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1. Introduction

In this supplementary document we provide the basic mathematical details of each model
detailed in the manuscript. We provide a brief overview of each model, detailing its most im-
portant features, before giving the equations characterising the model. We then summarise
the main findings of each model, including experimental comparison where appropriate. Fur-
ther details, such as bifurcation analyses or derivation of optimal controls are not included in
full for reasons of brevity, however they are summarised at the end of each section. Readers
are directed to the paper in which these details are derived for full details. Although we
have altered some notation for ease of reading (especially where variable names were several
characters long) we have remained as close as possible to the notation of the original papers,
making transitioning into reading the primary literature as simple as possible.

2. Endocrine models

Models in this section describe the dynamics of one or more endocrine regulatory systems
in response to external perturbations. The most extensively modelled regulatory system is
glucostasis - the regulation of blood glucose by insulin and glycogen. In this case external
stimuli are infusions of glucose. This class of models has a surprisingly rich phenomenology,

2



especially when considered over long timescales and extended to include the dynamics of
pancreatic β cells (which secrete insulin, and whose growth depends nonlinearly on glucose
concentration). Insights from glucostasis have been used to investigate other mechanisms
such as leptin-mediated control of feeding, and models of the interaction between multiple
regulatory systems and behaviour are beginning to be investigated.

2.1. Bergman - Minimal model of insulin secretion

Bergman’s famous ‘minimal model’ [1] aims to describe the response of body to the
intravenous glucose tolerance test (IVGTT). In the IVGTT glucose is injected as a bolus
into the system, and a first-phase insulin secretion is also modeled as a bolus arriving along
with the glucose. This model improves on the work of Bolie by considering a second-phase
insulin secretion at the pancreas I rather than having a single insulin variable representing
the average concentration in the body. This incorporates the fact that it takes time for
insulin to travel from the pancreas to the rest of the body, an idea which is developed
further in delay differential equation models [SI 2.3]. Changes in I occur in response to
dynamics of glucose G and insulin in the ‘remote compartment’ X, where insulin only acts
once it has made its way to the remote compartment. This model leads to a set of 3 ODEs
(following the notation of de Gaetano and Arino [2])

dG(t)

dt
= (P1 −X)G(t)− P1Gb (1)

dX(t)

dt
= −P2X(t) + P3(I(t)− Ib) (2)

dI(t)

dt
= P4(G(t)− P5)

+t− P6(I(t)− Ib) (3)

The baseline levels of glucose and insulin are given by Gb and Ib respectively, P1 is the insulin-
independent rate of glucose uptake by the body, P2 the rate of decrease in tissue glucose
uptake and P3 is the insulin-dependent rate. P4 is the rate of pancreatic release of insulin
per mg/dl of glucose, P5 is the target glycemia in the pancreas and P6 is the decay rate of
insulin in the blood. By fitting time series to this model, a number of metabolic parameters
representing glucose tolerance can be obtained, allowing classification of individuals into
groups of high and low tolerance.

2.2. Bolie - Simple insulin and glucose dynamics

In 1961, Bolie defined a two-component ODE model of insulin-mediated glucose regula-
tion [3]. In a system of volume V , insulin X and glucose Y are modelled as a system of two
coupled ODEs with arbitrary clearance functions Fi

V
dX

dt
= İ − F1(X) + F2(Y ) (4)

V
dY

dt
= Ġ− F3(X, Y )− F4(X, Y ), (5)
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where İ and Ġ are rates of arrival of insulin and glucose into the system. Normalising by
volume V and linearising the functions Fi around a baseline level x = X0 −X, y = Y0 − Y
with constant insulin and glucose arrival rates p and q gives

dx

dt
= p− αx+ βy (6)

dy

dt
= q − γx− δy. (7)

This system of equations captures rate of insulin secretion as depending on a baseline rate p
as well as insulinase with sensitivity α and glucose-dependent pancreatic secretion with rate
constant β. Glucose enters the system at rate q, and is stored as glycogen at rate γx and
used by tissues at rate δy. This system resembles a damped harmonic oscillator, and can be
solved for an initial bolus injection of insulin DI or glucose DG. If the coefficients are set
so as to prevent oscillations and give a smooth return towards baseline, the dynamics for a
glucose tolerance test are

y =
DG

V

(
1− δ − α

2
t

)
e−(δ+α)/2t (8)

x = β
DG

V
te−(δ+α)/2t. (9)

Bolie also derives dynamics for an insulin tolerance test and general equations where the
critical damping criterion is relaxed.

2.3. Li, Kuang and Mason - Delay differential equation models of glucostasis

Li, Kuang and Mason [4] write delay differential equations for glucose G and insulin I
to model the delays associated with remote insulin secretion in the pancreas, rather than
by incorporating a separate ‘remote’ compartment. They use the same functions f1 - f5 as
Sturis and Tolić [SI 2.13], leading to two coupled delay differential equations

dG

dt
= Gin − f2(G(t))− f3(G(t))f4(I(t)) + f5(I(t− τ2)) (10)

dI

dt
= f1(G(t− τ1))− diI(t). (11)

Simulating this system numerically shows the existence of self-sustaining oscillations in glu-
cose and insulin levels. This system is similar to that of Sturis and Tolić, with the hard
delay kernels in Li, Kuang and Mason serving the same purpose as the auxilliary variables
x1 - x3 in Sturis and Tolić. A similar model has also been developed for the IVGTT where
the remote compartment is replaced by a delay kernel [5].

2.4. Roy and Parker - Extending Bergman’s model

Roy and Parker [6] extend the model of Bergman [SI 2.1] to include free fatty acids
(FFAs), which are another source of energy for the body and are particularly heavily used by
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skeletal muscle, and infusion protocols other than a simple bolus. Plasma FFA is modeled
similarly to glucose in the Bergman minimal model with a remote compartment Z and
plasma compartment F . A further variable Y represents the action of insulin to store or
utilise FFAs. The ODEs of the model are

dI

dt
= −nI(t) + p5u1(t) (12)

dX

dt
= −p2X(t) + p3I(t) (13)

dG

dt
= −p1G(t)− p4X(t)G(t) + p6G(t)Z(t) + p1Gb − p6GbZb +

u2(t)

VG
(14)

dY

dt
= −pF2Y (t) + pF3I(t) (15)

dF

dt
= −p7F (t)− p8Y (t)F (t) + p9(G)F (t)G(t) + p7Fb − p9(G)FbGb +

u3(t)

VF
(16)

dZ

dt
= −k2Z(t) + k1F (t) + k2Zb − k1Fb, (17)

where pi are rate constants of the model (see [6] for details), apart from p9 which is a
function of G. Variables with subscript b (Gb, Zb, Fb) are baseline values of the respective
time-varying concentrations and VG, VF are the volumes in which glucose and free fatty acid
are distributed. Endocrine concentrations vary in response to exogenous stimulation: u1(t) is
the exogenous insulin infusion, u2(t) is the arrival rate of glucose and u3(t) is the arrival rate
of lipid. Roy and Parker fit the model to experimental data and find R2 ≥ 0.8756 after the
fitting procedure. High fatty acid concentrations impair glucose uptake in both the model
and experiments. The model further predicts that insulin will have an antilipolytic effect,
which was verified using experimental data. The addition of the extra compartments was
justified by using the Akaike Information Criterion [7], with the improved fit outweighing
the penalty from increased model complexity.

2.5. Dalla Man - Nonlinear glucose absorption model used in the Type 1 Diabetes simulator

Dalla Man et al [8] model the stomach as a three compartment ODE, which attempts
to reproduce the biphasic nature of gastric emptying. Movement between the stomach com-
partments is linear, whereas gastric emptying contains a nonlinear term. The variables qsto1
and qsto2 model the amount of glucose in compartments 1 and 2 of the stomach respectively,
qgut is the amount of glucose in the gut and Ra is the rate of glucose absorption into the
bloodstream. The system of equations for a given glucose dose D are

q̇sto1(t) = −k21qsto1 +Dδ(t) (18)

q̇sto2(t) = −kempt(qsto1, qsto2)qsto2 + k21qsto1 (19)

q̇gut(t) = −kabsqgut + kempt(qsto1, qsto2)qsto2 (20)

Ra(t) = fkabsqgut (21)
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where k21 is the rate of movement from compartment 1 to compartment 2, δ(t) is a delta
function, kabs is the absorption rate and f is the fraction of intestinal absorption that reaches
the blood. The stomach emptying rate kempt varies with stomach contents qsto according to
the equation

kempt(qsto) = kmin +
kmax − kmin

2

(
tanh(α(qsto − bD))− tanh(β(qsto − cD)) + 2

)
(22)

where the stomach contents qsto is the average of qsto1 and qsto2, i.e. qsto = qsto1 + qsto2. The
dual sigmoid nature of the stomach emptying rate causes the stomach to empty slower. A
simplified model without this nonlinear emptying rate failed to accurately reproduce the
data.

2.6. Lehmann and Deutsch - Trapezoidal gastric emptying kinetics

Lehmann and Deutsch [9] formulated a model of gastric emptying with a single gut
compartment qgut. The gut compartment dynamics and glucose arrival rate to bloodstream
Ra(t) are given by

q̇gut(t) = −kabsqgut(t) +Gempt(t) (23)

Ra(t) = fkabsqgut(t) (24)

and the fraction of glucose arrival f is calibrated to each individual using the total glucose
dose D. This model posits trapezoidal emptying dynamics for Gempt(t):

Gempt(t) =


tVmax
Tup

t < Tup,

Vmax Tup ≤ t < Tup + Tmax,

Vmax − Vmax
Tdown

(t− Tup − Tmax) Tup + Tmax ≤ t < Tup + Tmax + Tdown,

0 otherwise

(25)

where Tup is the length of time spent in the rising part of the trapezoid, Tdown the length
of the falling period and Tmax the time spent at maximum emptying speed. Vmax is the
rate of emptying needed to process all the ingested glucose in the assigned time. Although
the kinetics are in principle relatively simple, this trapezoidal structure leads to a relatively
large number of parameters.

2.7. Elashoff model - Modified power exponential gastric emptying

The gut dynamics used by Elashoff [10] are identical to the Lehmann and Deutsch model,
apart from the stomach contents which is modelled as a power exponential

qduo(t) = D(1− e−ktβ) (26)

where k is emptying rate and β controls the lag phase of gastric emptying. The rate of
gastric emptying is the time derivative of qduo, i.e. Gempt(t) = q̇duo(t). This is similar to the
model of stomach fullness used by Siegel et al. [11] where the fraction of stomach fullness is
given by qfrac = 1− (1− e−kt)β. Although this is a worse fit than the Dalla Man model, it
is substantially more parsimonious with only 2 free parameters.
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2.8. Neural networks - Overview

Neural networks aim to approximate some nonlinear function f ∗(x) with input x. Typ-
ically x is a large vector, for instance a series of blood glucose and insulin measurements.
Deep networks calculate f through the composition of functions f(x) = f1(f2(x)). These
functions (called activation functions) are parametrised by weights (denoted W ) and con-
stants c, which we want to learn from data. For instance, the commonly used rectified linear
unit uses the activation function

f(x,W, c) = max{0,W Tx+ c}. (27)

Although simple composition of these nonlinear functions may seem restrictive, with a suf-
ficiently large network it is possible to approximate arbitrary functions. Application of this
operation across two layers with no restriction on the weights Wi or constants ci at layer i
gives the network function as

f(x,W1,W2, c1, c2 = f2(f1(x,W1, c1),W2, c2) (28)

= max{0,W T
2 max{0,W T

1 x+ c1}+ c2}. (29)

This yields a vector which can be converted into a scalar prediction (for instance blood
glucose at some future time point) by another layer. Layers which are not generating a
prediction are referred to as hidden layers. Recurrent neural networks are networks whose
structure is optimised for prediction of sequential data. Recurrent neural networks receive
inputs at a series of time points xt, which are used to compute output observations ot
based on hidden units ht. Hidden units are updated at each time step, i.e. at time t, the
hidden units ht depend only on ht−1 and the observations xt, with loss being calculated from
output ot and data yt. This encoding of sequential structure makes them ideal for time series
prediction tasks, as well as natural language processing. Neural networks are an extremely
active area of current research, and an excellent introductory textbook has recently been
published [12].

2.9. Time series methods - Overview

Time series analysis attempts to separate stochastic and deterministic parts of the dy-
namics under regulation and learn the parameters of the deterministic part. In general, time
series models assume discretised timesteps, where the value of each timestep Yt is a function
of the previous values and some noise εt:

Yt = F (yt−1, yt−2, . . .) + εt. (30)

Given the very broad specification above, there are two possible approaches: attempt to
learn a nonlinear function using a range of function approximation techniques (for instance
neural networks), or to assume a more tractable model structure and learn parameters of
that model directly. We discuss the latter approach here, as it has been widely used in
applications to glucostasis. One common tractable model class is linear processes, where the
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value at each timestep is a linear function of the preceding ones. Moving average models
(MA(q)) are linear functions of the noise at the previous q timesteps:

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q (31)

so this is a weighted average of the last q noise observations. An autoregressive model
(AR(p)) uses a number p of past observations

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et (32)

where we want to learn the terms φi. This can be rewritten in terms of ei as a general
linear process. These two are combined to form the autoregressive moving average (ARMA)
model. The other important component is the addition of exogenous variables - in this case
Yt is also a function of other variables Xt whose dynamics is unknown and we are simply
given. This could be energy expenditure or food intake, for instance. As with support
vector machines we do not cover inferring the parameters θ and φ from observed time series,
however extensive resources are available [13, 14, 15].

2.10. Support Vector Regression - Overview

Support vector machines (SVMs) are a computationally-efficient method for prediction
that allow the prediction to be a nonlinear function of the data. The basic idea of an
SVM is that although a linear function of the data may not yield accurate predictions, it
may be possible to transform the data into some new space where a linear function of the
transformed data is a good predictor. SVMs are often used for classification, where the
function to be learned is the boundaries between different classes, however we will discuss
their application to regression problems [16]. We follow the introductory material given in a
comprehensive tutorial [17], but do not cover the optimisation methods necessary to actually
learn parameters in SVMs. Begin by attempting to learn a linear predictor f using data x
and parameters w, b:

f(x) = 〈w, x〉+ b (33)

where 〈·, ·〉 denotes the inner product in the data space (typically Rn, although other inner
product spaces are possible). The problem is typically phrased in terms of convex optimi-
sation, with the goal being to minimise the norm of the weights (‖w‖2 = 〈w,w〉 such that
the regression line never has more than ε error with respect to the data y, leading to the
constraints

yi − 〈w, xi〉 − b ≤ ε (34)

〈w, xi〉+ b− yi ≤ ε. (35)

This differs from conventional linear regression, where the aim is to minimise the sum of
squared errors and (unless regularisation is being used) there is no constrain on w. This
optimisation problem can be unsolvable for some values of ε as the data may simply be
broadly distributed. To deal with data outside of the margin ε, we introduce variables ξi
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and ξ∗ that penalise the distance of each data point from the ‘allowed region’ within ε of
the regression line. This leads to the optimisation problem:

minimise
1

2
‖w‖2 +

C

2

∑
i

(ξi + ξ∗i ) (36)

subject to the constraints

yi − 〈w, xi〉 − b ≤ ε+ ξi (37)

〈w, xi〉+ b− yi ≤ ε+ ξ∗i . (38)

This introduces a tradeoff between weight minimisation and error tolerance, which is con-
trolled by the parameter C. Because this formulation allows the tools of convex optimisation
to be used, the problem can be solved efficiently. However, if we have nonlinear patterns
in the data, we will fail to learn them with this model. We would like transform the data
x → Φ(x) such that it is linearly separable in the transformed space, however for complex
and high-dimensional data (e.g. images) this is computationally infeasible. The problem is
resolved using the ‘kernel trick’. This relies on the insight that we only use the data via
its dot product, never directly. Functions that satisfy a series of properties (stated in [17])
allow us to compute the dot product in the transformed space without needing to calculate
the coordinate transforms explicitly. This renders the problem tractable, replacing the inner
product 〈·, ·〉 with the kernel k(·, ·) in the optimisation equations above. The effectiveness
of SVMs depends strongly on the kernel used, although a range of kernels exist, including
for more complex data structures such as graphs.

2.11. Topp et al. - Multiple-timescale analysis of glucostasis reveals the routes to beta cell
extinction

Topp et al. [18] formulate a multiple-timescale model incorporating fast-timescale regu-
lation of glucose G by insulin I and slow dynamics of pancreatic beta cell mass β. Glucose
is described by the following ODE

dG

dt
= R0 − (EG0 + SII)G (39)

the rate of production at G = 0 is R0, EG0 is the effectiveness of glucose at I = 0, and SI is
insulin sensitivity. Insulin clearance rate is taken to be linear in insulin concentration with
rate k, whereas production is linear in β and sigmoidal in G with a maximal rate σ:

dI

dt
=

βσG2

α +G2
− kI. (40)

The glucose-insulin model evolves on a much faster timescale than the beta cell dynamics,
which are given by the balance of replication and death, with replication R = (r1rG−r2rG2)β
and death D = (d0 − r1aG+ r2aG

2)), giving

dβ

dt
= (−d0 + r1G+ r2G

2)β. (41)
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The baseline beta cell death rate is d0, and r1 = r1r + r1a and r2 = r2r + r2a are the net rate
constants for glucose-dependent beta cell growth or death. The system has two stable steady
states, one corresponding to a normal, non-pathological state and another at a pathological
state where glucose concentration is elevated and beta cell mass diminshes to zero. These
are separated by a saddle point. Analysis of this system predicts a number of possible
pathways into diabetes: movement of the non-pathological fixed point to a hyperglycemic
state, bifurcation eliminating the saddle point and non-pathological fixed point, and an
interaction between fast and slow subsytems driving glucose levels up faster than beta cell
mass adaptation can cope with.

2.12. Wang, Khan and van den Berg - Multiscale modelling of glucostasis shows the impor-
tance of short-term differences

Building on both of the preceding ideas, Wang et al.develop a multiscale model with
oscillatory glucose input [19]. They extend Sturis and Tolić’s model [SI 2.13] by adding a
time-varying glucose source ψin(t), leading to the following inhomogeneous system of ODEs

dG

dt
= ψin(t)− ψII(G)− ψID(G, Ii) + ψGR(G,w3)− ψGX(G) (42)

dIp
dt

= QψIS(G)− φ

(
Ip
Vp
− Ii
Vi

)
− Ip
τp

(43)

dIi
dt

= φ

(
Ip
Vp
− Ii
Vi

)
− Ii
τi

(44)

dw1

dt
=

3(Ip − w1)

τd
(45)

dw2

dt
=

3(w1 − w2)

τd
(46)

dw3

dt
=

3(w2 − w3)

τd
(47)

dQ

dt
= (ρ(Ip)− µ(G))Q(t) + ψNG(G, Ii), (48)

where ψII is insulin-independent uptake, ψID is insulin-dependent, ψGR is glucose release
from hepatic glycogen stores, and ψGX is glucose excretion. The parameter φ is a rate
constant for the exchange of insulin between the blood and interstitial spaces, which have
volumes Vp and Vi respectively. The mean life time of insulin is τi in interstitial space and
τp in the blood. The delay constant τd governs how long it takes for glucose to be released
from hepatic glycogen. The differences between this model and the model of Topp et al.
are time-varying glucose influx, the addition of insulin dependence in pancreatic beta cell
dynamics, and a glucose and insulin-dependent pancreatic beta cell neogenesis term ψNG.
Wang et al. separate the dynamics into slow and fast systems, and analyse the behaviour of
the system. They find that β cell mass can be significantly altered by the way that glucose
is delivered - the same amount of glucose can lead to much worse consequences if delivered
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in several short bursts than if it were continuously infused, showing that short-timescale
dynamics can have an effect on long-term onset of pathology.

2.13. Sturis and Tolic - Oscillatory insulin delivery increases hypoglycemia

This is an extension of Sturis’ earlier work [20] and models intercellular insulin Ii, plasma
insulin Ip and glucose G with a gamma-kernel delay of n = 3 between plasma insulin and its
effect on glucose production given a constant rate of glucose infusion Gin [21]. This model
is specified by the set of equations

dG

dt
= Gin − f2(G)− f3(G)f4(Ii) + f5(x3) (49)

dIp
dt

= f1(G)− E

(
Ip
Vp
− Ii
Vi

)
− Ip
tp

(50)

dIi
dt

= E

(
Ip
Vp
− Ii
Vi

)
− Ii
ti

(51)

dx1
dt

=
3

td
(Ip − x1) (52)

dx2
dt

=
3

td
(x1 − x2) (53)

dx3
dt

=
3

td
(I2 − x3), (54)

where E is the transfer rate between plasma and intercellular space, Vi and Vp are the volumes
of the interstitial space and plasma respectively and ti, tp, and td are rate constants. Insulin
production in the pancreas is determined by glucose concentration according to the following
sigmoidal function

f1(G) =
Rm

1 + exp((C1 −G/Va)/a1
(55)

where Rm is the maximal release rate and C1 and a1 are constants fitted from previous work
[22, 23]. The function f2(G) models insulin-independent glucose utilisation by cells

f2(G) = Ub(1− exp(−G/(C2Vg))) (56)

where Ub is the baseline uptake rate and C2 is a constant which is fitted to prior experimental
data [24]. Brain and nerve cells consume glucose in an insulin-independent manner, whereas
the consumption of muscle and fat is determined by both glucose and insulin availability
through the following equations

f3(G) =
G

C3Vg
(57)

f4(Ii) = U0 +
Um − U0

1 + exp(−β ln(Ii/C4(1/Vi + 1/Eti)))
, (58)
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where U0 and Um are rate constants and C4 is fitted to data. Finally, insulin affects hepatic
glucose production according to the following equation:

f5(x3) =
Rg

1 + exp(α(x3/Vp − C5)
, (59)

where Rg is the maxiumum rate. Tolić et al.simplify their model by replacing the functions
fi with polynomial approximations and analyse its properties. They find that oscillatory
insulin delivery has a greater hypoglycemic effect than continuous delivery.

2.14. Jacquier et al. - Dynamical systems analysis of a model of leptin resistance and feeding
predicts onset of obesity

Jacquier et al.couple the energy partition model by Hall et al.[SI 3.2] to a model of leptin-
mediated food intake as well as a nonlinear model of leptin receptor density in an attempt
to model progressive leptin resistance. Energy intake I and expenditure E determine the
dynamics of fat mass F and fat-free mass M (with energy densities ρF , ρM respectively

dF

dt
=

I − E
ρFΩ + ρM

(60)

dM

dt
=

Ω(I − E)

ρFΩ + ρM
, (61)

where the function Ω is given by Forbes’ law. Leptin production rate is modelled as being
linearly dependent on fat mass with rate constant γL and having degradation rate δL

dL

dt
= γLF − δLL. (62)

The rate of change of leptin receptor density R is assumed to vary quadratically in L

dR

dt
= γR(1 + λR1L)− δR(1 + λR2L

2)R, (63)

where γR is the basal production rate, λ1 the leptin-dependent growth rate, δR the basal
death rate and λR2 the leptin-dependent degradation rate. Finally, food intake is given as a
saturable function of leptin concentration

dI

dt
=

γI
1 + ΦR(L)

− δII, (64)

where the function ΦR(L) models the activation of leptin receptors, and is given by a Hill
function

ΦR(L) =
φRLn

Ln + θn
. (65)

A bifurcation analysis shows the existence of stable solutions; as γI and λR2 are varied these
move from possessing a single healthy solution through to a bistable state where obese or
healthy steady states are possible, to a single stable equilibrium in an obese state. Oscillating
food inputs can lead to the onset of leptin resistance and subsequent obesity. Comparison
of the model to experiments where leptin was continuously injected show a good agreement
to the data.
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3. Energy balance models

Energy partition models are typically deterministic ODE models which consist of a num-
ber of body compartments (such as fat and lean tissue) and a set of functions for partitioning
energy intake between them. They aim to forecast body composition changes over time given
data for calorie intake and expenditure, but generally make no attempt to predict behaviour.

3.1. Forbes, Hall’s updated Forbes’ Law - Lean and fat mass partitioning

From a regression study of women across a wide range of ages and levels of adiposity,
Forbes found the following regression relationship between lean body mass L and fat mass
F [25]

L = 10.4 lnF + 14.2, (66)

thus
dL

dF
=

10.4

F
. (67)

Under this model changes of body composition are taken to lie along the regression line de-
scribed above - this does not account for changes in body composition due to weight training,
for example, however it appears to provide a good model for weight loss or gain in typical
females from dietary causes. Assuming that the body is comprised of two compartments L
and F such that total body weight W = L+ F , an infinitesimal change in body weight will
lead to a fat-dependent infinitesimal change in lean body mass according to the equation

dL

dW
=

10.4

10.4 + F
. (68)

Hall generalised Forbes’ law to macroscopic changes in bodyweight from an initial fat mass
Fi to a final fat mass Ff [26] by using the fact that ∆W = ∆F + ∆L to write

∆L

∆W
=

∆W −∆F

∆W
(69)

= 1− Ff − Fi
∆W

. (70)

By expressing ∆L as Lf − Li and using Equation 66 this can be rewritten as

Ff = exp

(
Lf − 14.2

10.4

)
. (71)

After some algebra, the macroscopic change in lean mass for a given change in body weight
is given by an expression involving the Lambert W function W :

∆L

∆W
= 1 +

Fi
∆W

− 10.4

∆W
W

(
1

10.4
exp

(
∆W

10.4

)
Fi exp

(
Fi

10.4

))
. (72)

Forbes’ law thus predicts that lean mass will increase with increasing body weight, but that
higher adiposity will diminish the rate of increase. Thus energy will be partitioned to lean
or fat tissue differently depending on the current level of adiposity, contrary to the model
of Dugdale and Payne [SI 3.4] in which a constant ratio is assumed (called the P-ratio).
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3.2. Hall et al. - Energy balance predicts body composition dynamics

Hall and coauthors have published a number of papers on the subject of energy homeosta-
sis, including predicting dynamics of body weight, composition and fuel selection in humans
[27, 28, 29] and mice [30, 31]. These models rely on the principle of energy conservation, and
split the organism’s body into two compartments - the fat and lean compartments. Energy
balance can be specified in terms of energy balance to and from each of these compartments

ρF
dF

dt
+ ρL

dL

dt
= I − E, (73)

where ρF and ρL denote energy densities of fat and lean tissues respectively, and E and I
are energy expenditure and intake. Applying Forbes’ relationship and defining α = F/10.4
gives

ρL
dL

dt
=

(
αρL

αρL + ρF

)
(I − E) (74)

ρF
dF

dt
=

(
ρF

αρL + ρF

)
(I − E). (75)

Accounting for all sources of energy expenditure provides a model for energy expenditure

E = K + β∆I + (γL + λ)L+ (γF + λ)F + ηF
dF

dt
+ ηL

dL

dt
, (76)

where K is the cost of thermogenesis, β a factor to account for the thermic effect of feeding,
γF and γL the metabolic costs of fat and leat tissue and λ the cost of physical activity,
which is assumed to vary with body weight. The parameters ηF and ηL are the biochemical
efficiencies of synthesising fat and lean tissue respectively; K and λ are determined from
model calibration, but β, γL, γF , ηF and ηL are fixed from previous experiments. Physical
activity is taken to be partly determined by diet; in order to determine this relationship, mice
were switched to a different diet at timepoints t1 and switched back at t2. This data was used
to calibrate λ for a variety of diets. Fuel selection is another important quantity predicted
by this model - meals with different macronutrient compositions but the same amount of
calories may have different effects. Accounting for fat, protein, and glucose intakes separately
as IF , IP and IG respectively, and assuming nutrients are either immediately oxidated (OF ,
OP , and OG respectively), used in de-novo lipogenesis (DNL) or gluconeogenesis (GNG)
gives the following set of ODEs

ρF
dF

dt
= IF +DNL−OF (77)

ρP
dP

dt
= IP −GNG−OP (78)

ρG
dG

dt
= IG +GNG−DNL−OG. (79)
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It can be shown [30] that these lead to equations for net oxidation of each macronutrient
group (where net oxidation is defined as oxidation without de novo lipogenesis or gluconeo-
genesis)

OF,net = IF −
(

ρF
αρL + ρF

)
(I − E) (80)

OP,net = IP −
(

αρL
αρL + ρF

)
(I − E) (81)

OC,net = IC . (82)

However, these quantities cannot be measured directly in experimental settings. A mea-
surement which can be calculated from gas exchange data is the respiratory quotient RQ,
which uses the fact that fat and carbohydrate oxidation consume oxygen and produce carbon
dioxide in different proportions to determine the balance of energy production from these
sources. Writing RQ in terms of macronutrient consumption gives

RQ =
0.7×OF,net + 0.83×OP,net +OC,net

E
. (83)

Comparing this with the food quotient FQ, which measures the oxygen consumption and
carbon dioxide production from combusting the food outside of the body provides a measure
of macronutrient imbalance, which can be used to predict body weight and composition
changes

FQ =
0.7× IF + 0.83× IP + IC

I
. (84)

Once fitted to experimental data, this theory appears to have widespread applicability in
predicting body weight and composition changes for several organisms and in a range of
circumstances (see above).

3.3. Alpert - Body composition dynamics in hyper- and hypophagia

Alpert considers a two compartment energy partition model with fat store f and fat free
mass l of energy densities α and β respectively [32]. Food is ingested at a rate Ṗ of which ε
is digested gives rise to an energy balance equation

α
df

dt
+ β

dl

dt
= εṖ −RMR(l, g)− δ(1 + f), (85)

where energy is lost due to resting metabolic rate RMR, which depends on lean mass l and
growth g, and total energy expenditure with activity coefficient δ. The energy available is
a fraction ε of the total intake Ṗ . A number of further assumptions, including constant or
slowly-varying partitioning of excess energy between fat and fat-free mass (denoted by x),
lead to a pair of ODEs for body composition in hyperphagia

α
d∆f

dt
+ δ∆f = xε∆Ṗ (86)

β
d∆l

dt
+ (γ + δ)∆l = (1− x)ε∆Ṗ , (87)
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with ∆ denoting changes from initial value (e.g. Ṗ = Ṗ0 + ∆Ṗ ). These have solutions

∆f =
xε∆Ṗ

δ
(1− e−δt/α) (88)

∆l =
(1− x)ε∆Ṗ

γ + δ
(1− e−(γ+δ)t/β). (89)

Fitting to experimental data gives x = 0.87±0.06. The model makes a number of surprising
predictions: during hyperphagia fat increase is initially independent of activity levels, in-
creasing amounts of energy are partitioned towards fat-free mass, and the fat store is asymp-
totically bounded. Although Alpert cites some experimental evidence for these claims, the
evidence given is not conclusive and seems at odds with an intuitive understanding of body
composition during hyperphagia.

3.4. Dugdale and Payne - Stochastic energy partition model

Dugdale and Payne define a computational energy partition model with stochastic en-
ergy intake and expenditure [33, 34]. The model is discretised at a one day resolution.
Expenditure E and intake I are normally distributed with means µE and µI and standard
deviations σE, σI respectively. The compartments are tissue fat T , structural fat S, ‘fast’
lean tissue F and ‘slow’ lean tissue L, and these are used to derive the energy required for
tissue maintenance M according to their masses

M = 1.5(ρTT + ρSS + ρFF + ρLL), (90)

where ρ is the energy consumption per kg of a given compartment. The prefactor is given
from a WHO Technical Report estimating minimum energy requirements. This gives the
daily calorie balance B as

B = I − E −M. (91)

Each individual is characterised by the fraction of excess energy deposited to as lean tissue
P , with the remainder being deposited as fat tissue. Energy storage is assumed to be
inefficient, with only proportions E1 and E2 of energy allocated to lean tissue and fat creation
respectively actually being deposited. For a day with an energy surplus, tissue deposits are
updated by the following rules:

∆F = QBP/4680 (92)

∆S = 0.08QBP/4680, (93)

where Q = 1 + E1P + E2(1− P ) and the factor of 4680 converts between energy and body
mass. For negative balance the situation is similar, but energy retrieval is taken to be
completely efficient and storage fat can also be metabolised

∆F = BP/4680 (94)

∆S = 0.08BP/4680 (95)

∆T = (1− P )/29390− 0.08P/4680. (96)
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Finally, the transfers between fast and slow lean tissue are calculated according to the change
in ratio between fast and slow lean tissues. For initial values L0 and F0, K1 = F0/L0 and
K2 = F/L. Now

∆F = K1 −K2 (97)

δL = −(K1 −K2). (98)

Dugdale and Payne compare their model to a number of underfeeding and overfeeding ex-
periments and find reasonable quantitative agreement, especially in the case of underfeeding
obese subjects.

3.5. Westerterp and Speakman - An alternative to set- and settling-point theories

In addition to set- and settling-point theories, Speakman has put forward a model known
as the dual intervention point model [35, 36]. In set-point and settling-point models, con-
trol of energy homeostasis in scenarios of energy excess and energy deprivation occurs via
the same mechanism. In the dual intervention point model, energy homeostasis is weakly
regulated between an upper and lower limit, where settling-point behaviour occurs due to
environmental factors, and strongly regulated above or below these limits, where set-point
control acts on energy homeostasis. This has the advantage of explaining the asymmetry
of body weight drift, as the lower limit is set by physical and physiological concerns, and
cannot go lower without endangering the organism. In prehistory, the upper weight limit
is considered to be irrelevant as in practice high body weights would be selected against by
food shortages and predation. However, once predatory pressure and food shortages became
less of a consideration, regulation of unhealthily high body weight was left in the hands of
physiological mechanisms of bodyweight regulation, which are expected to vary considerably
and drift between generations.
A mathematical model of this theory has yet to be developed, although Speakman & West-
erterp have formulated a model of weight loss under total starvation that captures some
aspects of the theory [37]. It has some similarities to the combination model of Tam et al.[SI
4.2]; if the mechanism of energy sensing is endocrine then formulating a model in terms
of two endocrine regulatory systems, one acting on each control threshold, would give this
model physiological relevance and test theories of endocrine control. It may also account for
the disparity of timescales in endocrine regulation - going below the lower threshold is an
immediate threat to life, whereas going above the upper threshold is less optimal, but not
immediately dangerous.

3.6. Kozusko - Empirically-derived nonlinear energy partitioning

Kozusko [38] attempts to account for the observed decrease in energy expenditure per
unit of body weight by allowing energy expenditure E to depend on body weightW according
to the following equation

E = α(W )W, (99)
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where α accounts for the aforementioned variation. In Kozusko’s model, α is linear in W
away from a setpoint α0 and body weight W0 to starvation levels αs, Ws

α(W ) =

(
αsW0 − α0Ws

W0 −Ws

)
+

(
α0 − αs
W0 −Ws

)
W, (100)

which can be rewritten as α = α0

(
β1 + β2

W
W0

)
, where

β1 =
αs
α0
− Ws

W0

1− Ws

W0

; β2 =
1− αs

α0

1− Ws

W0

. (101)

Kozusko uses an empirical function of the fat free mass ratio (R), which is defined as fat free
weight divided by total body weight, to predict an individual’s value of β2 via the function

β2 =
tanh

(
f(R−m)
R∗(1−R)

)
+ 1

2
(102)

for parameters f and m to be determined from fitting. The model is compared to Kleiber’s
scaling law for energy expenditure [39] and the Harris-Benedict equations [40] when applied
to data from the Minnesota starvation experiment. The adjustment for reduced energy ex-
penditure allows the model to more accurately capture adaptation leading to lower weight
loss, whereas models without this behaviour tend to dramatically overestimate weight lost
under caloric restriction. Kozusko’s model still overestimates expected weight loss, but is
a significant improvement. The free parameters f and m allow fitting to data in order to
account for individual variation, which may lead to more accurate prediction for individ-
uals and may thus be of clinical use. The purely empirical basis of this model makes it
less informative about mechanisms underlying adaptation; although it describes and may
predict individual behaviour, it does not speculate on its physiological basis, nor account
for situations with ad libitum feeding.

3.7. Antonetti - Energy balance incorporating thermic effect of feeding

Antonetti [41] formulates a similar energy balance model in terms of change of internal
energy ∆U , energy from food Ef , energy excreted Ew, environmental heat loss QL, and
energy expended on work Wk, with a fraction α allocated to specific dynamic action (the
increase in heat generation following feeding)

∆U = (1− α)(Ef − Ew)− (QL +Wk) (103)

Acting over a period of days ∆Θ and collecting terms CD = (Ef − Ew)/∆Θ, C = (QL +
Wk)/∆Θ gives the equation

∆U

∆Θ
= (1− α)CD − C, (104)

which can be expressed as an ODE

dW

dΘ
=

(1− α)CD − C
γ

, (105)
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where γ is a constant of proportionality relating energy U to body weight W . Writing QL

and Wk as scaling in body weight to some power, Antonetti obtains the ODE

dW

dΘ
=

(1− α)CD − (KAW +KBW
n)

γ
, (106)

which is solved numerically, with the proportionality constants KA and KB obtained from
data. This yields predictions for body weight change under different activity and calorie
intake conditions. Antonetti states that, at the time, clinical data was insufficient to provide
a valid test of this equation, although he does attempt to make some comparisons.

3.8. DEB - Generalised energy flow model

Dynamic Energy Budget (DEB) theory attempts to model a generalised organism and
its allocation of energy. A review of the basics of DEB theory are presented by Sousa et al
[42], which we attempt to summarise here. DEB theory considers the flows of energy in a
generalised organism which can invest energy into structure V (which acts as a measure of
the ‘volume’ of the organism), energy reserve E and maturation EH . Structure and reserve
are referred to as ‘generalised compounds’, which represent many biological compounds
making up parts of the organism. Different types of organism are represented by different
parametrisations of the model, particularly the parameters representing power allocations
to different compartments.

Food intake flow is pX , of which pA is assimilated into the reserve and the remainder is
excreted. The organism consumes pC to fuel its activities, so

dE

dt
= pA − pC . (107)

Energy flux allocated to growth at rate pG increases structure V dependent on specific cost
of growth EG

dV

dt
=
pG
EG

. (108)

Energy can also be allocated to somatic maintenance pM and maturity maintenance pJ .
Energy is allocated first in pairs according to an allocation function κ(V,E) such that pM +
pG = κpC and pJ + pR = (1 − κ)pC . Maintenance costs are paid first in this model, with
the remainder being allocated to maturity, reproduction, or growth. Feeding is dependent
on surface area JXm and food density X

pX = JXmV
2/3µXf(X), (109)

where f(X) scales feeding rate by food availability. Organisms are assumed to have two
different ‘life-history events’, which are signalled by the maturity variable EH passing set
values. These are birth at EH = EB

H and puberty at EH = EP
H . After puberty, maturation

stops and no more energy is allocated to maturation. Maturation energy allocation is thus
accounted for by the equation

dEH
dt

= pR, EH < EP
H . (110)
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Along with a number of other assumptions, this model can recover a general expression for
growth. If abundant food and no change in life stage are assumed, von Bertalanffy’s law for
the ‘size’ of the organism L [43] can also be derived

dL

dt
= rB(L∞ − L), (111)

where rB is a function of maintenance rate, food availability, and fraction of energy invested
into growth. This is a well-known growth law obeyed by many species. DEB theory has been
developed beyond these foundations to account for a wide range of situations and organisms,
as is found on the DEB theory website.

3.9. Chow and Hall - Dynamical systems analysis of the Energy Balance model

Chow and Hall investigate the fixed points of a class of energy partition models based
around the Energy Balance model [44], [SI 3.2]. They begin with a three compartment flux
balance model for fat F , glycogen G, and protein P

ρF
dF

dt
= IF − fFE (112)

ρG
dG

dt
= IC − fCE (113)

ρP
dP

dt
= IP − (1− fF − fF )E, (114)

where ρF , ρG and ρP are the energy density of each compartment, IF , IC , IP the intake rates
and fF fC are the fraction of expenditure derived from each compartment. By assuming
that glycogen is constant on long timescales and accounting for the additional mass due to
water content of each compartment, this can be rewritten to a two variable model for fat
mass F and lean tissue mass L

ρF
dF

dt
= IF − fE (115)

ρL
dL

dt
= IL − (1− f)E. (116)

The function f = f(IF , IL, F, L) is a function governing how energy is drawn from each
compartment to meet expenditure requirements. For instance, imposing Forbes’ law [25],
[SI 3.1]

dF

dL
=

F

10.4
(117)

yields the equation

f(F,L) =
IF
E
− α

1 + α

I − E
E

(118)

where α = ρFF/10.4ρL as before. If intakes IF and IL are held constant, the function f will
determine the position and nature of the fixed points of the model, which will occur at the
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intersection of the F and L nullclines

dF

dt
= 0 =⇒ IF − fE = 0 (119)

dL

dt
= 0 =⇒ IL − (1− f)E = 0. (120)

A stability analysis of the energy partition model given by Forbes’ law reveals the existence
of a marginally stable attracting invariant manifold rather than one or more isolated fixed
points. This indicates that any temporary change in intake or expenditure will cause body
composition to move to a new point on the manifold, rather than return to its previous value
before the perturbation. Chow and Hall point out that experiments involving weight change
through aerobic exercise or changes in energy intake will be unable to distinguish between
different classes of model, and that experiments that directly alter body composition or fat
utilisation fraction are necessary to investigate this but have not yet been carried out.

4. Control theoretic models

Models using control theory attempt to find ‘optimal’ behaviour policies for an organism
in response to a given environment. These typically revolve around choosing a policy to
maximise some cost function which keeps track of how well the policy deals with the en-
vironment. Policies can be deterministic or stochastic, and take place in either discrete or
continuous time steps, and these choices determine how the optimal control can be found.

4.1. Davis and Levine - Proportional-integral control of a single feeding bout

Davis and Levine construct a control theoretic negative feedback model for the control
of fluid meal size by gut filling based on experimental findings which they review in the
introduction to their paper [45]. Intake I(t) is modelled as a proportional-integral controller
based on a drinking rate d and an ingestion signal ε(t) such that I(t) = dε(t). The ingestion
signal is taken to have the form:

ε(t) = pg(t)− kr
∫ t

0

I(τ)dτ (121)

where p is a parameter representing the significance of the food for the animal (for instance
providing salty food to a sodium-depleted animal) and g(t) is the concentration of the
flavour signalling the relevance of the food. The product gp is referred to as palatability.
The parameter r is called the retention coefficient and represents the time taken for fluid
to be absorbed into the gut; a small value of r indicates rapid absorption. Finally, k is a
proportionality constant that determines how much gut fullness contributes to the decrease
in eating rate. Assuming that g(t) is a step function:

g(t) =

{
0, t < 0.

g, t ≥ 0
(122)
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the control system can be solved using Laplace transforms to find the ingestion rate I(t)

I(t) = gpde−drkt (123)

and the cumulative ingestion rate C(t)

C(t) =

∫ t

0

I(τ)dτ (124)

=
gp

rk
(1− e−drkt), (125)

which is used to suggest that that palatability plays a crucial role in the total amount of
feeding that occurs in a meal. The model shows an ability to fit previous experimental data
well over ingestion time ranges of 30 minutes, and can reproduce behaviour from both sham
feeding and altered food palatability, but does not predict an ending time for the feeding
bout.

4.2. Tam et al. - Leptin-mediated control of body weight
Tam et al. [46] consider leptin-mediated regulation of energy homeostasis on a timescale

of weeks in order to distinguish between set-point and settling-point control of bodyweight,
and to investigate the effects of leptin resistance. Leptin production into the bloodstream
(which has volume V ) is assumed to be proportional to fat mass F with a synthesis rate Rsyn

and is removed from the blood by the kidneys in a concentration-dependent manner with
rate Rclear. Plasma leptin Lp enters the brain through both saturable and non-saturable
pathways, leading to changes in brain leptin Lb. Thus for both set-point and settling-point
models the leptin equations are (with some condensing of notation)

d(LpV )

dt
= RsynF −RclearLp (126)

Lb = k1
Lp

k2 + Lp
+ k3Lp. (127)

The rate constants Rsyn, Rclear, k1, k2, and k3 are all derived from literature values rather
than fitted. Body mass M is given by fat mass F and lean mass ML, with changes in
body mass occurring solely due to increases in fat mass. Fat mass changes according to the
imbalance between intake I and expenditure E, leading to the body composition equations

M = F +ML (128)

dF

dt
=

1

ρF
(E − I) (129)

where ρF is the energy density of fat.
In the settling-point model energy expenditure E and intake I are given by saturable

functions of brain leptin concentration

I = k4

(
1− Lb

k5 + Lb

)
(130)

E = k6M

(
1 + k7

Lb
k8 + Lb

)
. (131)
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Rate constants k4, k6 and k7 are derived from literature values, with k5 and k8 fitted from
data.

The set-point model describes energy intake and expenditure through the use of a
proportional-integral controller which scales E and I to return Lb to a set point L∗b

I = a1(Lb − L∗b) + a2

∫ t

0

(Lb − L∗b)dt+ c1 (132)

E = M(a3(Lb − L∗b) + a4

∫ t

0

(Lb − L∗b)dt+ c2). (133)

Constants c1 and c2 are derived from intake and expenditure at steady-state in the settling-
point model. a1 - a4 could not be fitted directly from data, so were chosen arbitrarily
to prevent oscillations, however they do not affect the steady-state values of the set-point
model.

Leptin resistance was modelled by changing the value of the rate constant k2, which
modifies the blood-brain transport of leptin. Due to a lack of experimental data, the authors
used the following phenomenological equation

k̂2(Lp) = k2 + k9(Lp − k10)Θ(Lp − k10) (134)

using the Heaviside step function Θ, k9 is a scaling factor and k10 is the leptin concentration
where resistance begins.

Tam et al.propose a combination model which incorporates features of both the set point
and settling-point model, as neither fully account for observed experimental data; the set-
point model is too effective in preventing obesity, whereas the settling-point model does not
provide a strong enough defence of body weight.

4.3. Jacquier et al. - Endocrine control of body composition usng the Energy Balance model

Jacquier et al. [47] construct a model of coupled ODEs linking energy balance ∆E to
changes in food intake and energy expenditure, with food intake being controlled by variables
representing leptin, glucose, and insulin. Energy expenditure is determined by fat mass S
and fat-free mass W , as well as an activity parameter ξ and rate parameter R. Food intake
is given as the minimum of hunger h and available food a, giving an energy balance equation

∆E = min(a, h)−R(ρWW + ρSS + ξ) (135)

where ρS and ρW are energy densities of fat and fat-free tissue respectively. The evolution
equations for S and W are

dS

dt
=

∆E

ρWx+ ρS
;

dW

dt
=

∆Ex

ρWx+ ρS
(136)

as in the Hall model, x = dW/dS = ζ+ψ exp(κS) governs the partitioning of energy between
fat and lean mass. In this case the parameters are estimated during model fitting. Plasma
leptin l is given by:

dl

dt
= γ2S − γ1l, (137)
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with production rate γ2 and clearance rate γ1. Plasma glucose u is governed by a similar
equation involving food intake, production rate µ1 and clearance rate µ2:

du

dt
= µ1 min(a, h)− µ2u (138)

Ghrelin e is inhibited by food intake, and has the following rate equation:

de

dt
=

ν2
1 + ν1 min(a, h)

− ν3e. (139)

These three variables are combined to determine the hunger variable h, given in terms of
number of Joules required

dh

dt
=

α1e

1 + α2l
− β(α3 + u)h. (140)

Allowing hunger to depend on endocrine levels, which in turn depend on metabolic state,
makes this model more physiologically relevant, and considers food intake as a feedback
control system. Finally, the rate parameter R is allowed to vary to simulate adaptation to
different food intakes by comparing food consumed in a recent period to that eaten over a
long time period

dR

dt
= ε

(
1

τ

∫ t

t−τ
min(a(v), h(v)dv − 1

τ ′

∫ t

t−τ ′
min(a(v), h(v)dv

)
. (141)

6 of the 21 parameters were obtained from the literature, with 12 obtained from model
fitting, and the remainder from experiments and data regarding diet. Parameters governing
combination of endocrine signals is determined entirely from fitting. The model predicts
consumption and body weight behaviour well under a variety of scenarios, including scenarios
the model was not fitted to. Adaptation (in terms of varying R) is shown to be important
in recapitulating experimental observations.

4.4. Booth et al. - Multiple-factor control of rat feeding

Booth et al.formulated a computational closed-loop feedback control model for feeding
behaviour at the level of individual meals [48, 49]. The main strength of this model is that
although it simulates down to a fine time resolution, it also models long-timescale dynamics
by allowing fat reserves to modulate feeding behaviour. In addition it incorporates circadian
effects and a simple model for energy expenditure due to time-varying metabolic rate, as
well as stochastic feeding behaviour. These features make it probably the most fully-realised
model for energy homeostasis developed to date, however as it predates many modern en-
docrinological discoveries it is not formulated in terms of specific endocrine mechanisms.
The model is formulated as a block diagram, which we reproduce below (Figure 1), before
outlining a number of the most important dynamical equations in the model. The central
regulator of feeding in the Booth model is the energy flow E, which is comprised of absorp-
tion of energy from the gut A, flow to/from lipids L, metabolic rate M and the gut satiety
EV

E = A− L−M − EV . (142)
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Figure 1: Block diagram for the Booth energy flow model. Important equations are described in more detail
in the text below. Based on a figure from from [49]

Energy flow triggers feeding (or its cessation) through a two-threshold model; if F = 0 and
energy flow is less than some threshold E ′H then feeding rate becomes some positive constant
F . Feeding then continues until a satiety threshold E ′S is reached, at which point F = 0.
These thresholds can be a constant, however Booth et al.also consider thresholds undergoing
a mean-reverting random walk. Food enters the stomach, the fullness of which depends on
feeding rate F as well as absorption A(t)

dG

dt
= F (t)− A(t). (143)

The absorption rate into the bloodstream depends on a varying rate R(t) and the energy
content of the stomach G

A(t) = R(t)
√
G(t). (144)

A number of other factors such as the thermic effect of feeding and sensory qualities of food
are included in the model (see Figure 1). Simulating the model generates predictions for
feeding bouts, metabolic rates, and body mass, and can reproduce experimental results to
a reasonable degree of accuracy [50].

4.5. McFarland and Sibly - A general framework for optimal behaviour

McFarland and Sibly [51, 52] attempt to formulate behaviour in terms of an optimality
principle. By denoting all environmental and physiological factors relevant to the behaviour
under consideration as a vector x (which is referred to as causal factor space) and denot-
ing behaviour sequences as movement within causal factor space, given some cost function
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C(x,u) the fitness of a behaviour sequence u(t) over a time interval [0, T ] is defined as being

F [u(t)] =

∫ T

0

C(x,u)dt. (145)

The Pontryagin minimum principle gives the optimal behaviour sequence by maximising a
Hamiltonian-like equation:

H =
N∑
i=1

piẋi − C (146)

ṗi =
∂C

∂xi
, (147)

where N is the dimension of causal factor space. This can be solved analytically for quadratic
cost functions

C =
N∑
i=1

x2i + u2i (148)

ṗi =
∂C

∂xi
= 2xi, (149)

which yields an exponentially decaying intake rate and an exponentially satiating cumulative
intake - the same prediction as Davis and Levine’s control theory based model. This indicates
that their mechanistic approach, which agreed well with behavioural observations, is also
optimal according to this cost function.

4.6. McNamara and Houston - Dynamic programming for optimal behaviour

McNamara and Houston [53] consider a behavioural sequence over a finite interval [0, T ],
discretised into time periods t = 0, 1, 2, . . . , T . This behaviour sequence is typically as-
sumed to be a short period of time with no opportunity for reproduction in [0, T ]. The
fitness of a behaviour sequence is indicated by how beneficial it is to the organism’s chance
of reproduction at the end of the time interval, which is denoted R(x) for state x. Actions
can have stochastic payoffs, so the state at time t is a random variable denoted Xt, with x
representing a definite state in a discrete state space. Policies (series of actions a) are de-
noted by π. Because both time and state are discretised, there is a finite set of combinations
of x and t, and this problem is solvable for the optimal policy using dynamic programming.
The central object of this approach is the following function

ψ∗(x, t) = max
π

Eπ[R(XT |Xt = x)], (150)

which gives the expected future reproductive success from (x, t) if the organism follows the
optimal policy. This can be shown to provide a way to choose the optimal action a∗ for a
given (x, t)

H(x, a, t) = Ea[ψ∗(Xt+1, t+ 1)|Xt = x] (151)

ψ∗ = max
a
H(x, a, t) (152)
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which also allows a way of calculating the cost of performing a suboptimal action a′

c(x, a′, t) = H(x, a∗, t)−H(x, a′, t). (153)

This framework is applied to an example of a small bird that can perform one of several
foraging actions at several time points during the day, or rest and expend no energy. The
bird expends energy overnight and cannot forage, so must end the day with enough energy
to survive. The dynamic programming approach allows the calculation of optimal policies
for this problem. By using the equation for the cost of a suboptimal policy McNamara and
Houston offer an explanation for the ‘dawn chorus’: it is typically less costly to perform a
non-foraging task in the first time period of the day given a relatively small level of reserves,
as it is likely that foraging for the rest of the day will be sufficient to allow survival.

4.7. Niyogi et al. - Optimal stochastic policies in working for a reward

Niyogi et al.formulate a model of mouse behaviour at the level of individual activity
bouts, motivated by a brain stimulation reward [54]. Although not directly modelling feeding
behaviour, this model has the potential to be adapted to this end as both feeding and work
for stimulation reward are settings in which some activity (feeding, lever pressing) is carried
out for some reward (food, brain stimulation). The main difference is that brain stimulation
does not appear to ‘satiate’, whereas the utility of food decreases significantly as more is
eaten. Their model is formulated in economic terms; brain stimulation reward and leisure
are both modelled as possessing some level of utility. A bout of brain stimulation reward
has utility RI, and leisure time has a reward which varies as a function of leisure time
duration CL(τ) for leisure time τ . Niyogi et al.investigate reward functions that are linear,
supralinear, and weighted combinations of linear and supralinear in τ . In order to obtain
the reward, subjects are required to work for a duration called the ‘price’ P . Work in the
pre-reward state consists of bouts of work interspersed with bouts of leisure. Once the
accumulated work time w reaches P , brain stimulation reward is administered. Following
the reward there is a further leisure bout of length τPav +τL (see [54] for details on the origin
of the term τPav) before the model transitions to the pre-reward state again. The state
space S is therefore a combination of a discrete component in {pre, post} and a continuous
component w ∈ [0, P ), and as such has some similarities to a class of stochastic models
known as piecewise deterministic Markov processes [55, 56]. The subject chooses between
actions depending on a stochastic policy π, which determines the total average reward rate
ρπ

ρπ =
RI + Eπ([L,τL]|post))[CL(τPav + τL)] +

∫ P
0
EπwL [

∑
nL|[pre,w]

CL(τL)]dw

P + Eπ([L,τL]|post))[τL] + τPav +
∫ P
0
EπwL [

∑
nL|[pre,w]

τL]dw
, (154)

where π([L, τL]|post) and πwL are the probabilities of engaging in leisure for a time τL in
the post- and pre-reward states respectively, and nL|[pre,w] is the (random) number of leisure
periods in the pre-reward interval. The policy π for a given action and its duration is
state-dependent, and is assumed to be a soft-max policy, so greater expected returns will

27



be preferred but suboptimal choices are sometimes made. The softmax policy equation for
a subject in state s is

π([a, τa]|s) =
exp

[
βQπ(s, [a, τa])

]
µa(τa)∑

a′

∫
τa′

exp
[
βQπ(s, [a′, τa′ ])

]
µa′(τa′)dτa′

, (155)

for reward values Qπ(s, [a, τa]) of engaging in action a for duration τa given current state s.
The free parameter β specifies the degree of stochasticity, and the function µa(τa) is a prior
over durations. Value functions for leisure in the pre- and post-reward states are

Qπ(pre, [L, τL]) = CL(τL)− ρπτL + V π([pre, w]) (156)

Qπ(post, [L, τL]) = CL(τL + τPav)− ρπ(τL + τPav) + V π([pre, 0]) (157)

where the three terms represent the utility of leisure, the opportunity cost of leisure (given
by the average reward value), and the long-run value of transitioning to the following state
V π. This is given by the equation

V π(s) =
∑
a

∫
τa

π([a, τa]|s)Qπ(s, [a, τa]). (158)

The Q-function for working in the pre-reward state is more complex as there are two possible
outcomes: accumulated work is sufficient to earn reward, or it is not. These are represented
by the first and second term respectively in the following equation

Qπ([pre, w], [W, τW ]) =1(w + τW < P )[−ρπτW + V π([pre, w + τW ])] (159)

+ 1(w + τW ≥ P )[RI − ρπ(P − w) + V π(post)]. (160)

Niyogi et al.consider low, medium, and high-payoff situations, and find that in the high
payoff setting subjects work as much as possible, whereas in low-payoff situations almost no
work is done. In the medium payoff case the model predicts multiple work bouts with short
leisure bouts, followed by a leisure bout of duration greater than the experiment’s length.

4.8. Yamaguchi et al. - Learning rewards from behaviour

Yamaguchi et al. formulate a reinforcement learning (RL) model of thermotactic be-
haviour in C. elegans [57] based on maximum entropy inverse reinforcement learning [58].
In RL individuals act to maximise reward, which they accmplish by trading off exploration
(in order to find rewarding states) and exploitation (using the high-reward states already
discovered). In inverse RL, we assume that these rewards have already been completely
discovered by the agent, which is acting to maximise these rewards. We do not know the
agent’s reward function, however, and seek to determine it from data. An important tool for
this is the value function V (s), which maps states s to a number indicating the long-term
reward expected from that state. For an agent with some decision-making policy π that
maps states to actions (which we will return to later), the value of a state s under π is given
by

V π(s) = E[R|s, π] (161)
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where R is the sum of future rewards rt, discounted at some rate γ ∈ [0, 1]

R =
∞∑
t=0

γtrt. (162)

The aim of RL is to find the optimal policy π∗ that maximises the return. We will not
go into methods for doing so, however an excellent introductory textbook is available [59].
In order to infer r, we first infer V , but to do so, we need a model of the agent’s decision
policy. Yamaguchi et al. model thermotaxis as having a preference for both temperature
T and its derivative dT , meaning that climbing or descending the temperature gradient as
appropriate is explicitly rewarded. Worms are modelled as having both ‘passive’ stochastic
dynamics p(s′|s) that give the uncontrolled motion of the worms as well as the decision-
making behaviour given by π. Passive dynamics captures both inertial motion and ‘diffusive’
motion, given by

P ((T ′, dT ′)|(T, dT )) = N (T ′|T + dTδt, σT )N (dT ′|dT, σdT ), (163)

where N (x|µ, σ) is the likelihood of x from a normal distribution of mean µ and variance
σ. Under the assumption that rewards are penalised by their divergence from the passive
dynamics, the policy π∗ is given by

π∗(s′|s) =
P (s′|s) exp(−v(s′)∑
s′ P (s′|s) exp(−v(s′))

, (164)

which gives the likelihood of the observed state transitions st → st+1:

L = Πtπ
∗(st+1|st). (165)

This allows inference of the value function (and thus rewards) given observations of be-
haviour. They find inverse RL can recover synthetic data correctly, and also learn meaningful
rewards and values from observed data.

4.9. Fulcher, Phillips, and Robinson - Neural mass theoretic treatment of sleep/wake cycle
quantitatively predicts behaviour

Neural mass theory is a simple ODE model of neuronal dynamics in response to external
stimuli. Each distinct neuronal population (for example monoaminergic neurons) is treated
as a single variable, which represents the average firing rate of that population. When
two neuronal populations are connected, the mean cell body potential of the downstream
population changes as a sigmoid function of the firing rate of the upstream population.
External stimuli are represented as drives altering the mean cell body potential of each
population directly. Fulcher, Phillips, and Robinson [60] build on a previously developed
homeostatic model of sleep regulation due to the interaction between the mutually inhibitory
wake-promoting monoaminergic (MA) and sleep-promoting ventrolateral preoptic nuclues
(VLPO) neuronal populations [61]. In neural mass theory the firing of each population of
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cells is averaged out into a single mean firing rate, denoted QM for MA cells and QV for
VLPO cells. The firing rate Q of a population of cells is a sigmoidal function of the mean
cell-body potential of the population V

Q(V ) =
Qmax

1 + exp{−(V − θ)/sigma}
, (166)

where Qmax is the maximum firing rate, θ is the mean firing threshold relative to resting,
and σπ/

√
3 is the standard deviation of the firing rate distribution of the population. All of

these quantities are in principle measurable from electrophysiological experiments, and may
be measurable by two-photon imaging techniques. The two populations inhibit one another
and respond to exogenous drives DV and DM according to standard neural mass dynamics
(as reviewed in [62])

τV
dV

dt
= νVMQM +DV (167)

τM
dM

dt
= νMVQV +DM (168)

. (169)

The rate of response for a given neuronal population is τj and νjk is the strength of the effect
of populations k on populatio j, which can be negative (inhibitory) or positive (excitatory).
Fulcher, Philips, and Robinson explore the effects of a homeostatic and circadian sleep drives
H and C on VLPO as well as a constant drive A on MA, as well as impulsive drives ∆DV ,
∆DM such as loud noises. Drives to VLPO and MA are given by

DV = νV CC + νV HH + ∆DV (170)

DM = νMAA+ ∆DM . (171)

The dynamics of C and H are given by

χ
dH

dt
= µQM −H (172)

C(t) = sin(ωt) + c0, (173)

where χ is the clearance rate of the somnogen and µ gives the rate of somnogen production
when MA neurons are firing (indicating an awake state). C is circadian, so ω = (2π/24)h−1.
Comparison to experimental data reveals that the model predicts the level of auditory stimu-
lus required to wake sleeping subjects given the time since sleep onset. The similarity of this
system to the AGRP/POMC feeding control circuit is striking; a mutually inhibitory pair of
neurons with by homeostatic and circadian drives, whose dynamics in turn cause behaviour
that regulates the homeostatic state. It is possible that an application of neural mass theory
to the AGRP/POMC system may also yield quantiative predictions of behaviour.
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