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Model of Oligomer Formation 

The premise for the model below is that each peptide monomer can adopt a variety of 

conformations through intramolecular diffusion.  These conformations can be divided into two 

states, those that have hydrophobic patches exposed to solvent (M*) and those that don’t (M).  

Only those that have hydrophobic patches exposed to solvent can make stable dimers. A full 

model of all dimers that can be formed is  
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We make several assumptions: 

1) The formation of O is irreversible; that is, k-O ~ 0 

2) kO << k+
bi. 

3) It is not possible to measure the reconfiguration of encounter complexes, since they are 

extremely unstable.  We assume that their reconfiguration is the same as for the 

monomers, as they comprise of loosely bound monomers.  

4) Since there are no stabilizing interactions for [MM] and [MM*], the dissociation rate, k-
bi, 

for these complexes is purely diffusive. 

5) Bimolecular dissociation constants depend on the stabilizing interactions of the encounter 

complex.  kd is much smaller than k-
bi because there are attractive hydrophobic 

interactions in [M*M*]. 

 



To avoid going irreversibly to O, [M*M*] can dissociate to M* and M* or reconfigure to [MM*].  

Thus, for k-1>>kd, the primary flux of dissociation is through [MM*].   This complex is not very 

stable and so immediately comes apart.  Therefore we assume that [M*M*] can proceed directly 

to M+M*.  Thus, for k-O and kd sufficiently slow, and k-
bi sufficiently fast, the model can be 

approximated by scheme (ii), which has been used in previous versions of this model [1] 
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  (ii) 

The equations of the full model (scheme (i)) are 
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Terms containing k-O have been dropped because we assume k-O =0.  Solution of the full model is 

feasible with an ordinary differential equation solver. The initial concentration of the sum of all 

monomers is equal to 1 and the concentration of all other species equal to 0.  The Fig. S1 shows 

the evolution of all the species over time for the rates given in the table below. The concentration 

of  O follows bimolecular formation with the equation 
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where [O]max = 0.5.  The concentration of [O] for each set of parameters is fitted to Eq. (S2) and 

kf  is given in the Table S1.    

To solve the model we must make an estimate of each rate in Eqs. (S1).   The values of k+
bi  and 

k-
bi can be calculated from Fick’s equation of diffusion  
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where r ~ 2.5 nm, the average radius of each monomer as shown in Fig. 4c, and the translational 

diffusion coefficients, DM ~ DM* ~ 1x10-6 cm2 s-1 [2].   For a (arbitrary but typical) concentration 

of 45 k+
bi1.7 x 105 s-1.   The equilibrium of free bimolecular diffusion K=k+

bi/k-
bi=0.0019 

M-1, so the concentration of each of [MM] and [MM*] is very low and they come apart very 

quickly. As can be seen in Fig. S1 the populations of these species are always very low.   

We assume there are some stabilizing interactions between two M* so that kd<<k-
bi but it is 

difficult to assess quantitatively.  In Table S1 we show results of the model for k+
bi/kd= 10, 1, and 

0.1, and all produce oligomer formation rates with an order of magnitude of each other.  

Therefore, as long as kd is much less than the free dissociation rate, assessing this rate is not 

crucial.   

Using a similar formalism for the intramolecular diffusion rate, we estimate the monomer 

reconfiguration rate from the intramolecular diffusion coefficient and the average size of the 

chain, kr= 4D/(2<r>)2
.  Using the values in Table 1 calculated for both lengths of the peptide at 

pH 7.5, we calculate the reconfiguration rate at 40 C for A42 to be kr= 4.0x106 s-1 and for A40 

to be kr= 2.2x107 s-1.  This relaxation rate is a sum of the forward and backward reconfiguration 

processes, k1+k-1 = kr. 



A parameter that is difficult to assess is the equilibrium between M and M*, which is required for 

de-convolving k1 and k-1.  In Table S1 we show results for k-1/k1 ranging from .1 to 10 and 

compare the formation rates of O for A42 and A40.  The overall rates slow significantly as M* 

is less populated, but the ratio of the formation  rates for the two reconfiguration rates given 

above range from 3.7 to 5.2.  Since aggregation is rare, it seems likely that M is more populated 

than M*.   

We also compare results for various estimates of kO and the formation rates scale directly with 

this parameter. kO is impossible to assess directly and was chosen to be ~104 s-1 to make solution 

of differential equations tractable. This value is almost certainly too high, but the overall 

formation rate of [O] will scale directly with kO, as can be seen in Table S1.  If we assume kO is 

the same for different sequences, comparison between A lengths does not depend on an 

accurate estimate.     

Using the rates derived above and assuming k-1/k1=0.1, ko=1e4 s-1 and kd=1.7e4 s-1, we solved the 

Eqs. (S1) for A42 (highlighted in gray in Table S1) and A40 (highlighted in yellow in Table 

S1).  These results are shown in Fig. S1.

  



 

A

length

k1 (s-1) k-1 (s-1) k+
bi

 (s-1) k-
bi

 (s-1) kd (s-1) kO (s-1) kf from 

fit 

 (M-1s1) 

Ratio 

formation 

rates 

Comparing different estimates of kd  

42 2e6 2e6 1.7e5 9.6e7 1.7e6 1e4 451  

42 2e6 2e6 1.7e5 9.6e7 1.7e5 1e4 755  

42 2e6 2e6 1.7e5 9.6e7 1.7e4 1e4 810  

Comparing different estimates of kO 

42 2e6 2e6 1.7e5 9.6e7 1.7e4 1e4 810  

42 2e6 2e6 1.7e5 9.6e7 1.7e4 5e3 402  

42 2e6 2e6 1.7e5 9.6e7 1.7e4 2.5e3 199  

Comparing different estimates of k1/k-1 

42 2e6 2e6 1.7e5 9.6e7 1.7e4 1e4 810 5.2 

40 1.1e7 1.1e7 1.7e5 9.6e7 1.7e4 1e4 157 

42 .8e6 3.2e6 1.7e5 9.6e7 1.7e4 1e4 85.1 4.6 

40 0.44e7 1.76e7 1.7e5 9.6e7 1.7e4 1e4 18.6 

42 0.4e6 3.6e6 1.7e5 9.6e7 1.7e4 1e4 19.1 4.3 

40 .22e7 1.98e7 1.7e5 9.6e7 1.7e4 1e4 4.5 

42 3.6e6 0.4et 1.7e5 9.6e7 1.7e4 1e4 9709 3.7 

40 1.98e7 .22e7 1.7e5 9.6e7 1.7e4 1e4 2632 



 

Table S1.  Various parameters used in the solution to Eqs. S8 and the fitted formation rate of [O]. 
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Fig. S1.  Computed concentrations versus time for scheme (i) and Eq. (1) for each species (a) M, (b) 

M*, (c) MM, (d) MM*, (e) M*M*, (f) O.  The black lines represent the aggregation of A40 and use 

the parameters highlighted in yellow in Table S1.  The red lines represent the aggregation of A42 use 

the parameters highlighted in grey in Table S1. 
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