[Supplementary Information]

Chemical array system, a platform to identify novel hepatitis B virus entry inhibitors targeting sodium taurocholate cotransporting polypeptide

Manabu Kaneko^{1,2+}, Yushi Futamura³⁺, Senko Tsukuda^{1,4}, Yasumitsu Kondoh³, Tomomi Sekine⁵, Hiroyuki Hirano⁶, Kento Fukano^{1,7}, Hirofumi Ohashi^{1,2}, Wakana Saso^{1,8}, Ryo Morishita⁹, Satoko Matsunaga¹⁰, Fumihiro Kawai¹¹, Akihide Ryo¹⁰, Sam-Yong Park¹¹, Ryosuke Suzuki¹, Hideki Aizaki¹, Naoko Ohtani², Camille Sureau¹², Takaji Wakita¹, Hiroyuki Osada^{3¶}*, Koichi Watashi^{1,2,13¶}*

¹Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan, ²Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan, ³Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan, ⁴Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies (CLST), Wako, 351-0198, Japan, ⁵Bio-Active Compounds Discovery Research Unit, RIKEN CSRS, Wako, 351-0198, Japan, ⁶Chemical Resource Development Research Unit, RIKEN CSRS, Wako, 351-0198, Japan, ⁷Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, 204-8588, Japan, ⁸The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan, ⁹CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan, ¹⁰Department of Microbiology, Yokohama City University Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan, ¹²Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris, 75015, France, ¹³CREST, JST, Saitama, 332-0012, Japan.

^{+,} [¶] These authors contributed equally to this work.

*Address correspondence to:
Koichi Watashi, Ph.D.
Department of Virology II, National Institute of Infectious Diseases
1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
E-mail: kwatashi@nih.go.jp; Tel: +81-3-5285-1111; Fax: +81-3-5285-1161

Hiroyuki Osada, Ph.D. Chemical Biology Research Group, RIKEN CSRS 2-1 Hirosawa, Wako, Saitama 351-0198, Japan E-mail: hisyo@riken.jp; Tel: +81-48-467-9541; Fax: +81-48-462-4669

Supplementary Figure

Fig. S1

Fig. S1. Screening of the primary hit compounds in HBV infection assay. HepG2-hNTCP-C4 cells were treated with HBV in the presence or absence of compounds (100 μ g/mL) according to the scheme in Fig. 2A, and HBs antigen in the culture supernatant was detected by ELISA. Five compounds reduced the infection to less than 33% (red bar). Chenodeoxycholic acid and NPD1385 are bile acid analogs. This study focuses on one of the hits, NPD8716, shown in red.

Fig. S2. Schematic representation of the HBV life cycle. A summary of the HBV life cycle is described in the Results and Discussion section. The assays shown in Fig. 2, Fig. 3A, and Fig. 3B evaluate the whole life cycle, the replication process, and the viral attachment, respectively.

Fig. S3. The raw data of the Southern blot shown in Fig. 3A.