radiative carrier 

losses in terms of a single parameter. Nevertheless, a parameter that contains the same physical meaning, i.e. 

the ratio of the spontaneous emission into the laser mode to the total spontaneous emission can be calculated 

from our theory by evaluating  

 

 𝛽 =
∑𝑘

2|𝑔|2

𝛤+𝜅
𝐿(𝑘)𝑓𝑘

e𝑓𝑘
h

∑𝑘 (
2|𝑔|2

𝛤+𝜅
𝐿(𝑘)+𝛾nl)𝑓𝑘

e𝑓𝑘
h
, (15) 

 

where 𝐿(𝑘) is a Lorentzian lineshape function. The expression is derived by adiabatically solving Eqn. (10) for the 

steady state and inserting it in Eqns. (8) and (9) where non-radiative losses are omitted. In the calculation of the 

emission into the laser mode, stimulated contributions are suppressed, so that the obtained 𝛽  factor truly 

characterizes the spontaneous emission behavior. The 𝛽-factor of around 0.7 given in the main text is an upper 

estimate on the basis of expression (15). 

From this procedure it becomes clearer that formally differentiating between radiative and non-radiative losses 

in defining an efficiency-factor such as 𝛽 is rather artificial. Non-radiative losses deplete the carrier populations 

in Eqns. (8) and (9) in a similar way to radiative losses ∝ 𝛾nl, and an alternative definition of the 𝛽  factor can be 

formulated 

  𝛽 =
∑𝑘

2|𝑔|2

𝛤+𝜅
𝐿(𝑘)𝑓𝑘

e𝑓𝑘
h

∑𝑘 (
2|𝑔|2

𝛤+𝜅
𝐿(𝑘)+𝛾nl+𝐴𝑛𝑟)𝑓𝑘

e𝑓𝑘
h
, (16) 

in order to characterize the overall efficiency of carrier recombination into the laser mode. With this discussion 

we aim at clarifying the role of 𝛽, which is very well defined in rate equation theories such as in Ref. [3], but less 

so in microscopic theories that do not depend on 𝛽, but allow for a definition of such a factor in one way or 

another. 

  

Coherence Time 



 

 

The coherence time is defined as  

 

 𝜏c = ∫
∞

−∞

|𝑔(1)(𝑡,𝜏)|
2

|𝑔(1)(𝑡,0)|
2 d𝜏, (17) 

 

which requires calculating the 𝜏-dynamics of the two-time first-order photon correlation  function  

 

 𝑔(1)(𝑡, 𝜏) =
〈𝑏†(𝑡)𝑏(𝑡+𝜏)〉

〈𝑏†(𝑡)𝑏(𝑡)〉
. (18) 

 

For continuous-wave excitation, the first time argument corresponds to the steady-state time. The 𝜏-dynamics 

is obtained by formulating equations of motion with derivatives taken with respect to the delay-time 𝜏: 

 

 ℏ
d

d𝜏
𝐺(𝜏) = ∑𝑘 𝑔∗𝑃𝑘(𝜏) − (𝜅 + iℏ𝜔)𝐺(𝜏), (19) 

 

 

 ℏ
d

d𝜏
𝑃𝑘(𝜏) = 𝑔(𝑓𝑘

c − 𝑓𝑘
v)𝐺(𝜏) − (𝛤 + i(𝜀𝑘

e − 𝜀𝑘
h))𝑃𝑘(𝜏). (20) 

 

Here, the abbreviations  

 

 𝐺(𝜏) = 〈𝑏†(𝑡)𝑏(𝑡 + 𝜏)〉, (21) 

  

 𝑃𝑘(𝜏) = 〈𝑏†(𝑡)𝑣𝑘
†(𝑡 + 𝜏)𝑐𝑘(𝑡 + 𝜏)〉 (22) 

 

are used. The initial conditions that enter the time integration of the equations are obtained from the steady-
state values of the single-𝑡 time dynamics [4]. 
 

Choice of Parameters 

 

For the unloaded cavity 𝑄-factor in the absence of an absorptive gain material we use 𝑄 = 2200 for the lasing 

and 𝑄 = 1800 for the non-lasing nanobeam cavity based on the measurements close to transparency of the gain 

medium. In all cases, a spontaneous emission time of 𝜏sp = 5 ns is assumed [5], which leads to a calculated light-

matter interaction constant of 𝑔 = 0.041 ps−1 at resonance according to Eqn. (6). The cavity loss rates for the 

investigated nanobeam cavities are 𝜅 = 0.94 ps−1  (𝑄 = 2200) and 𝜅 = 1.15 ps−1  (𝑄 = 1800), respectively, 

and the phenomenological dephasing is 𝛤 = 20 ps−1 . For the quantum-well gain material, we estimate an 

effective area of 0.31 m2 from the 3D-FDTD simulations.  

Radiative losses are small in the nanobeam geometry, which is known to strongly funnel photons into the guided 

laser mode and suppress emission into non-lasing modes. Defect-induced non-radiative losses lead to a deviation 

of the unity-slope in the input-output curve in the low excitation regime. At 300 K we assume 𝐴nr = 5 × 107s−1, 

and an absence of non-radiative losses at 156 K. These parameter choices are supported by the measurements, 



 

 

as a steeper slope than unity is observed at room temperature (especially in Fig. 2d), whereas the 156 K input-

output curve is almost flat with a slope of one. The set of parameters is summarized in Supplementary Table 1.  

Supplementary Table 1 | Parameters used in the calculation   

 LASING NANOBEAM (RT) LASING NANOBEAM (156 K) REFERENCE NANOBEAM (RT) 

𝑸 2200 2200 1800 
𝝉𝐬𝐩 (𝐧𝐬) 5 5 5 

𝜷 0.7 0.7 0.7 
𝑨𝐧𝐫 (𝐬−𝟏) 5 × 107 0.0 5 × 107 

𝒈 (𝐩𝐬−𝟏) 0.041 0.041 0.041 
 

 
Additional indicators for lasing in the nanobeam structure 
 
In Supplementary Figure 1 we show the results for the coherence time that we obtain for the nanobeam laser 

and the non-lasing reference structure. While the low-excitation value is mainly determined by the cavity-𝑄 

factors, the increase in coherence time is indicative for the build-up of coherence in the system. While the 

nanolaser reaches coherence-time values is the ns range which is typical for above-threshold operation, the 

coherence time of the reference structure saturates at a value < 100 ps, indicating that fully coherent emission 

is not reached. 

 
 

 

 

Supplementary Figure 1 | Calculated excitation-power-density dependent coherence 
time. Excitation dependent coherence time for the nanobeam laser and reference 
nanobeam according to Eqn. (17). The obtained coherence times are used when 
convoluting the ideal zero time delay autocorrelation function with the time resolution 



 

 

of the HBT setup (225 ps – shown above with a dashed line) in order to simulate the 
experimental results. 

The coherence time is of particular relevance to predict the measured autocorrelation function (dashed line in 

Figs. 2c and f in the main text) from the unconvoluted result (solid line in Fig. 2c and f in the main text), which 

would be obtained only with unlimited detector resolution. The dashed line in Supplementary Figure 1 indicates 

the experimental detector resolution (225 ps). If the coherence time is lower than the detector resolution, the 

measured autocorrelation function exhibits values that are closer to 1 than the true value. 

From Eqns. (7)-(9) we obtain the wave-vector dependent carrier population functions for electrons and holes. In 

Supplementary Figure 2 we show results for the room temperature case corresponding to the data shown in Fig. 

2 in the main text. Spectral hole burning (indicated by the shaded region in Supplementary Figure 2a) gives 

additional proof for the presence of stimulated emission in the nanolaser in the high-excitation regime and the 

absence of the same in the reference structure.  

In general, the unambiguous identification of lasing in high-𝛽  nanocavity devices relies on a combination of 

indicators. The theoretical results for the coherence-time increase and the spectral hole burning in the 

population functions give valuable additional proof for the presence of lasing in addition to the experimental 

results that are shown in the main text.  

 

 
 

Supplementary Figure 2 | Carrier population functions and spectral hole burning. The 
non-equilibrium electron (red) and hole (black) distribution functions are shown for low 
(solid line) and high (dashed line) excitation power density. a, The nanobeam laser 
exhibits spectral hole burning at the laser-mode energy at high excitation (shaded region 
in a), which is indicative for lasing. b, No spectral hole burning is observed for the 
reference structure, confirming that it operates below threshold. 



 

 

 

Supplementary Note 2: Investigation of sample heating 

Heating of the nanobeam cavity was investigated by means of Raman thermometry and thermal transport 

simulations using COMSOL Multiphysics. For the Raman thermometry measurements the sample was excited 

under the same conditions as during the room temperature lasing characterization (methods section), using a 

325 nm ultrasteep dielectric edge filter. Spectra were calibrated using a mercury gas discharge lamp and the 

spectrometer was not moved between measurements. The temperature increase in the cavity region was then 

inferred from the characteristic redshift of the polar 𝐴1(𝐿𝑂) phonon peak of the GaN matrix material [7]. We 

chose the 𝐴1(𝐿𝑂) phonon as a temperature sensor, as it is the most prominent Raman mode under the given 

resonant pumping conditions. An influence of the induced carrier density on the 𝐴1(𝐿𝑂) phonon (which would 

manifest itself in a blueshift of the resulting longitudinal phonon plasmon mode – the so-called 𝐿𝑃𝑃+ mode) can 

be excluded [8-9]. Supplementary Figure 3 shows the excitation power density dependent shift of the GaN 

𝐴1(𝐿𝑂) mode, as well as the shift of the dominating first-order mode of silicon, indicating the temperature of 

the illuminated region of the substrate, for comparison. In linear approximation the Raman shift RS of the two 

peaks is given as d𝑇/dRS(GaN 𝐴1(𝐿𝑂)) = −39 K per cm−1  and d𝑇/dRS(silicon) = −46 K per cm−1  near 

room temperature [7], [10]. From the shifts in Supplementary Figure 3, the temperature of the cavity region 

increases by ~56 K, whereas the silicon substrate shows only a minor increase in temperature of ~8 K.  

 
 

Supplementary Figure 3 | Raman thermometry measurements. Excitation power 
density dependent shift of the GaN 𝐴1(𝐿𝑂) and the first-order mode of silicon. From the 
overall redshift of the phonon modes, the temperature increase of cavity and substrate 
can be estimated to 56 K and 8 K, respectively. 

Accompanying thermal transport simulations were carried out using COMSOL Multiphysics. For the simulations, 

a heat source was placed in the cavity region and the resulting temperature distribution along the nanobeam 

was subsequently simulated. Supplementary Figure 4 shows the temperature distribution (shown for half the 



 

 

nanobeam) for several input powers. Solid and dashed lines correspond to a nanobeam with and without holes, 

respectively, indicating the lowered effective thermal conductivity in the actual structure. We can estimate an 

input power of ~200-300 µW (taking into account excitation density, illuminated cavity area and absorption 

coefficient) in the high excitation range during the characterization of the nanobeams, which results in an 

increase in cavity temperature of about 50-80 K in good agreement with the Raman thermometry. Note that the 

Raman measurements naturally involve an averaging over the laser spot size, which comprises a gradient for the 

excitation power density. 

 
 

Supplementary Figure 4 | Thermal transport simulations. Temperature distribution 
along one half of the nanobeam (symmetric) for several input powers. Solid and dashed 
lines represent a nanobeam with and without holes, respectively. Inset: Dependence of 
the peak temperature 𝑇pk on the heat input 𝑄in.  

Supplementary Note 3: Evaluation of the intensity autocorrelation function 

The measured autocorrelation traces were fitted using a convolution of the idealized fitting function 𝑔̃(2)(𝜏) =

1 + 𝑔0exp(−2|𝜏|/𝜏cor) , with correlation time 𝜏cor  and bunching amplitude 𝑔0 , and the detector response 

(assumed Gaussian) [6] 

𝑔(2)(𝜏) =
1

𝜎√2π
∫ 𝑔̃(2)(𝜏 − 𝜏′)exp (

−𝜏′2

2𝜎2 )
∞

−∞
𝑑𝜏′,                                 (23) 

where 𝜎 = ∆𝑡res/2√2 ln(2). The temporal resolution of the HBT setup is ∆𝑡res ≈ 225 ps. Supplementary Figure 

5a shows the unbinned data (gray) at an excitation power density of 6.77 kW cm-2, as well as the data using an 

8x binning (black) overlaid with the convoluted fit to the unbinned data (red). Supplementary Figure 5b shows 

the evolution of 𝑔(2)(𝜏)  for six excitation power densities around threshold. At 𝜏 = 0  we observe a clear 

bunching behavior (𝑔(2)(0) > 1), which becomes less pronounced with increasing excitation power density, 

indicating the transition from thermal light to coherent light. 



 

 

 
 

Supplementary Figure 5 | Room temperature second-order autocorrelation 

measurements of the nanobeam emission. a, Exemplary 𝑔(2)(𝜏)-trace with convoluted 
fit, Eqn. (23), to the unbinned data (gray) and the data using an 8x binning (black) for 

clarity. A deconvolved zero delay time value of 𝑔deconv
(2) (0) = 1.4 ± 0.05 is extracted. b, 

Excitation power density dependent evolution of the second-order autocorrelation 
function (offset for clarity). As the excitation power density is increased across the 
threshold region, thermal bunching around 𝜏 = 0  (shaded region) becomes more 
pronounced, before vanishing again at higher excitation power densities as the emission 
becomes increasingly coherent. 

 

Supplementary Note 4: I-O behavior at low temperatures and impact of localized states due to indium 

composition fluctuations in the single quantum well 

We observe a vanishing kink in the I-O curve of the nanobeam laser as the temperature is decreased below room 

temperature, until the device exhibits thresholdless (linear) I-O behavior despite a cavity 𝛽 <  1  and the 

presence of non-radiative losses. Further insight into the lasing characteristics and the mechanism leading to a 

thresholdless intensity curve is gained via additional temperature dependent measurements below 156 K. Upon 

decreasing sample temperature, the I-O curve develops an inverse s-shape with an increased output intensity in 

the low excitation regime (cf. Fig. 3e of the main text), which we observed down to 20 K (not shown).  In contrast, 

a true ( 𝛽 = 1 ) thresholdless device requires vanishing non-radiative losses and is expected to remain 

thresholdless once non-radiative recombinations become negligible. We attribute the I-O temperature 

dependence to indium composition fluctuations in the InGaN single quantum well (SQW) that lead to a 



 

 

subsystem of localized states [11-12], thereby constituting a 0D-2D two component gain medium. The impact of 

such localized states has been thoroughly studied for InGaN quantum wells grown on other substrates [11-14]. 

A typical indicator for the presence of localized states is a blueshift of the QW emission peak energy at 

intermediate temperatures, following an initial redshift at low temperatures instead of the usual Varshni shift 

[13-14].  

 

Supplementary Figure 6 | Temperature dependence of the InGaN/GaN SQW 
photoluminescence (PL). Peak energy extracted from InGaN SQW PL spectra for an 
unprocessed location on the sample obtained for two excitation power densities, 
namely 𝑃low = 2.5 W cm−2  (red dots) and 𝑃high = 51 W cm−2 (black dots). The 

blueshift occurring for temperatures above 90-110 K indicates the influence of localized 
states on the SQW emission. Fits (solid lines) accounting for the temperature 
dependence of the measured PL peak energy are issued from Eqns. (3) and (4) in Ref. 
[15] whereas the black dashed line corresponds to the well-known Varshni’s empirical 
formula. Error bars indicate the standard deviation obtained from fitting the recorded 
spectra. 

 

Supplementary Figure 6 shows the QW emission peak energy for two input power densities as a function of 

temperature for an unprocessed location on the sample up to 𝑇 = 280 K, capturing the initial red shift and the 

subsequent blue shift due to localization starting at 90-110 K. The measurements were performed in standard 

(macro) PL configuration in the low excitation regime, using the 325 nm line of a HeCd laser at an input power 

density of 2.5 and 51 W cm−2, respectively. To decrease the inherent light waveguiding originating from the 

sample geometry, the sample was capped by a /4n thick (~ 78 nm) SiO2 layer tuned to the QW emission 

wavelength in order to promote vertical light extraction and hence observe QW PL emission up to 280 K in the 

low excitation regime. The temperature dependence of the measured PL peak energy can be well accounted for 

by using the model introduced by Li and co-workers [15] that considers a Gaussian-like distribution of localized 

electronic states. Within this model the QW emission energy is given by:  



 

 

                             𝐸QW = 𝐸0 −
𝛼V𝑇2

𝛽V+𝑇
− 𝑥(𝑇)𝑘B𝑇,                                               (24) 

where 𝐸0  is the free QW exciton energy at 0 K, 𝛼V  and 𝛽V  are the usual parameters entering in Varshni’s 

empirical formula, 𝑘B is the Boltzmann constant and 𝑥(𝑇) is a dimensionless coefficient obtained when solving 

the transcendental equation: 

                   𝑥 exp 𝑥 = (
𝜏r

𝜏tr
) [(

𝜎′

𝑘B𝑇
)

2

− 𝑥] exp [
(𝐸0−𝐸a)

𝑘B𝑇
],                                (25) 

 

where 𝜏r is the carrier recombination time, 𝜏tr is the carrier transfer time between localized states, 𝜎′ is the 

standard deviation of the Gaussian-like distribution of localized electronic states and the energy difference 𝐸a −

𝐸0 describes the magnitude of carrier localization at 0 K.  

The results of the fitting procedure are summarized hereafter. An energy of 𝐸0 = 2.753 eV is deduced for both 

investigated input power densities. The fact that the measured emission peak energies remain the same for 

temperatures larger than ~160 K, within the error margin of the measurements, indicates that no screening of 

the built-in field due to injected carriers occurs. This behaviour is fully consistent with the low cw input power 

densities. Hence the reported emission peak energy blueshift for low temperatures (𝑇 < 160 K) between the two 

input power densities can be ascribed to a progressive filling of localized states. 𝜎′ amounts to 28 ± 0.5 meV for 

both power densities whereas values of 89 meV and 62 meV are extracted for the energy difference 𝐸a − 𝐸0 for 

the lower and the higher excitation power density, respectively. Additional insights about the bare SQW emission 

properties can be deduced from the temperature dependence of the integrated PL intensity for the two above-

mentioned input power densities (Supplementary Figure 7). Thus the larger integrated PL intensity measured for 

low temperatures for the higher input power density case can be satisfactorily explained in the framework of a 

faster carrier transfer time combined with a shorter radiative carrier recombination time. The nearly identical 

value extracted for the thermal activation energy 𝐸A = 80-84 meV for the two investigated input power densities 

is one more signature that carriers get delocalized above a certain temperature and that they likely experience 

the same 2D-like potential as also corroborated by their similar emission peak energy. 

 



 

 

 

Supplementary Figure 7 | Temperature dependence of the integrated PL intensity of 
the InGaN/GaN SQW. Temperature dependence of the integrated PL intensity of the 
bare InGaN/GaN SQW sample obtained  for two input power densities, namely 𝑃low =
2.5 W cm−2  (red dots) and 𝑃high = 51 W cm−2  (black dots) together with the 

corresponding high temperature (𝑇 >  160 K) thermal activation energy.  

 

When transferring the SQW emission features to the case of the nanobeam laser, at low excitation, 0D-like states 

are most certainly the main contribution to the gain and the excitation power dependence is linear. As the 

excitation power density increases, the 0D subsystem saturates and the 2D component increasingly dominates, 

resulting in an inverse s-shaped I-O curve as a result of the transition from one subsystem to the other.  In an 

intermediate temperature range around 150 K non-radiative losses are exactly compensated by this gain 

transition, leading to the observed thresholdless I-O curve.  We therefore conclude that a thresholdless behavior 

can be mimicked by a complex gain medium, even in case of a non-ideal spontaneous emission coupling (i.e. 𝛽 <

1). Importantly, this effect can lead to an incorrect interpretation of close to linear I-O curves when studying 

nanolasers only at a single temperature. This section clearly evidences the need for quantum optical 

experiments, such as power dependent second-order autocorrelation measurements, as well as a temperature 

dependent investigation in order to unambiguously assess the transition from spontaneous to stimulated 

emission and to prove thresholdless behavior in high-𝛽 nanolasers. 

 

 

 

Temperature dependence of the integrated PL intensity of the bare InGaN/GaN SQW sample obtained  
for two input power densities, namely 2.5 (red dots) and 51 (black dots) W/cm2 together with the 
corresponding high temperature (T > 160 K) thermal activation energy. 



 

 

Supplementary Note 5: Optical images of the emission 

Supplementary Figure 8 shows optical images of the nanobeam emission that have been collected for different 

excitation power densities. Excitation laser and GaN emission have been filtered out using an appropriate low-

pass filter. Background emission from the QW gain material is collected as well. With increasing excitation power 

density we observe enhanced directionality of the emission perpendicular to the nanobeam, in agreement with 

[16]. The appearance of a ‘stripe pattern’ (cf. detail in Supplementary Figure 8) is attributed to the structure 

itself. We would like to note in this context that the appearance of speckles, fringes or generally interference 

effects in optical images of a device’s emission cannot be seen as (conclusive) evidence for lasing. They are a field 

coherence effect (first-order coherence) and can also be produced by passing light through a narrow bandpass 

[17] or spatial filter (e.g. double slit experiment by Thomas Young). 

 

Supplementary Figure 8 | Optical images of the nanobeam emission. Room 
temperature I-O curve (panel a of Fig. 2 in the main text) along with optical images of 
the emission. We observe an increased directionality of the emission with increasing 
excitation. Detail: We attribute the appearance of a slight ‘stripe pattern’ parallel to the 
nanobeam to the structure itself. 
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