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Supplementary Note 1 – Model definitions

We start by giving the particular model structures used in this study. We then give a more

general definition applicable to other general types of recombination products.

a. Models for TRA, TRB and IGH

We define a probabilistic model for each type of chain (e.g. α, β, heavy, light) that describes

the probability of each recombination event E by the probabilities of the known elements of the

recombination subprocess (gene choice, insertions, deletions at each of the junctions etc) for each

chain, and assumes only the minimum correlations between the subprocesses needed to explain

the correlations observed in the data. We model insertions as a Markov chain (the identity of

an inserted nucleotide only depends on the previously inserted one) with a nonparametric length

distribution [1–3]. For each insertion site (X= VD and DJ for β and heavy chains and X=VJ for

α and light chains) we infer the probability of observing a non-templated sequence of a given

length, P (insX), and the transition matrices PVJ(ni|ni−1), PVD(ni|ni−1), PDJ(mi|mi−1) giving

the probability of inserting a given nucleotide as a function of the identity of previous one. For

each gene we infer the probability of the number of deletions conditioned on the gene identity,

e.g. P (delV |V ) for deletions from the V gene. We model templated palindromic insertions as

negative deletions [1, 2]. The D gene is very short and may get fully deleted. This introduces

correlations between the deletions on both sides of the original D gene template. We account for

these correlations by inferring the joint probability P (delDl, delDr|D). We treat every allele as a

different gene [2] and infer the joint gene usage P (V,D, J) for β and heavy chains, and P (V, J)

for α and light chains, to be able to capture correlations between segment usage.

For TCR α chains or BCR light chains, the probability of a recombination event E =

(V, J, delV, delJ, insVJ) is:
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P
α/L
recomb(E) = P (V, J)P (delV |V )P (delJ |J)

× P (insVJ)
insVJ∏
i

PVJ(ni|ni−1)
(1)

Similarly, the probability P
β/h
recomb(E) of a recombination event E =

(V,D, J, delV, delDl, delDr, delJ, insVD, insDJ) for a TCRβ or BCR heavy chain is:

P
β/H
recomb(E) = P (V,D, J)P (delV |V )

× P (insVD)P(delDl, delDr|D)

× P (insDJ)P(delJ|J)

×
insVD∏
i

PVD(ni|ni−1)
insDJ∏
i

PDJ(mi|mi−1).

(2)

In the case of TRB, gene usage is further factorized as P (V,D, J) = P (V )P (D, J).

b. General model formulation

IGoR is designed in a modular way so the user can define arbitrary model forms. The models

are Bayesian networks encoded as directed acyclic graphs, whose vertices i = 1, . . . , K label in-

dividual recombination subprocesses Ei (V, D, J choices, deletions, etc. in the examples above).

Dependence of the recombination process j upon i is encoded by a directed edge between i and j,

denoted vij = 1 (while vij = 0 means no direct dependence). The set of parents of i, i.e. processes

on which i depends directly, is denoted by Pi = {j|vji = 1}.
Using these definitions we can, generally and irrespectively of the assumed form of the un-

derlying model of recombination, write the probability of a complete recombination scenario

E = (E1, . . . , EK) as:

Precomb(E|θ) =
K∏
i=1

P (Ei|{Ej}j∈Pi
, θ), (3)

where θ denotes the underlying model parameters (i.e. probability distributions of gene choice,

insertions at a given junction, and deletions from a given gene in the studied examples).

Each recombination scenario E leads to a unique sequence Ŝ(E) = (Ŝ1, . . . , ŜL), Ŝi(E) ∈
{A,C,G, T}. However, in order to produce a given sequence S several scenarios might be equiv-
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alent, and we can write the probability of generating a given sequence as:

Pgen(S|θ) =
∑

E|Ŝ(E)=S

Precomb(E|θ). (4)

The above description only holds to assess the generation probability of a pure product of recom-

bination and does not account for sequencing errors or hypermutations. Note that, since longer

reads allow for more reliable determination of V and J gene segments, Pgen depends in general on

read length: shorter reads can be created in more ways than longer reads, leading to larger Pgen.

c. Errors and hypermutations

Sequencing is inherently noisy and introduces nucleotide substitutions. In addition, BCRs can

accumulate hypermutations, which can be mathematically treated in the same way as errors. For

the sake of clarity, we distinguish between the sequencing read R and the original sequence S

resulting from recombination, as defined above. For simplicity we ignore insertion and deletion

errors, so thatR and S are of the same length L.

We define our error model as deviations from the initial recombination event (through sequenc-

ing errors or somatic hypermutations) such that Perr(R|S, θ) is the probability of observing the

sequencing readR given the recombination product S. Since the recombination scenarioE com-

pletely determines S, Perr(R|S, θ) = Perr(R|E, θ), and we use these two notations interchange-

ably. The dependence on θ reflects the fact that θ also includes the parameters of the error or

hypermutation model.

We write the joint probability of producing a given sequence S and observing a given read R

as:

P (R,S|θ) = Pgen(S|θ)Perr(R|S, θ). (5)

Summing over all possible recombination products, the likelihood of a sequencing read is:

Pread(R|θ) =
∑
S

P (R,S|θ)

=
∑
E

Precomb(E|θ)Perr(R|E, θ),
(6)

and the total likelihood of the model given a dataset of reads (R1, . . . ,RN) is given by:

Ltotal(θ) =
N∏
a=1

Pread(Ra|θ). (7)
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Supplementary Note 2 – Expectation-maximization

a. General scheme

The recombination machinery is degenerate, as several scenarios of recombination and hy-

permutations can lead to the same sequence, and the recombination scenario E from which the

sequencing read R comes from is in general unknown. The Expectation-Maximization algorithm

is a commonly used algorithm that maximizes the likelihood of models with hidden variables given

the data. In this section we re-derive this algorithm for our class of models.

The procedure is iterative. Starting from an initial set of parameters θ, one wishes to update

another set of parameters θ′. From Bayes formula, Pread(R|θ′) = P (E,R|θ′)/P (E|R, θ′), we

rewrite the log-likelihood of a read as:

lnPread(R|θ′) =
∑
E

P (E|R, θ) [lnP (E,R|θ′)− lnP (E|R, θ′)] = q(θ′|θ,R)+h(θ′|θ,R), (8)

where we have used
∑
E P (E|R, θ) = 1, and where we have defined

h(θ′|θ,R) = −
∑
E

P (E|R, θ) lnP (E|R, θ′), (9)

q(θ′|θ,R) =
∑
E

P (E|R, θ) lnP (E,R|θ′). (10)

The difference between the log-likelihood, lnLtotal(θ) =
∑N

a=1 lnPread(R|θ), between the

current set of parameters θ and the candidate new parameters θ′ reads:

lnLtotal(θ
′)− lnLtotal(θ) =

N∑
a=1

q(θ′|θ,Ra)− q(θ|θ,Ra) + h(θ′|θ,Ra)− h(θ|θ,Ra).

≥
N∑
a=1

q(θ′|θ,Ra)− q(θ|θ,Ra)

≥ Q(θ′|θ)−Q(θ|θ)

(11)

where Q(θ′|θ) =
∑N

a=1 q(θ
′|θ,Ra), and where we have used Gibbs inequality:

h(θ′|θ,Ra)− h(θ|θ,Ra) =
∑
E

P (E|R, θ) ln
P (E|R, θ)
P (E|R, θ′) ≥ 0. (12)

This inequality ensures that maximizing the “pseudo-log-likelihood” Q(θ′|θ) over θ′ increases

total likelihood by at least the same amount. The Expectation-Maximization scheme updates θ by

doing such a maximization, and repeating the procedure iteratively. The algorithm converges to a

maximum of the likelihood.
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b. Optimizing the recombination model

The pseudo-log-likelihood can be broken up in two independent terms, Q(θ′|θ) =

Qrecomb(θ
′|θ) + Qerr(θ

′|θ), respectively corresponding to the recombination model and the error

or hypermutation model:

Qrecomb(θ
′|θ) =

N∑
a=1

∑
E

P (E|Ra, θ) lnPrecomb(E|θ′). (13)

Qerr(θ
′|θ) =

N∑
a=1

∑
E

P (E|Ra, θ) lnPerr(R|E, θ′). (14)

In order to maximize the pseudo-log-likelihood of the recombination model we need to max-

imize Qrecomb(θ
′|θ) with respect to every model component contained in the parameter set θ′,

P ′(Ei|{Ej}j∈Pi
). We impose normalization using Lagrange multipliers, λi, and define:

Q̂recomb(θ
′|θ) = Qrecomb(θ

′|θ) +
∑
i

λi

[
1−

∑
Ei

P ′(Ei|{Ej}j∈Pi
)

]
. (15)

Taking the functional derivative of Q̂recomb(θ
∗|θ) with respect to the model parameter we get:

∂Q̂recomb(θ
′|θ)

∂P ′(Ei|{Ej}j∈Pi
)

=
N∑
a=1

∑
E′

δEi,E′
i

P (E′|Ra, θ)

P ′(Ei|{Ej}j∈Pi
)

+ λi. (16)

Setting this derivative to zero gives:

P ′(Ei|{Ej}j∈Pi
) =

1

N

N∑
a=1

∑
E′

δEi,E′
i
P (E′|Ra, θ), (17)

where the Lagrange parameter λi = N ensures normalization. In other words the modified log-

likelihood is maximized by using an update rule that equates the probability of a realization of a

recombination event to its posterior frequency.

c. Optimizing the independent single nucleotide error model

The independent single nucleotide error model is the simplest instance of an error model, where

each nucleotide of the read has a probability r to be mis-sequenced as one of the three other

nucleotides with equal probability. For this model we have

Perr(R|S, θ) =
(r

3

)Nerr

(1− r)L−Nerr(R,S). (18)
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where Nerr(R,S) the number of mismatches between R and S, and L the number of nucleotides

that can be potentially identified by the algorithm as errors. We compute the derivative of the

modified log-likelihood of the error model with respect to R∗ as:

dQerr(θ
′|θ)

dr′
=

N∑
a=1

∑
E

P (E|Ra, θ)

(
Nerr(R

a, Ŝ(E))

r′
− L(Ra,E)−Nerr(R

a, Ŝ(E))

1− r′

)
. (19)

Setting this derivative to zero yields:

R′ =

∑N
a=1

∑
E P (E|Ra, θ)Nerr(R

a, Ŝ(E))∑N
a=1

∑
E P (E|Ra, θ)L(Ra,E)

, (20)

where L(Ra,E) is the number of potentially erroneous nucleotides in read a. For simplicity we

ignore errors and hypermutations in the insertion part of the sequence, as they are almost indis-

tinguishable from unmutated random insertions, and accounting for them would imply summing

over an exponentially large number of scenarios. As a result, L in the above formula is not the

read length, but rather the number of germline nucleotides in each scenario, which depends on the

scenario E as well as on the sequence read.

d. Optimizing the hypermutation model

The hypermutation model assumes the following form for the probability of hypermutations:

Perr(R|S) =
∏

x,Sx 6=Rx

Pmut(Sx−m, . . . , Sx+m)

3

∏
x,Sx=Rx

[1− Pmut(Sx−m, . . . , Sx+m)] , (21)

with
Pmut(π)

1− Pmut(π)
= µ exp

(
m∑

i=−m
ei(πi)

)
, (22)

where (π−m, . . . , πm) = (Sx−m, . . . , Sx+m) is the sequence context of the original recombination

product around a hypermutation at position x. The parameters ei(N), the position-weight matrix,

and µ, the overall mutation rate, are part of the parameter set θ. In order to lift the degeneracy of

the model we impose that
∑

N=A,C,G,T ei(N) = 0 at every position i.

The pseudo-log-likelihood of the hypermutation model reads:

Qerr(θ
′|θ) =

M∑
a=1

∑
E

P (E|Ra, θ)
L∑
x=1

[
δSx,Rx ln

1

1 + r′(Ŝ(E), x)
+ (1− δSx,Rx) ln

r′(Ŝ(E), x)/3

(1 + r′(Ŝ(E), x))

]
,

(23)
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where r′(S, x) = r′(Sx−m, . . . , Sx+m) = µ′ exp
(∑m

i=−m e
′
i(Sx+i)

)
. It can be rewritten as:

Qerr(θ
′|θ) =

∑
π

[(
ln(µ′/3) +

N∑
i=0

e′i(πi)

)
Nmut(π)− ln

(
1 + µ′ exp

(
N∑
i=1

e′(πi)

))
Nbg(π)

]
,

(24)

where

Nbg(π) =
M∑
a=1

∑
E

P (E|Ra, θ)
L∑
x=1

m∏
i=−m

δŜx+i(E),πi
(25)

Nmut(π) =
M∑
a=1

∑
E

P (E|Ra, θ)
L∑
x=1

(1− δŜx(E),Rx
)

m∏
i=−m

δŜx+i(E),πi
. (26)

During the Expectation step, we compute these two quantities for each (2m+1)-mer and then

maximize Qerr at each step of the Expectation-Maximization scheme using Newton’s method with

a backtracking line search. To impose
∑

σ ei(σ) = 0 we remove one parameter per position i by

setting for one nucleotide, ei(N) = −∑σ 6=N ei(σ).

We can then compute the entries of the gradient vector J (of size 3(2m+ 1) + 1):

∂Qerr(θ
′|θ)

∂µ′
=
∑
π

(
Nmut(π)

µ′
−Nbg(π)

r′(π)

µ′(1 + r′(π))

)
, (27)

∂Qerr(θ
′|θ)

∂e′i(σ)
=
∑
π

(δπi,σ − δπi,N)

[
Nmut(π)−Nbg(π)

r′(π)

1 + r′(π)

]
, (28)

along with the Hessian matrixH entries:

∂2Qerr(θ
′|θ)

∂µ′2
=
∑
π

(
Nbg(π)

r′(π)2

µ′2(1 + r′(π))2
− Nmut(π)

µ′2

)
, (29)

∂2Qerr(θ
′|θ)

∂µ′∂e′i(σ)
=
∑
π

(δπi,N − δπi,σ)Nbg(π)
r′(π)

µ′(1 + r′(π))2
, (30)

∂2Qerr(θ
′|θ)

∂e′i(σ)∂e′j(σ
′)

=
∑
π

(δπi,N − δπi,σ)(δπj ,N − δπj ,σ′)Nbg(π)
r′(π)

(1 + r′(π))2
. (31)

For each step of Newton’s method we find the step direction by solving H∆θ′ = −J and

we gradually refine the step size based on the Armijo-Goldstein condition. These operations are

iteratively repeated until the pseudo-log-likelihood of the error model for a given Maximization

step of the EM framework is maximized.

We also inferred a non-additive hypermutation model, parametrized by the full function

Pmut(π) of the 5-mer context π. The EM iteration step then takes a much simpler form:

Pmut(π)← Nmut(π)

Nbg(π)
. (32)

where Nbg(π) and Nmut(π) are given by Eqs. 25 and 26.
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Supplementary Note 3 – Model entropy and DKL

Shannon’s entropy [4, 5],

S(θ) =
∑
x

p(x|θ) ln p(x|θ), (33)

is a measure of the uncertainty about the outcome of a stochastic process described by a variable

x, governed by the distribution p(x|θ) and parametrized by θ. As in [1, 2, 6] we compute this

quantity based on our probabilistic framework and use it as an estimate for the diversity generated

by the V(D)J recombination process. In the main text we also introduced the relative entropy or

Kullback-Leibler divergence,

D(θ1||θ2) =
∑
x

p(x|θ1) ln
p(x|θ1)
p(x|θ2)

, (34)

as a measure of dissimilarity between two probability distributions parametrized by θ1 and θ2

respectively, and used it to quantify the error made by our probabilistic framework upon inferring

the V(D)J recombination parameters.

Since both the entropy and the Kullback Leibler divergence between two recombination

models can be computed once one knows how to compute the cross entropy H(θ1, θ2) =∑
x p(x|θ1) ln p(x|θ2) between the distributions for the two sets of parameters θ1 and θ2, we focus

here on the computation of H(θ1, θ2).

a. General form

For the considered class of models, the cross-entropy can be divided into subparts for each

model component,

H(θ1, θ2) =
K∑
i=1

Hi(θ1, θ2), (35)

with

Hi(θ1, θ2) =
∑
E

P (E|θ1) lnP (Ei|{Ej}j∈Pi
, θ2). (36)

To calculate this sum, one does not need to sum over all possible scenarios E, but only on com-

binations of processes that affect Ei directly or indirectly. Let us call Ai ⊂ {1, . . . , K} the set

of indices affecting process i. These are defined as the “ancestors” of i in the acyclic graph, i.e.

indices j such that there exists a lineage from j to i, (i1 = i, i2, . . . , ik = j) with i`+1 ∈ Pi` (note
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that Ai includes i itself as a 0th order ancestor). Then the previous sum can be reduced to a sum

over the processes in A only:

Hi(θ1, θ2) =
∑
EAi

[∏
j∈Ai

P (Ej|{Ej′}j′∈Pj
, θ1)

]
lnP (Ei|{Ej}j∈Pi

, θ2). (37)

whereEAi
denotes the subvector of elements ofE with indices inA. Estimating the cross entropy

for an event Ei requires exponential time in the number of ancestors of that node. Fortunately, in

the recombination models considered in this paper the set of ancestors are small and obtaining the

cross entropy is easy for every event. The special case of insertions is discussed below. Note that

this cross-entropy only takes into account the recombination model, and not the error model.

b. Inserted nucleotides

For a given insertion length insVJ (or insVD, or insDJ), the cross-entropy between two models

of insertions is given by

h(insVJ, θ1, θ2) =
∑
n

P (n, θ1) lnP (n, θ2) (38)

=
∑
n1

Ps(n1|θ1) lnPs(n1|θ2) (39)

+ (insVJ− 1)
∑
n1,n2

Ps(n1|θ1)P (n2|n1, θ1) lnP (n2|n1, θ2) (40)

where n = (n1, . . . , ninsVJ) is the inserted sequence, and Ps(n1, θ) is the stationary distribution

of the Markov chain of insertions, solution of the equation
∑

n0
P (n1|n0, θ)Ps(n0, θ) = Ps(n1, θ).

The average cross-entropy over possible lengths is then given by:

HVJ insertions(θ1, θ2) =
∑
EB

[∏
j∈B

P (Ej|{Ej′}j′∈Pi
, θ1)

]
h(insVJ, θ1, θ2), (41)

whereB ⊂ {1, . . . , K} is the subset of processes affecting either insVJ orn, exluding insVJ itself.

Supplementary Note 4 – Probability of generation

Although the probability of generation of a sequence without errors or hypermutations is well

defined, computing the probability of generation of a mutated sequence, before mutations oc-

curred, is strictly speaking not possible because that sequence is not known with certainty. How-
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ever, we can compute a good approximation for it, and we can also calculate its distribution across

sequences.

To approximate Pgen(S) from a noisy or hypermutated sequence R, we take its geometric

average weighted by the probability of the recombination product S:

lnP ∗gen(R) ≈
∑
E

P (E|R, θ) lnPgen(Ŝ(E), θ), (42)

with P (E|R, θ) = Precomb(E, θ)Perr(R|Ŝ(E), θ)/Pread(R, θ). Alternatively, one can take the

generation probability of the most likely recombination product:

P ∗gen(R) ≈ Pgen(S∗, θ), (43)

where S∗ = argmaxS P (S|R, θ).

The distribution ρ(x) of the log-probabilities of generation, x = logPgen, can be computed

from data using:

ρ(x) =
1

N

N∑
a=1

∑
E

P (E|R, θ)δ
[
x− lnPgen(Ŝ(E), θ)

]
. (44)

Note that unlike estimates for single sequences, this expression should become exact in the limit

of N →∞.

Supplementary Note 5 – Data and software

a. Germline templates

We used custom germline templates derived from the IMGT database [7]. TCR alpha V and J

germline templates were taken from the IMGT human database. For TCR beta V, D and J genes

we used curated germline templates from [1]. BCR heavy chain V, D and J genes were taken

from the customized germline templates used in [2]. For software comparison we used the same

germline templates as in IGoR.

b. Alignments

Initial alignments to germline genes were performed using the Smith-Waterman algorithm [8],

with scores of 5 for matching base pairs, -14 for mismatches, and a 50 gap penalty. Alignments
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with a score below the following gene dependent threshold were discarded: 50 for TRBV, 0 for

TRBD, 10 for TRBJ, 20 for TRAV, 10 for TRAJ, 50 for IGHV, 40 for IGHD, 10 for IGHJ. We also

discarded alignments whose score fell below the maximum alignment score (found for this read

and segment type), minus the following variable range: 55 for TRBV, 35 for TRBD, 10 for TRBJ,

55 for IGHV, 20 for IGHJ.

The alignment offset (the index of the nucleotide on the read to which the first letter of the

undeleted germline template is aligned) was constrained depending on known primer locations on

the J gene.

c. Pruning the tree of scenarios

Since enumerating all possible scenarios for each sequence is not tractable, we used a heuristic

method for reducing their numbers. Exploring all possible scenarios is equivalent to exploring all

the terminal leaves of a tree. Our heuristic is to prune all branches that do not contribute substan-

tially to the likelihood of the read. To do this we implement a Sparse Expectation Maximization

algorithm as motivated in [9]. Due to the acyclicity of the directed graph underlining the Bayesian

network, there exists a topological sorting of the events constituting a partially ordered set (we

will assume in the following that the indices of the different events Ei respect this ordering). IGoR

processes event realizations according to this order corresponding to different layers of depth in

the tree. To discard irrelevant branches (containing negligible scenarios) IGoR computes at each

depth k (with 0 ≤ k < K) an upper bound on the probability of the currently explored scenario:

∏
0≤i≤k

P (Ei,R|{Ej}j∈Pi
, θ)

∏
k<i<K

max
ei

P (Ei,R|θ)

max
E∈E

P (E,R|θ) > ε, (45)

where E is the set of already fully explored scenarios, and 0 ≤ ε ≤ 1 is a tunable parameter setting

the precision of the sparsity approximation. While ε = 0 will explore every possible scenario and

perform an exact Expectation step, ε = 1 will explore only scenarios more likely that any scenario

already explored.

Although Eq. 45 captures the essence behind our tree pruning approach, in practice IGoR uses

more information than a simple upper probability bound. By picking two gene choice realiza-

tions, imposing the identity and position of these specific V and J genes, we explicitly impose the

total nucleotide length of event realizations between those V and J genes (number of insertions,
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deletions, D gene length, ...). When computing the probability upper-bounds IGoR computes the

upper probability bound for a given junction length between two event realizations, and uses this

refined bound to efficiently prune the tree of scenarios.

d. Generating synthetic sequences

Synthetic sequences are generated by randomly drawing scenarios of recombination from the

probability distribution in Eq. 1 or 2. In order to fit the data, the resulting sequences are then cut

to mimic the sequencing process (e.g. fixed starting point and fixed read length).

e. Comparison to other software

We benchmarked our method against MiXCR 2.0.2 [10] – a commonly used deterministic

alignment method. We used the MiXCR sequence assignment to compute the frequency of gene

usage, insertion length, deletions and obtain the distributions shown in Supplementary Fig. 13.

We also compared to Partis [11] – a recent HMM based model of recombination. Since Partis

uses a Viterbi learning algorithm, we used the most likely assignments it outputs to compute the

corresponding probability distribution shown in Supplementary Fig. 13. Since Partis is designed

to handle BCRs we assessed its performance on the BCR dataset only.
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Supplementary Figure 1: Distribution of the processing time per sequence. Distribution of the processing

time for finding the Most Likely Scenario Only (MLSO) and to evaluate all scenarios (full) for the different

chains. Histograms were computed on 20000 sequences for each chain on a single core of an Intel(R)

Xeon(R) CPU E5-2680 v3 2.50GHz processor running code compiled with gcc (Debian 4.9.2-10). We

benchmarked IGoR’s performance for evaluating possible recombination scenarios on real data sequences

used to infer the models presented in the main text. We used 60bp TRB sequences for benchmarking since

the difficulty for finding the correct V and J for alignment is higher. Finding the Most Likely Scenario Only

(MLSO) is on average 3× faster than evaluating all possible scenarios. Restricting possible scenarios to

deterministically assigned V and J genes is on average 6× faster (data not shown).
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Supplementary Figure 2: Convergence of IGoR for TRB and naive IGH datasets. A. The mean log

likelihood per sequence increases and quickly plateaus, thus reaching the maximum likelihood estimate of

the parameters for TRB . B. Convergence of the distribution is shown with the example of the distribution

of number of VD insertions for TRB. C. and D. The same figures as A. and B. for IGH.
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Supplementary Figure 3: Gene usage in TRB mRNA vs DNA data. We plot the marginal gene usage

averaged over conditional dependencies for V, D and J genes respectively inferred using IGoR from mRNA

100bp (red, [3]) and DNA 60bp (blue, [12]) technology datasets. We observe a higher inter-method than

inter-individual variability.
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Supplementary Figure 4: IGH D-J association. Conditional probability P (D|J) of each D segment, condi-

tioned on the choice of the possible J segments (x axis) in IGH. This figure is the IGH equivalent of Fig. 4d

of the main text, which was for TRB. IGH does not exhibit such a clear exlusion rules as TRB, although a

dependency exists.
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Supplementary Figure 5: Gene-specific deletion profiles. Distributions of the number of deletions for each

of the 6 most abundant V and J gene segments for the three chains considered: IGH (green), TRA (red),

and TRB (blue). Negative deletions represent the number of palindromic insertions. Gene names and their

usage frequency are reported within the figures.
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Supplementary Figure 7: IGoR convergence to the true distribution of TRB recombination for various

sample sizes. Insertion and deletion distributions obtained from 60bp TRB generated samples of various

sizes, compared to the true model.
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Supplementary Figure 8: Inference accuracy increases with sample size for TRB. Kullback-Leibler di-

vergence (DKL(inferred || true), in bits) between the data-inferred model distributions and the true model

distributions, for various features of recombination. Models were inferred using different numbers of se-

quences and error rates. All components reach a small divergence for sufficiently large sample sizes.
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IGoR divided by the total number of germline nucleotides called by IGoR, averaged over possible scenarios

for each sequence.
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or 95% (cyan) confidence. The shorter read length compared to 130bp BCRs entail a higher uncertainty on

the V gene identity, for which a higher number of scenarios must be considered.
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Supplementary Figure 11: Assignment performance on hypermutation-free IGH sequences without

palindromic insertions. We have shown in main text Fig. 4c the performance of MiXCR, Partis and IGoR

at predicting the correct scenario of recombination. Since Partis does not model palindromic insertions, here

we show the performance of the three software on sequences that were generated without any palindromic

insertions, allowing Partis’ performance to be comparable to that of MiXCR.
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Supplementary Figure 12: Assignment performance on selected sequences. IGH sequences were gener-

ated by IGoR and artificially selected according to their CDR3 length, so that the resulting distribution of

length exactly matches that of the naive in-frame sequences. These sequences were then annotated using

IGoR, Partis and MiXCR. For IGoR, scenario assignment was done using two distinct probabilistic mod-

els of generation: one that was inferred from unselected sequences (dark red), and one that was learned

from selected sequences (light red). Partis used parameters learned from the selected sequences. MiXCR

does not need to learn parameters from the data, and was run using the same parameters as for unselected

sequences (Fig. 4C of the main text.)
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Supplementary Figure 13: Comparison of marginal distributions obtained from different softwares for

hypermutations-free IGH. IGoR’s distributions are obtained directly by IGoR’s inference module from

nonproductive sequence data. Partis’ and MiXCR distributions are obtained by assigning a scenario to

each sequence from the data, and then collecting statistics over all sequences. From the two top panels we

observe that Partis and MiXCR overestimate the frequency of low number of non templated insertions. In

the four bottom panels, negative number of deletions denote palindromic insertions. We observe that the

three methods obtain qualitatively different marginal distributions for the number of deletions.
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Supplementary Figure 14: D2-J association in TRB learned from data sequences. Equivalent of Fig. 4D

of the main text, but inferred from the data. Conditional probability of D2 usage, P (D2|J), obtained from

real 100bp TCR mRNA data using IGoR and MiXCR. IGoR captures the physiological exclusion between

D2 and J1 while MiXCR does not.
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Supplementary Figure 15: Inference of the 7mer additive hypermutation model from synthetic se-

quences. In order to assess the validity of our method we generate synthetic IGH sequences from a heavy

chain model learned on naive data sequences. We then generate Poisson distributed errors on the sequences

by simulating mutations at each base pair with a Bernouilli process according to the hypermutation model

learned on the V genes of memory IGH sequences. We then cut the sequences in 130bp reads in order

to mimic real data sequences, and learn the hypermutation model using IGoR. The model can be perfectly

inferred on V and D genes, and fairly well on J genes. The slightly worse performance on J can be explained

by the limited number of n-mers sampled by genomic J genes.
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Supplementary Figure 16: Model prediction of mutation frequencies in nonproductive IGH memory

sequences. The mutation frequency (abscissa) is computed at each position from the posterior probability

of a hypermutation at that position given by IGoR, averaged over all sequences for each gene choice. The

ordinate represents the mutation probability predicted by the model from the sequence the context at that

position in the gene. The two top panels show good predictive power for the gene on which the model was

learned. However the two bottom panels suggest that models learned on one gene do not generalize well to

other genes, consistent with the different position-weight matrices inferred for each gene (Fig. 18).
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Supplementary Figure 17: Comparison of the hypermutation models between individuals and between

the V, D, and J genes. a, b and c Comparison of the position weight matrices inferred on the V, D and J

genes between the two individuals, for different n-mer lengths. For all sizes and genes the inferred contri-

butions are extremely reproducible from an individual to the other. d Comparison of the overall mutational

frequency in different individuals and genes for different n-mer sizes. This overall mutational load varies

from individual to individual and across genes. e and f Comparison between matrices inferred on different

genes, showing significant differences between the hypermutation models.



30

−1 0 1
Position

−0.5

0.0

0.5

e i
(σ

)

V gene

A C G T

−1 0 1
Position

−0.5

0.0

0.5

e i
(σ

)

D gene

A C G T

−1 0 1
Position

−0.5

0.0

0.5

e i
(σ

)

J gene

A C G T

−2 −1 0 1 2
Position

−0.5

0.0

0.5

e i
(σ

)

V gene

A C G T

−2 −1 0 1 2
Position

−0.5

0.0

0.5
e i

(σ
)

D gene

A C G T

−2 −1 0 1 2
Position

−0.5

0.0

0.5

e i
(σ

)

J gene

A C G T

−3 −2 −1 0 1 2 3
Position

−0.5

0.0

0.5

e i
(σ

)

V gene

A C G T

−3 −2 −1 0 1 2 3
Position

−0.5

0.0

0.5

e i
(σ

)

D gene

A C G T

−3 −2 −1 0 1 2 3
Position

−0.5

0.0

0.5

e i
(σ

)

J gene

A C G T

−4 −3 −2 −1 0 1 2 3 4
Position

−0.5

0.0

0.5

e i
(σ

)

V gene

A C G T

−4 −3 −2 −1 0 1 2 3 4
Position

−0.5

0.0

0.5

e i
(σ

)

D gene

A C G T

−4 −3 −2 −1 0 1 2 3 4
Position

−0.5

0.0

0.5

e i
(σ

)

J gene

A C G T

Supplementary Figure 18: Position-weight matrices for different context sizes, for the V, D, and J genes.

We inferred hypermutation position weight matrices for V, D and J, and for n-mer size n = 3, 5, 7, 9. Note

that side contributions do not vanish with increasing n-mer sizes.
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Supplementary Figure 19: Full 5-mer model of hypermutability. a.-c. Individual-to-individual repro-

ducibility of the infered hypermutation rate for (a) V (b) D and (c) J genes. Each dot corresponds to a

5-mer. Only a fraction of all 1024 possible 5-mers were observed often enough to estimate a hypermutation

rate reliably (from 158 to 465 5-mers depending on the gene). d.-f. Comparison of the models across dif-

ferent gene families. Agreement between models is reasonable between (d) D and V and (f) and D and J,

but poor between (e) V and J.
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Supplementary Figure 20: Performance of the full 5-mer model. Same as Fig. 16, but for the full nonad-

ditive 5-mer model.
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Supplementary Figure 21: Estimation of the generation probability of synthetic mutated IGH se-

quences. We generated synthetic 130bp IGH sequences with IGoR using data-inferred recombination

parameters, and calculated their true generation probabilities Pgen. We then introduced mutations with

a context-dependent rate mimicking hypermutations with an average rate of 5%, and asked whether we

could estimate Pgen of the unmutated ancestor sequence from the mutated sequence, using two estimators

described in SI Text (Sec. 4): the geometric mean of Pgen over all possible unmutated sequences weighted

by the posterior probability; or the generation probability of the sequence that maximizes that posterior.

The middle and bottom panels shows the performance of each estimator for a large number of synthetic

sequences (the color map represents the density of sequences). The top panel shows the distribution of fold

errors in Pgen for both estimators across sequences.
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Supplementary Figure 22: Reconstructed distributions of Pgen of synthetic hypermutated IGH se-

quences. Distribution of the generation probability Pgen obtained by the two different estimators (see

21 for definitions), compared to the true distribution. The “inferred density” (blue) is obtained by pooling

together the posterior distributions of Pgen of all sequences. The “sequence likelihood” corresponds to the

likelihood of the mutated sequences, which differs significantly from the likelihood Pgen of their unmutated

ancestors.
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Supplementary Figure 23: IGH reverse-complement D usage. We ran IGoR’s inference module on non-

productive naive IGH sequences again, after adding to the list of candidate germline D segments the reverse-

complement versions of these segments (REV in the x-axis). Reverse-complement segment usage is inferred

to be negligible, indicating that such recombination events do not occur.
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Supplementary Figure 24: Comparison of the additive hypermutation model with the the S5F model

from [13]. The mutabilities (in arbitrary units) of each of the possible 5 mers were compared between

the S5F model and IGoR’s additive hypermutation model, for each of the V, D, and J genes, and for each

individual.
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Supplementary Figure 25: Comparison of the complete hypermutation model with the the S5F model

from [13]. Same as Fig. 24, but for IGoR’s nonadditive 5-mer model instead of the additive model.
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Supplementary Figure 26: Performance of the S5F hypermutation model from [13] on the sequences

analyzed by IGoR. Same as Fig. 16 and 20, with the S5F model prediction instead of IGoR’s model

prediction.
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Supplementary Figure 27: Hypermutation indels. Fraction of indels identified in the V region among

nonproductive sequences (i.e. with a frameshift in the CDR3), as a function of the gap penalty used in

the alignment algorithm, for naive, indel-free synthetic, and memory sequences. The naive and synthetic

sequences have similar number of detected indels, indicating that naive cells have virtually no indels. The

difference between the curves obtained from the naive and synthetic sequences and those obtained from the

memory sequences allows us to estimate the frequency of indels to range from 5 to 12%, depending on the

individual.
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Gene Gene frequency RepgenHMM DKL IGoR DKL

TRAV19*01 0.0782225 0.108 0.00572

TRAV13-1*01 0.0654412 0.0144 0.00419

TRAV13-1*02 0.0628822 0.0190 0.00583

TRAV27*01 0.0551092 0.0212 0.00807

TRAV13-2*01 0.0497209 0.0218 0.0126

TRAV4*01 0.0423985 0.0673 0.00652

TRAV38-2/DV8*01 0.0331126 0.0196 0.00862

TRAV21*01 0.0321689 0.0388 0.0141

TRAV29/DV5*01 0.0317682 0.0611 0.00734

TRAV17*01 0.0300893 0.0434 0.00703

Supplementary Table I: Comparison of inference accuracy with repgenHMM. Accuracy of the inference

of the distribution of numbers of deletions in the 10 most common V segments (sorted by decreasing fre-

quency), measured by the Kullback-Leibler divergence (in bits). Synthetic data was generated using two

distinct distributions of insertions (the same peaked distribution as observed in the real data, and a geometric

distribution), randomly assigned to each choice of the V gene. In repgenHMM, the distribution of insertion

is assumed to be gene-independent, while IGoR allows for gene-dependent inference of the distribution of

insertions. RepgenHMM not only cannot infer the gene-dependent insertion distribution by construction

(not shown), but it also infers the gene-dependent deletion distribution much worse than IGoR, as shown

here.
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