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Supplementary Methods

Supplementary Method 1: Thomson Scattering
A Thomson scattering diagnostic was used to characterize various properties of the colliding
jets. The Thomson scattering beam is a 30 J, 1 ns frequency doubled (526.5 nm wavelength)
laser that probes the plasma within a 50 µm2 region. The scattered light is collected with a
63o scattering angle and the geometry is such that the scattering wavenumber is parallel to the
axis of the flow. When fitting the Thomson scattering data, a 0.025 nm instrument function was
used and an electron density of .1020 cm−3 was assumed, as inferred from absolute calibration
of the total scattered signal (see below) and predicted by FLASH simulations. Within a factor
of 10 from this value for the electron density, the fitted Thomson scattering spectra showed
no appreciable change. The resolution of the streak camera was ∼50 ps and so the Thomson
scattering data was fitted every 100 ps.

We have investigated the potential plasma-heating effect resulting from the Thomson scat-
tering probe beam. A simple estimate of this heating is given by [1]
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where Te is the electron temperature (in eV), ne the electron density (in cm−3), Z the mean ion
charge, λ the laser wavelength (in cm), ω the laser frequency, I0 the probe laser intensity (in W
cm−2) and τ the laser pulse duration (in s). The above equation should be regarded as an upper
bound, because it does not take into account the rapid transport of heat away from the laser focus
by both convection and conduction. Indeed, the high electron thermal conductivity plays an
important role in making the temperature uniform in the interaction region (see below). Taking
an average value of ne ∼ 1020 cm−3 and assuming Te ∼ 450 eV, we get ∆Te/Te . 20%. More
quantitatively, the probe-heating effect was fully included in our FLASH simulations which
predicted similar values to these simple estimates.

In order to observe the flow properties before jet collision, a single-jet experiment was car-
ried out. The laser beams were fired on one side of the target only, and the Thomson scattering
probe beam started 28 ns, after a 10 ns long laser drive. For this shot, the Thomson scattering
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Supplementary Figure 1: Thomson scattering from a 10 ns laser drive. Flow velocity towards
grid B (full blue circles), turbulent velocity (full green squares) and electron temperature (full
red diamonds) as measured by Thomson scattering for the case of a 10 ns laser drive on both a
single-jet and double-jet interaction. The error bars are determined in the same way as in Figure
3b of the main text.

laser beam probed the plasma on the axis of the flow, at the midpoint between the two targets.
As shown in Supplementary Figure 1, before the collision, the jets had a velocity of ∼200 km
s−1 and electron temperature ∼220 eV.

For direct comparison with the single-jet experiment, we also used the Thomson scattering
diagnostic to determine flow properties from a double-grid shot, but with a 10 ns pulse shape. In
this case, the probe beam was initiated with the same timing and positioning as was used with
the 5 ns laser drive (described in the main text). The results are also shown in Supplementary
Figure 1: the turbulent velocity for the 10 ns drive is lower than the 5 ns one, as is the associated
electron temperature. Both are consistent with expected properties of the respective laser drives.

We have performed a full photometric calibration of the Thomson scattering system, recov-
ering the electron density from each shot via a comparison between the incident and scattered
power. Namely,

Pscatt = Pinc dΩ r2
0
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where Pscatt is the scattered power, Pinc is the incident power of the probe beam, dΩ is the
collecting solid angle, r0 = 2.818 × 10−13 cm is the classical electron radius, `TS = 50 µm is
the interaction length, ŝ is the unit Poynting vector, Êi0 is the probe beam’s electric field unit
vector, S(k) is the spectral density function, Z is the mean ion charge and ni is the ion density.
The incident power is provided by the on-shot calorimetry performed at the Omega laser. The
effective f-number of the optics was 9.1, giving a solid angle of 10−2 sr. The spectral density
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function is [1]

S(k) =
Zα4

(1 + α2) [1 + α2 (1 + Z)]
, (3)

which can be calculated using the previous Thomson scattering fits to the data. Here α is 1/kλD,
with λD the Debye length. In our experiment we have α � 1; in this limit Landau damping
vanishes [1]. We can therefore interpret the Thomson scattering signal using the Salpeter ap-
proximation. The shape of the ion feature (i.e., the low-frequency part of the scattering spectrum
due to the ion motions) is then a function of the parameter β2 = Z

(
α2

1+α2
Te
Ti

)
∼ Z [1]. For

carbon ions and nearly equal electron and ion temperatures, β ∼ 2.4 < 3.45 (see also p. 223
in Ref. 37). In this case, the real part of dielectric function has no real zeros and the spectrum
consists of a wide (Doppler broadened) central feature and two peaks at the wavelengths cor-
responding to the minima in the dielectric function. The scattered power was determined via
full photometric calibration of all the optics to convert the number of detected counts (on the
CCD camera) to energy. We find that for the collided jets with a 5 ns drive, the electron density
was ne = Zni ≈ 7 × 1019 cm−3, in agreement with FLASH predictions (see Supplementary
Figure 2).

Supplementary Figure 2: FLASH temperature and density variations in the plasma. (a)
Volume rendering of Te for the 5 ns laser drive at t = 35 ns. (b) Electron density (solid line)
and ion density (dashed line) profiles averaged in the jet interaction volume [the square box
in panel (a)]. The red square corresponds to the estimated electron density from Thomson
scattering photometric calibration. The vertical error is determined by the standard deviation
from different calibration shots. The horizontal error bar is determined by the fact the probe
laser has a 1 ns pulse length.
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Supplementary Method 2: X-ray Imaging and Power Spectrum of Density
Fluctuations
The effects of turbulence on the X-ray emissivity were investigated using images of the plasma
obtained from a framing camera. These images have a pixel size of δx ≈ 9µm, with an
estimated resolution l ≈ 50 − 100µm from the pinhole size and detector sensitivity. We char-
acterized relative fluctuations in detected intensity by performing spectral analysis of the jet-
interaction region, visible approximately half-way between the grids (see Figure 2 of the main
text). In order to distinguish small-scale density variation from large-scale inhomogeneities of
the interaction region, we constructed relative-intensity maps based on ‘coarse-grained’ mean
fields calculated via a 61×61 pixel smoothing filter – corresponding to an outer length scale
L ≈ 600µm – combined with a two-dimensional window function to remove edge effects.
Power spectra were then calculated by taking average values from a binned annular histogram
of a two-dimensional fast Fourier transform (FFT) applied to the relative-intensity image. To
reduce the effect of spectral distortion due to image defects [2] such as neutron hits or stria-
tions, various filtering methods were employed. Extreme outliers were systematically detected
by testing deviation from surrounding points, then removed using a median filter. Localized
defects tend to appear as anisotropic features in Fourier space. Their impact on the assigned
power-spectrum values was mitigated by using the median, rather than the mean, as a measure
of central tendency for each bin: the former is more robust against the outlying values typically
associated with such features. The efficacy of these methods was successfully tested by apply-
ing such defects on simulated Gaussian fields with prescribed spectra. To check the consistency
of the spectra obtained, the above analysis was performed on multiple regions in the image,
and various mean-field estimation methods were employed, including a variety of windowed
regions. The jump observed in the experimental spectrum at high wavenumbers (Figure 2c of
the main text) is most likely due to Poisson noise. This follows because, in the two-dimensional
spectrum, Poisson noise manifests itself as a constant feature: the distortion to the predicted 1D
spectrum is proportional to the wavenumber.

Fluctuations in the detected X-ray intensity are typically related to density fluctuations [3],
which in turn can be related to velocity perturbations under certain conditions. The radiative
energy flux (emissivity) from an optically thin plasma with T = Te = Ti is given by a cooling
function [4]

ε = ρκPσT
4 = κ0σρ

α+1T β+4, (4)

where σ is the Stefan-Boltzmann constant, ρ the mass density, and the functional form of
the Planck opacity has been assumed to be κP = κ0ρ

αT β , with κ0 a suitable constant. For
Bremsstrahlung-dominated radiation, β = −7/2 and α = 1, resulting in weak dependence on
temperature [4]. Since ρ ∝ n, we conclude that the emissivity can be written as

ε = Cnα+1T β+4, (5)

where C is a constant. Decomposing the number density and temperature into mean and fluc-
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tuating parts, viz.,
n = n0 + δn, T = T0 + δT, (6)

and assuming n0 � δn, T0 � δT , we find that the emissivity becomes
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(7)

where the mean emissivity is ε0 = Cnα+1
0 T β+4

0 . The intensity detected on the screen is then
given by the line-of-sight integral

I =

∫ `n

0

ε(x, y, z) dz

≈ I0 + (α + 1)

∫ `n

0

ε0(x, y, z)
δn

n0

dz + (β + 4)

∫ `n

0

ε0(x, y, z)
δT

T0

dz,

+
(α + 1) (α + 2)

2

∫ `n

0

ε0(x, y, z)
δn2

n2
0

dz +
(β + 4) (β + 5)

2

∫ `n

0

ε0(x, y, z)
δT 2

T 2
0

dz,

(8)

with mean-field intensity I0 defined by I0 ≡
∫ `n

0
ε0(x, y, z) dz, where `n is the size of the

plasma. Assuming `n to be larger than the scale of the dominant fluctuations l, and homogeneity
at small scales (an assumption discussed at the end of this subsection), we can separate the
various terms with a WKB-type (Wentzel - Kramers -Brillouin) approximation to give
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(9)

Note that we cannot necessarily neglect the quadratic terms in Supplementary Equation 9, be-
cause the linear integrals are reduced in magnitude by a factor (l/`n)1/2 due to the fluctuating
integrands; this reduction is not seen in the quadratic terms. In order to ignore the latter, we
would require δn/n0 < (l/`n)1/2 and δT/T0 < (l/`n)1/2. Yet, for 1D power spectra shallower
than k−2 this condition is not satisfied.

To proceed further, we need to use an equation of state to relate density and temperature
fluctuations. For example, in the case of subsonic, ideal gas motions, it can be shown from
pressure balance that

δn

n0

≈ −δT
T0

. (10)

This gives a quadratic relation between intensity and density fluctuations of the form

δI

I0

(x, y) ≈ c1
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(x, y, z) dz +
c2

`n

∫ `n

0

δn2

n2
0

(x, y, z) dz, (11)
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provided c1 and c2 do not vanish. Alternatively, a similar result can be obtained by assuming
that the temperature remains uniform in the plasma, thus neglecting temperature fluctuations
with respect to density fluctuations. Since thermal conductivity is large in our experiment, such
an assumption would be reasonable; furthermore, a relatively uniform temperature across the
interaction region is predicted by FLASH simulations (see Supplementary Figure 2). The above
considerations allow the (assumed homogeneous) intensity and density correlation functions,
defined by

C(I) (x′⊥ − x⊥) =

〈
δI

I0

(x⊥)
δI

I0

(x′⊥)

〉
, (12)

C(n) (x′ − x) =

〈
δn

n0

(x)
δn

n0

(x′)

〉
, (13)

C(n2) (x′ − x) =

〈
δn2

n2
0

(x)
δn2

n2
0

(x′)

〉
, (14)

to be related via

C(I) (x′⊥ − x⊥) =
c2

1

`n

∫ ∞
−∞

C(n) (x′⊥ − x⊥, rz) drz,+
c2

2

`n

∫ ∞
−∞

C(n2) (x′⊥ − x⊥, rz) drz, (15)

where we have used typical decay conditions on the density correlation function to extend the
integrals formally over the entire real line, and have neglected the cross-correlation between
δn/n0 and δn2/n2

0 on the grounds that such a term contains the same reduction factor as the
linear term, and so is negligible under the small fluctuation assumption δn/n0 � 1.

The 2D intensity spectrum P2D(k⊥), 3D density spectrum P3D(k), and 3D squared-density
spectrum P

(2)
3D (k), given by the Fourier transforms of Supplementary Equations 12, 13, and 14,

respectively, combined with the Wiener-Khinchin Theorem [5], are therefore related by

P2D(k⊥) =
2πc2

1

`n
P3D(k⊥, 0) +

2πc2
2
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P
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1
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2πc2
2

`n
P

(2)
3D (k⊥) . (16)

Isotropy of the statistics of the power spectrum was invoked for the last equality, and is justified
subsequently. We simplify Supplementary Equation 16 by noting that P (2)

3D (k) can be written

P
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∗
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∗
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〉
.

(17)
On account of the largest density fluctuations occurring at the smallest wavenumbers, the sum
on the RHS of Supplementary Equation 17 is dominated by wavemodes where k′, k′′ � k. This
is equivalent to assuming that the 1D power spectrum is decreasing, so that |δnk1 | > |δnk2| if
|k1| < |k2|; and as presented in the main text, for k � 2π/`n the 1D power spectrum is indeed
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decreasing. Under this assumption, Supplementary Equation 17 becomes

P
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〉
.

(18)
In short, for a decaying spectrum with small density fluctuations at k � 2π/`n the contribution
of P (2)

3D (k) to P2D(k) is simply to modify its amplitude. The desired relation

P3D(k) ∝ P2D(k) (19)

follows from Supplementary Equation 18 applied to Supplementary Equation 16.
In the subsonic regime, this relationship should hold more generally than for an ideal gas,

provided any linearized relationship deduced between density and temperature fluctuations from
the equation of state does not lead to the coefficients c1 and c2 vanishing in the quadratic-
intensity result, Supplementary Equation 11.

The approach described here was validated against numerical results. We have created a syn-
thetic X-ray emission image (Supplementary Figure 3a) using FLASH simulation results, post-
processed with the multi-dimensional collisional-radiative spectral analysis code SPECT3D
(http://www.prism-cs.com). Supplementary Equation 18 can be tested with simulated stochastic
density fields, and numerical results support it. For example, Supplementary Figure 3c shows
a comparison of P3D(k) to P

(2)
3D (k) for the density field resulting from FLASH simulations.

At large wavenumbers, the slopes of the density and squared-density spectra are similar, in
line with expectations from Supplementary Equation 18. We note that at such wavenumbers,
P

(2)
3D (k) is greater in magnitude than P3D(k), confirming the importance of keeping quadratic

terms in the expansion in Supplementary Equation 9. The discrepancy at smaller wavenum-
bers is likely indicative of the breakdown of the decreasing-spectrum approximation inherent in
Supplementary Equation 18.

Supplementary Figure 3b also provides a numerical test of Supplementary Equation 16, by
comparing for FLASH simulations the predicted 2D relative intensity spectrum to the true in-
tensity spectrum, assuming radiation is Bremsstrahlung dominated. With the exception of the
lowest wavenumbers, reasonable agreement is again seen. The difference between the two spec-
tra is presumed to arise from the fact that in the FLASH simulations the size of relative density
and intensity fluctuations on the largest scales are not asymptotically small: (δn/n0)rms ≈ 0.5,
and (δI/I0)rms ≈ 0.3. We believe that the disagreement for small wavenumbers is not a source
of concern, on the grounds that the calculated spectrum at such scales is already somewhat un-
certain due to k`n ∼ 1. To summarize, the numerical tests using FLASH simulations show that
inferring the true density spectrum from the experimental intensity spectrum using Supplemen-
tary Equation 16 seems to be a sensible approach.

In deriving Supplementary Equation 19, we assumed that the quantities δn/n0 and δI/I0

possess homogeneous and isotropic statistics. These are non-trivial assumptions, as the exper-
iment does not produce an infinite plasma; and while the target is close to being symmetric
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Supplementary Figure 3: Testing intensity and density spectral relations in FLASH. a) Syn-
thetic x-ray emission image for the 5 ns laser drive at t = 35 ns. The image has been generated
with the code SPECT3D using FLASH simulation results. b) Comparison of the exact intensity
spectrum resulting from FLASH simulations in the case of Bremsstrahlung-dominated radiation
(β = −7/2 and α = 1) to the intensity spectrum predicted by Supplementary Equation 16. c)
Comparison of the 3D density spectrum to the 3D squared-density spectrum, as calculated from
FLASH simulations. According to Supplementary Equation 18, at sufficiently large wavenum-
bers these spectra should be proportional to each other. The region from the FLASH simulations
used to calculate these spectra is the same as the region used to calculate the 1D density spec-
trum shown in Figure 2c of the main text.

around the direction parallel to the initial jet flow direction (hereon referred to as the line of
centers), the directions parallel and perpendicular to the line of centers could potentially lead to
anisotropic plasma statistics. However, these assumptions can be tested using the experimental
images, whose horizontal axis is parallel to the line of centers, and vertical axis perpendicular.
First, if emission statistics were inhomogeneous, we would expect to obtain different spectral
slopes from neighboring regions. Supplementary Figure 4a shows this not to be the case, with
close agreement in the spectra calculated from three adjacent regions composing the rectangu-
lar region denoted in Figure 2b of the main text. Second, for anisotropic intensity statistics, the
spectral slopes obtained by averaging sectors in k-space predominantly parallel and perpendic-
ular to the line of centers respectively would be distinct. Supplementary Figure 4b refutes this
by showing that the density spectra calculated using such a procedure have the same slope.

Supplementary Method 3: Faraday Rotation
We have implemented Faraday rotation measurements in the plasma using the Thomson scat-
tering diagnostic system already available at the Omega laser facility. Using a Wollaston prism,
the Thomson scattered light beam was separated into two orthogonal components, S and P. The
magnitude of the detected S and P polarizations IS and IP depends on three factors: the initial
polarization of the linearly-polarized probe beam, the relative transmission of the S and P com-
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Supplementary Figure 4: Testing homogeneity and isotropy assumptions for density spec-
trum. (a) Test of homogeneity assumption for the density spectrum, performed by dividing the
region of the X-ray image selected for analysis (denoted in Figure 2b of the main text by the
red rectangle) into three equally sized regions, then calculating the predicted 3D density spec-
tra for each. Blue saltires denote the upper region, squares the middle region, and circles the
lower region. For comparison, the spectra are plotted with a 3D Kolmogorov power law. The
upper wavenumber cutoff denotes the nominal resolution limit of the X-ray imaging diagnos-
tic. (b) Test of isotropy assumption for the density spectrum. The test consists of calculating
the two-dimensional FFT applied to the full region denoted in Figure 2b of the main text, but
calculating partial rather than full binned annular histograms from the FFT. Wavenumbers are
separated into those whose predominant direction is horizontal, and vertical, corresponding to
directions parallel and perpendicular to the initial direction of the plasma flows (the line of cen-
ters). The parallel and perpendicular spectra (denoted by crosses and saltires respectively) are
then calculated using the average values from each of the partial annular regions.

ponents through the diagnostic optics subsequent to their separation by the prism, and changes
to polarization due to Faraday rotation. Namely,

IS = AS I0 sin2 (θc + ∆θ) , (20)

IP = AP I0 cos2 (θc + ∆θ) , (21)

where I0 is the probe laser intensity, AS and AP the (distinct) transmission factors for each
polarization, θc the angle at which the S and P components are split by the prism, and ∆θ the
rotation due to the Faraday effect. Taking the ratio of Supplementary Equations 20 and 21, we
find

tan2 (θc + ∆θ) =
AP

AS

IS

IP

. (22)
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Supplementary Figure 5: Faraday-rotation calibration. Total Faraday-rotation signal for the
two polarizations for the case of a single jet driven with a 10 ns pulse profile.

If θc and the ratio AS/AP are known, the degree of Faraday rotation ∆θ can be calculated from
IS/IP.

In this experiment, the Faraday rotation diagnostic was set up so that the S and P components
are equally split by the prism, that is θc = 45o. To calculate the transmission ratio, we consider
the magnitude of the two components for a single jet case. The single-jet case can be used
for calibration, because the proton radiography diagnostic indicates that the magnetic fields are
small enough that the Faraday rotation angle is below detector sensitivity. In Supplementary
Figure 5, we show the raw image of the split polarizations and plot the summed intensity of
the signal for its entire duration. We determine the transmission ratio to be AS/AP = 0.43.
The use of this data for calibration is validated by the fact that the measured rotation angle
remains constant in time, as shown in Figure 3c of the main text. Since the resolution of the
streak camera is ∼50 ps, the Faraday rotation angle for other shots is then calculated at 100 ps
intervals.

When the Faraday-rotation angle is small, it is given (in Gaussian units) by [5]

∆θ =
λ2e3

2πm2
ec

4

∫ 2`n

0

ne(s)B‖(s) ds. (23)

It is appropriate to use twice the size of the plasma `n for the path length of the integral because
the geometry of the jet-interaction region is such that the Thomson scattering volume lies on the
opposing side to that from which the probe beam originates. The incident laser’s wavelength is
λ = 5.27× 10−5 cm, so this implies∫ 2`n

0

ne(s)B‖(s) ds = 2.4× 1023∆θG cm−2. (24)
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If the mean magnetic field is small or zero, the mean of the Faraday-rotation measure should
vanish and so measured values of it correspond to the standard deviation of the line-of-sight
integral in Supplementary Equation 24. This can be estimated by a random-walk argument:
assuming a random field has correlation scale `B, the typical deviation is equal to the deviation
acquired across one correlated structure multiplied by the square root of the number of such
structures encountered. Supplementary Equation 24 then implies√

`n`B neB‖ ∼ 1.7× 1023∆θ G cm−2, (25)

where `n is the length scale of the density profile and `B the scale of the magnetic structures
that have the largest amplitude. This estimate can be re-arranged to give the result stated in the
main text.

There are a range of effects to which the probe beam is subject but that can be reasonably
neglected in our analysis. The probe laser changes frequency – and hence wavelength – after
scattering, due to collective plasma effects in the probe-interaction region; however, the largest
such change will be of the order of the plasma frequency, and this corresponds to a maximum
wavelength shift ∆λ/λ . 30%. The error in Faraday rotation associated to this wavelength
modification is . 20%, which is less than the noise in the streak camera data. Due to the small
size of the electron Larmor frequency (Ωe ≈ 2 × 1012 s−1) compared to the laser frequency
(ω ≈ 4 × 1015 s−1), it can also be shown that other magnetic effects on the polarization – such
as the Cotton-Mouton effect – are much smaller in magnitude than the experimental error [6]
and can be safely omitted.

Supplementary Method 4: Proton Radiography
Proton deflections in the proton radiography diagnostic are primarily due to magnetic fields
rather than electric fields or effects such as Coulomb collisions and kinetic beam instabilities.
This can be seen from the energy map on the CR-39 plates. Supplementary Figure 6 shows
that, in the jet-interaction region, the mean proton energy has a uniform distribution without
pronounced density structures.

For arbitrary magnetic-field configurations and imaging beam parameters, relating analyt-
ical distributions of flux and the magnetic fields from which they arise is non-trivial. How-
ever, for radiographic setups similar to (and including) this experiment, a number of simpli-
fications can be made to improve tractability of the “reconstruction” problem of extracting
path-integrated magnetic fields directly from a given proton flux distribution. Based on such
an approach, here we discuss the formulas used to derive the images of path-integrated fields,
shown in Figure 4 of the main text, as well as the assumptions under which these formulas are
valid. A full derivation of these results is presented elsewhere [7].

We calculate path-integrated fields from the experimentally obtained proton-flux images,
assuming that the distribution of flux Ψ is related to the path-integrated field by a Monge-
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Supplementary Figure 6: Mean proton energy. Mean proton energy vs. position for the 15.0
MeV protons recorded on the CR-39 plate. The distribution is very uniform, indicating that the
structures seen in the flux images (see Figures 4c and 4d of the main text) are due to deflections
of protons by magnetic fields. a) Target with both grids, and with the two chlorinated plastic
foils driven with a 10 ns long pulse shape. The D3He capsule was imploded at t = 34 ns. b)
same as a) but with a 5 ns laser driver

Ampère equation [8] of the form

Ψ(∇φ(x⊥0)) =
Ψ0

|det∇∇φ(x⊥0)|
. (26)

In this expression,∇ ≡ ∂/∂x⊥0 is a gradient operator defined on a two-dimensional coordinate
system x⊥0 co-planar with the imaging screen (CR-39 plate), but with a scale reduced by the
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imaging magnification factor

M≈ rs + ri

ri

≈ 28 , (27)

where rs ≈ 27 cm is the distance from the plasma to the screen and ri ≈ 1 cm is the distance
from the proton source to the plasma. Ψ0 is the initial uniform flux distribution, but with its
magnitude multiplied by a scaling factor of M−2. ∇φ is a two-dimensional gradient map
related to the path-integrated magnetic field by

∇φ(x⊥0) = x⊥0 +
rsri

rs + ri

e

mpcvp

ẑ×
∫ li

0

ds B[x(s)] , (28)

where e is the proton charge, mp the proton mass, vp the proton speed, ẑ a unit vector perpen-
dicular to the imaging screen, li the size of the plasma, s the path length, and x(s) the trajectory
of a proton through the plasma with initial position x0 = (x⊥0, 0) and velocity v0. The gradient
map defined by Supplementary Equation 28 does not include explicitly the imaging magnifica-
tion factorM, which is instead incorporated into the scheme via the re-scaled initial flux Ψ0.
Although Supplementary Equation 26 is non-linear, it has a unique solution for ∇φ given any
(positive) flux distribution Ψ with a boundary condition

n̂ · ∇φ (x⊥0) = n̂ · x⊥0 on δS, (29)

where δS is the boundary of the region containing the flux distribution of interest, and n̂ the
normal to that boundary [8].

The flux relation of Supplementary Equation 26 with boundary condition the Supplementary
Equation 29 was inverted numerically using a finite-difference scheme applied to the parabolic
Monge-Ampère equation, the steady-state solution of which is the solution of the conventional
Monge-Ampère equation [9]. In implementing this field-reconstruction algorithm for actual
data, two filtering procedures were utilized. First, a Lucy-Richardson deconvolution algorithm
was applied to flux images [10, 11]. This is because the strength of path-integrated fields pre-
dicted by solving the Monge-Ampère equation is reduced in the case where strong, narrow
flux features are affected by finite image resolution (“smearing”). Some of these effects, such
as stochastic magnetic diffusion due to small-scale fields, are difficult to eliminate, due to un-
known parameters associated with smearing. However, the effect on image resolution due to
the finite size of the proton source has been shown to be a convolution of the “unsmeared” flux
image resulting from a point proton source with a point-spread function whose precise form is
determined by the velocity profile of the protons [7]. In the case of a fusion capsule, this point-
spread function has been well-described as Gaussian, with full-width-half-maximum (FWHM)
of 50Mµm ≈ 0.14 cm when including the imaging-magnification factor [12, 13]. Assum-
ing such a point-spread function for the experimental data, the Lucy-Richardson deconvolution
scheme was then implemented. For the particular flux images shown in Figure 4 of the main
text and Supplementary Figure 8, ten iterations were found to balance optimally the recovery
of the flux distribution with the undesired side effect of Poisson noise enhancement introduced
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by the deconvolution process. The efficacy of the deconvolution scheme is further enhanced by
the general robustness of the non-linear reconstruction algorithm to small-scale noise [7]. An
illustration of successful application of Lucy-Richardson deconvolution for simulated FLASH
proton radiography is given later (Supplementary Figure 10).

In addition to the deconvolution, a Gaussian high-pass filter (FWHM 2.2Mli ≈ 6.16 cm)
was applied to a selected flux region, in order to remove long-scale variation in the flux dis-
tribution. This procedure is required because, when implemented practically, the initial flux
produced by fusion capsules can vary by as much as 50% across a single CR-39 sample, though
variations over solid angles ≤ 1.1◦ are typically small compared to the mean flux [14]. Since
the dominant structures remaining in the reconstruction are of the order lB ∼ 300µm, and
order-unity flux features are still retained in the filtered flux image, we conclude that our field-
reconstruction algorithm captures the energetically dominant magnetic structures.

The flux regions of interest (shown in Figure 4 of the main text between the grids and rods)
typically have irregular shapes; to make them compatible with a rectangular finite-difference
grid, we embed each section of flux in a larger rectangular region, with the edge filled with
uniform mean flux (as calculated from the chosen sample). The initial flux is then chosen to be
entirely uniform, with mean value set equal to that of the experimental flux region. The recon-
struction algorithm is then applied, with Supplementary Equation 29 specified on the boundary
of the larger rectangular region. With the reconstruction completed, an image of the magnitude
of the calculated path-integrated field is then re-oriented to the original position of its associated
flux region.

The applicability of this scheme to our radiography setup depends on various assumptions:
paraxiality, small deflections, point-projection, and radiographic injectivity. Since the distance
ri from the proton source to the plasma is much greater than the size `n of the plasma, we can
approximate the section of the beam passing through the plasma as planar, despite the fact that
proton beams generated by fusion reactions in a D2 capsule implosion generally take the form
of a uniformly expanding spherical shell [13]. For a given proton, this paraxial approximation
is effectively an expansion of the position and velocity of the particle in terms of the paraxial
parameter

ϕ0 ≡
`n
2ri

� 1 , (30)

the ratio of the size `n of the region being imaged to the radius ri of curvature. For our experi-
ment, we have `n ≈ 0.06 cm, ri ≈ 1 cm, giving ϕ0 ≈ 0.03 � 1, as required. This means that
the initial velocity v0 of a proton with initial position x0 before interaction with magnetic fields
can be written as

v0 = vp

(
ẑ +

x⊥0

ri

)
. (31)

Next, typical proton-velocity deflections are assumed small compared to the initial proton ve-
locity. More precisely, it can be shown by integrating the equations of motion under this as-
sumption that a proton with initial position x0 and velocity v0 acquires a velocity perturbation
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w due to magnetic forces given by

w ≈ e

mpcvp

v0 ×
∫ li

0

ds B(x(s)) ≈ e

mc
ẑ×

∫ li

0

ds B(x(s)) . (32)

The second approximation is obtained by substituting the initial velocity (Supplementary Equa-
tion 31) and neglecting O(ϕ0) terms. Supplementary Equation 32 implies that the deflection
velocity of a proton is perpendicular to its initial direction – that is, w ·v0 ≈ w · ẑ ≈ 0 – and so
the deflection angle of the proton is given by

∆ϕ ≡ |w|
vp

∼ eB`n
mcvp

. (33)

For our experiment, Figure 4f of the main text shows that the maximum predicted path-integrated
magnetic field takes a value of 6 kG cm, which in turn gives maximum predicted deflection ve-
locity w ≈ 5.7× 107 cm s−1. For the slowest species of proton used for imaging (3.3 MeV), we
have vp ≈ 2.5× 109 cm s−1, so ∆ϕ ≤ 0.02 for all imaging protons. For magnetic fields varying
over shorter length scales, this value is further reduced.

The point-projection assumption – that the distance rs from the plasma to the screen is much
greater than `n – also holds, meaning that displacements from undeflected proton trajectories
acquired inside the plasma due to magnetic forces are negligible compared to the displacements
resulting from the free motion of particles after they have exited the plasma, with deflected
velocity.

The mapping Supplementary Equation 26 implicitly assumes that no trajectories cross be-
fore the protons reach the screen, i.e., that the gradient map (Supplementary Equation 28) is
injective. It is not necessarily clear from any particular image whether or not it is injective,
an issue discussed at length in [7]. Non-injective images can occur in radiographic setups,
and are typically characterized by strong flux features known as caustics, which can be hard to
distinguish from strong yet injective flux structures in the presence of effects limiting spatial
resolution (smearing effects), such as finite proton-source size. Applying a field-reconstruction
algorithm to an image formed by a non-injective gradient map can lead to inaccurately inferred
magnetic field morphologies, and underestimates of field strengths [7]. Indeed, the solution
of the Monge-Ampère equation is known to provide a lower bound on the RMS of all path-
integrated field strengths that can generate a particular flux distribution [8]. However, we claim
that for the 15.0 MeV proton images from our experiment, non-injectivity of the gradient map
would not significantly alter the reconstructed path-integrated field. The justification of this
claim is given in subsequent paragraphs.

An alternative test of the field reconstruction algorithm can be carried out by generating an
artificial proton flux image, with the deflections of simulated protons determined by the recon-
structed path-integrated field combined with Supplementary Equation 32 (see Supplementary
Figure 7a). The test consists in comparing these synthetic images to the experimental ones.
The result is that they agree fairly well, although the strength of the strong, narrow flux fea-
tures in the predicted flux image is reduced compared to the experimental one. Enhancing the
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path-integrated field by 20% recovers the observed strength of flux features (see Supplementary
Figure 7b), suggesting that the reconstructed path-integrated field as shown in Figure 4f of the
main text is marginally underestimated.

The imploding capsule also produces 3.3 MeV protons from DD reactions, with associated
smaller velocity v ≈ 2.5× 109 cm s−1. These slower protons are recorded independently from
the faster, 15.0 MeV protons; the DD equivalents of the D3He images (displayed in Figure 4
of the main text) are shown in Supplementary Figure 8. For both a single grid experiment
(Supplementary Figure 8a), and at early times in a double grid experiment (Supplementary
Figure 8b) these 3.3 MeV proton images show relative uniformity, placing an upper bound
on the strength of the magnetic field. At later times (Supplementary Figure 8, panels c and
d), similar order-unity flux structures can be seen in the 3.3 MeV proton images, as expected
from the inverse velocity dependence of the small-deflection angle criterion, Supplementary
Equation 33. The similar positioning of these flux structures to structures present in 15.0 MeV
proton images is intuitively less obvious, but matches previous findings both for simple analytic
cases and other experiments [15]. The increased thickness of the structures in Supplementary
Figure 8 compared to those in the 15.0 MeV flux images is consistent with the existence of
caustics in the former. As a result, applying the field-reconstruction algorithm to the 3.3 MeV
images gives path-integrated fields (Supplementary Figure 8, panels e-h)that underestimate field
strength compared to those recovered from the 15.0 MeV images.

Despite the presence of caustics, the 3.3 MeV proton radiographs can be used to verify the
assumption of injectivity of the 15.0 MeV images. The turnover time of the plasma motions
(L/uL ∼ 6 ns) is much greater than the difference in transit time of the two species of pro-
tons used for imaging (≤ 0.2 ns). Therefore, to a good approximation, the 3.3 MeV and 15.0
MeV protons are deflected by the same magnetic fields. As a result, any path-integrated field
reconstructed from the flux image of one proton species should be consistent with flux images
obtained for the other species. This can be tested by generating a predicted image using a recon-
structed field from one proton species combined with mapping (Supplementary Equation 28),
but varying the initial proton speed to match that of the other proton species. When such a test
is carried out for the 15.0 MeV proton reconstructions, the morphology of predicted 3.3 MeV
proton images agrees well with the actual 3.3 MeV proton images – see Supplementary Fig-
ure 7c for example. Further, numerical experiments investigating the use of our reconstruction
algorithm in the regime where caustic appearance cannot be detected by the test given above
suggest that the predicted path-integrated field morphology remains relatively robust, though
field strength can be somewhat underestimated [7]. This is consistent with the observation (see
Supplementary Figures 7b and 7d) that a 20% increase in field strength still leads to similar flux
features.

The spectrum of magnetic field energy EB(k) can be calculated directly from the path-
integrated magnetic field if the field’s statistics are assumed isotropic [7]. Specifically, the
experimental spectrum shown in Figure 4g of the main text and the simulated spectra shown in
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Supplementary Figure 7: Validation of field reconstruction algorithm. (a) 15.0-MeV flux
image predicted using reconstructed path-integrated magnetic field shown in Figure 4f of the
main text. The image is created by seeding uniformly test protons in the region over which
the path-integrated field is defined (marked by a dashed red line), before assigning velocities
to those particles. These velocities are given by the combination of a particle’s initial velocity
(Supplementary Equation 31) before interacting with fields, and velocity perturbation (Supple-
mentary Equation 32) due to magnetic fields. The particles are then allowed to propagate to
the screen, with dimensions set equal to those in the experiment. The mean flux in each region
is set equal to the mean flux of the experimental image. To account for finite source size, a
Gaussian point spread function with FWHM 50Mµm ≈ 0.14 cm is subsequently applied to
the images. (b) Same as (a), but with the strength of the path-integrated field increased by 20%.
(c) 3.3-MeV flux image predicted using reconstructed path-integrated magnetic field shown in
Figure 4f of the main text (cf. Supplementary Figure 8d). The path-integrated field experienced
by the slower proton species is the same, but their initial perpendicular velocity is reduced,
leading to larger deflections. (d) Same as (a), but with the strength of the path-integrated field
increased by 20%.
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Supplementary Figure 8: Lower-energy proton radiography. Radiographs displaying DD 3.3
MeV proton flux as recorded on the CR-39 plate. (a) Capsule implosion at t = 22 ns, with only
one foil, driven using a 10 ns laser pulse. (b) Capsule implosion at t = 29 ns, with both foils,
driven with a 10 ns laser pulse. (c) Same as (b) but at t = 34 ns. (d) Same as (c) but driven with
a 5 ns pulse.
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Supplementary Figure 10 are calculated using

EB(k) =
1

4π2`n
kEpath(k) , (34)

where Epath(k) is the one-dimensional spectrum of the path-integrated magnetic field. The
RMS value of the magnetic field can then be evaluated by integrating over all wavenumbers to
give

B2
rms = 8π

∫ ∞
0

EB(k) dk . (35)

In practice, the values of the RMS field strength given in the main paper are calculated by sum-
ming over pixel values of a Fourier-transformed sample of zero-mean path-integrated magnetic
field (the region denoted by a dashed curve in Figure 4f of the main text). Prior to the jet colli-
sion, the electron-density scale length is larger, of order the grid’s lateral dimensions `n ≥ 3 mm
(we know this from FLASH simulations). However, as the collision occurs, and the turbulent
jet-interaction region forms, the density scale increases to `n ∼ 0.6 mm, as stated in the main
text.

We have also noted in the main text that the magnetic energy spectrum derived from the
experimental proton radiography data using Supplementary Equation 34 is suppressed at small
wavelengths (. 100 µm). We emphasize that this may not be indicative of the true spectrum,
which could follow a flatter power law – yet this would not be reproduced using the recon-
struction method. In essence, this is because the injectivity assumption required above for the
reconstruction to be valid is scale-dependent. Small-scale magnetic structures are more likely
to lead to the crossing of trajectories of neighboring protons than larger structures of the same
field strength, even though the deflections associated with the small structures are smaller. For
multi-scale stochastic magnetic fields, this means that the reconstruction algorithm applied to
small-scale flux structures will produce an underestimate of small-scale path-integrated fields –
which in turns leads to the suppression of small wavelengths in the magnetic energy spectrum.
In the limit of very small structures, this lack of injectivity manifests itself diffusively, effec-
tively leading to an additional smearing effect. This phenomenon is demonstrated below for the
stochastic magnetic fields produced in the FLASH simulation.

Supplementary Method 5: The Collisional Approximation
Starting with the measured values for flow velocities, temperatures, magnetic fields, and den-
sities as given by various experimental diagnostics, we can fully characterize the plasma state.
The calculated Debye length is λD ≈ 6.8 × 10−7 cm, which is larger than the ion separation
length n−1/3

i ≈ 3.5× 10−7 cm: this indicates that the average number of particles in the Debye
sphere is large, and hence the plasma can be described classically. The Coulomb logarithm is
found to be log Λ ≈ 7.

Assuming an underlying Maxwellian distribution, the ion-ion mean free path is λii ≈ 1µm,
which (as would be expected for a classical plasma) is larger than the Debye length, but smaller
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Quantity Formula Value

Average atomic weight (M ) C (49.9%) H (43.8%) Cl (6%) 8.5 a.m.u.

Average ion charge (Z) C (49.9%) H (43.8%) Cl (6%) 4.4

Temperature after collision (Te = Ti) ∼ 450 eV

Electron density (ne) 1020 cm−3

Outer scale (L) 0.06 cm

Turbulent velocity (uL) 100 km s−1

Magnetic field (B) 120 kG

Coulomb logarithm (log Λ) 23.5− logn
1/2
e T

−5/4
e −

√
10−5 +

(log Te−2)2

16
∼ 7

Debye Length (λD) 7.43× 102 T 1/2

(ne(1+Z))1/2
6.8× 10−7 cm

Sound speed (cs) 9.80× 105 [ZTe+(5/3)Ti]
1/2

M1/2 1.8× 107 cm s−1

Mach number uL/cs . 1

Plasma β 4.0× 10−11 neT
B2 125

Ion-ion mean free path (λii) 2.88× 1013 T 2
i

Z4ni log Λ
9.8× 10−5 cm

Electron-ion equilibration time (τie) 3.2× 108 MT
3/2
e

Zne log Λ
8.4× 10−9 s

Electron Larmor radius (ρe) 2.38 T
1/2
e

B
4.2× 10−4 cm

Ion Larmor radius (ρi) 1.02× 102 M1/2T
1/2
i

ZB
1.2× 10−2 cm

Viscosity (ν) 1.92× 1019 T
5/2
i

M1/2Z4ni log Λ
4.7× 102 cm2 s−1

Fluid Reynolds number (Re) uLL/ν ∼ 1200

Viscous dissipation scale (lν) L/Re3/4 2.8× 10−4 cm

Resistivity (µ) 3.2× 105 Z log Λ

T
3/2
e

1.0× 103 cm2 s−1

Magnetic Reynolds number (Rm) uLL/µ ∼ 600

Resistive dissipation scale (lµ) L/Rm3/4 4.9× 10−4 cm

Magnetic Prandtl number (Pm) Rm/Re < 1

Supplementary Table 1: Summary of relevant plasma parameters related to the experiment.
The units system used for all physical quantities in the above formulas is Gaussian CGS, except
temperature expressed in eV.
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than all relevant hydrodynamic length scales. This would seem to imply that the plasma is
collisional. However, we also need to account for the fact that the plasma formation of the
central interaction region is due to two counter-propagating streams. This configuration [16]
can lead to kinetic effects such as the Weibel instability that can generate and amplify magnetic
fields, as has been observed in laboratory experiments [17,18]. However, the Weibel instability
can only occur in a collisionless or weakly collisional plasma, since collisions strongly suppress
its growth rate [19].

To assess the role of the Weibel instability in our experiments, it is helpful to consider three
temporal phases: (i) what happens in the two plasma flows before they collide; (ii) what happens
when the two plasma flows initially collide, creating a region where counter-propagating flows
exist; (iii) and what happens after the interaction region forms.

After their formation, the two plasma flows are strongly collisional and, before they collide,
there is no region where counter-propagating flows exist. Therefore the Weibel instability does
not occur during phase (i).

Counter-propagating flows exist during phase (ii). The characteristic length scale of the
Weibel instability is `EM ∼ c/ωpi, the ion inertial length, where ωpi is the ion plasma frequency.
If the mean free path for carbon ions (which are the majority of the high-Z ions in the plasma)
is smaller than `EM, carbon ion-ion collisions will suppress the Weibel instability.

To assess the role of the Weibel instability during phase (ii), we use the plasma parame-
ters for the single jet case (Te ∼ Ti ∼ 220 eV, U ∼ 2 × 107 cm s−1) measured using Thom-
son scattering for each of the two counter-propagating plasma flows (see earlier discussion on
Thomson scattering). From the FLASH simulations, we estimate a typical ion density for the
flows ni ∼ 1.1 × 1018 cm−3. Given the plasma composition, the carbon ion number density is
then nZ ∼ 5.5 × 1017 cm−3. Using these parameters, the characteristic length of the Weibel
instability for carbon ions is:

`EM ∼ c/ωpi ∼ 2.28× 107Z−1

(
M

nZ

) 1
2

(36)

∼ 180µm

(
Z

6

)−1(
M

12 a.m.u.

) 1
2
(

nZ
5.5× 1017 cm−3

)− 1
2

.

By comparison, the ion-ion mean free path for carbon collisions when the temperature of the
colliding flows is much smaller than the ion energy due to bulk flow velocity [20–23] is:

`mfp ∼ 5× 10−13 M
2U4

Z4nZ
(37)

∼ 160µm

(
Z

6

)−4(
M

12 a.m.u.

)2(
nZ

5.5× 1017 cm−3

)−1(
U

2× 107 cm s−1

)4

.

Since `mfp < `EM we conclude that the Weibel instability is not important during phase (ii).
For phase (iii), we consider two spatial regions: (a) the surface layers of the interaction

region that the plasma flows penetrate and (b) the remaining volume of the interaction region.
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To assess the role of the Weibel instability in the surface layers of the interaction region that
the plasma flows penetrate, we use the plasma parameters for the interaction region given in
Supplementary Table 1 (Te ∼ Ti ∼ 450 eV, ni ∼ 2.3 × 1019 cm−3). The number density of
the carbon ions in the interaction region is then nZ ∼ 1.2 × 1019 cm−3 and each plasma flow
collides with the interaction region with velocity U ∼ 2× 107 cm s−1. The characteristic length
scale of the Weibel instability is then `EM ∼ 38µm. By comparison, the mean free path for
ion-ion collisions is `mfp ∼ 7µm. Since `mfp < `EM the Weibel instability is not important in
region (a). The plasma in the remaining volume of the interaction region is strongly collisional,
so the Weibel instability is not important in region (b), either.

Thus the Weibel instability is not important during any of the three temporal phases of the
experiment.

Since kinetic effects are not important, it is reasonable to describe the developed interaction-
region plasma as collisional, with approximately Maxwellian distributions for both electrons
and ions. Under this assumption, the temperature equilibration time between ions and electrons
is calculated to be τie ≈ 8.4 ns, which is consistent with the assumption of a plasma in thermal
equilibrium. Following on from this conclusion, we can estimate various transport coefficients.
The appropriate form of these depends on the magnetization of the component species in the
plasma; the Larmor frequencies for electrons and ions (assuming B ≈ 120 kG) multiplied by
their respective collision times are

Ωiτii ≈ 5.8× 10−2 � 1 Ωeτie ≈ 2.3 > 1. (38)

This implies that the electrons are weakly magnetized, and ions are entirely unmagnetized. The
magnetized state of the electrons has various consequences: anisotropization of the thermal
and electrical conductivities and the appearance of various terms in the generalized Ohm’s law
associated with a finite electron Larmor radius. However, since ion flows dominate bulk motion,
it might be inferred that the plasma dynamics would be relatively unaffected by this.

Thus, we conclude that conventional resistive MHD provides a reasonable description of
the plasma dynamics. Since Te ∼ Ti, the electrical conductivity is essentially determined by the
electrons, and the viscosity by ions [24]. This gives diffusivities

ν ≈ 4.7× 102 cm2 s−1, µ ≈ 1.0× 103 cm2 s−1. (39)

A summary of relevant parameters related to the experiment is given in Supplementary Table 1.

Supplementary Method 6: FLASH 3D Simulations
The experimental platform was designed using FLASH radiation-MHD simulations. FLASH
is a parallel, multi-physics, adaptive-mesh-refinement (AMR), finite-volume Eulerian code [25,
26]. The code scales well to over a 100,000 processors, and uses a variety of parallelization
techniques including domain decomposition, mesh replication, and threading to utilize hard-
ware resources optimally. The code is publicly available (http://flash.uchicago.edu) and allows
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Supplementary Figure 9: FLASH simulation results. Simulated proton radiographs (left col-
umn) created by passing a proton beam through FLASH-predicted magnetic fields (right col-
umn); path-integrated fields reconstructed from the simulated radiographs (middle column). (a)
Simulated number of 15 MeV protons detected on a CR-39 plate. The D3He capsule was im-
ploded at t = 22 ns. Fusion reactions occur 0.6 ns after the start of the implosion and the
protons are emitted isotropically within a short burst, of ∼150 ps duration. The flight time of
the protons to the plasma is 0.1 ns. This particular target had only grid A and a single plasma
flow. The chlorinated plastic foil was driven with a 10 ns long pulse shape (see Figure 1 of the
main text). (b) Same as (a) but with the capsule imploded at t = 29 ns. This target had both our
grids and the two chlorinated plastic foils were driven with a 10 ns laser pulse. (c) Same (b), but
with the D3He capsule imploded at t = 34 ns. d) Same as (c), but with the chlorinated plastic
foils driven with a 5 ns long pulse, which gives higher flow velocities, hence higher magnetic
Reynolds numbers and more pronounced structures. (e) Reconstructed path-integrated mag-
netic fields for case (a). (f) Same for case (b). (g) Same for case (c). (h) Same for case (d). (i)
Magnetic field rendering for case (a). (l) Same for case (b). (m) Same for case (c). (n) Same for
case (d).
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one to model problems in a wide range of disciplines including astrophysics, cosmology, com-
bustion, fluid dynamics, turbulence, and high-energy-density laboratory plasmas (HEDLP).

To design the experiments, we performed an extensive series of moderate-fidelity 2D cylin-
drical FLASH radiation-MHD simulations on the Beagle 2 cluster at the University of Chicago
followed by a smaller set of high-fidelity 3D FLASH radiation-MHD simulations on the Mira
supercomputer at the Argonne National Laboratory. This simulation campaign is described in
detail in a companion paper [27]. The numerical modeling of the experimental platform em-
ployed the entire suite of HEDLP capabilities [27, 28] of the FLASH code: three-temperature
(3T) MHD solvers [29], non-ideal MHD effects such as magnetic resistivity [28] and Biermann
battery [30, 31], heat exchange between ions and electrons, implicit (using the HYPRE library,
https://computation-rnd.llnl.gov/linear solvers/software.php) thermal conduction and radiation
transport in the multi-group diffusion approximation, 3T tabulated equations of state and mate-
rial opacities, and laser beams that are modeled with geometric-optics ray-tracing and deposit
energy via inverse Bremsstrahlung. The FLASH code has a well-established record in modeling
turbulent flows, magnetized turbulence, and dynamo action. A number of articles have used the
code to simulate compressible and weakly compressible hydrodynamic turbulence [32–35] and
turbulent amplification of magnetic fields [36–38].

We have used the FLASH code to simulate the experiment and reproduce the diagnostics
results as shown in Figure 4 of the main text. This is illustrated in Supplementary Figure 9.
The computational domain spans 0.625 cm in the X and Y directions, and 1.25 cm along Z –
the line of centers between the two targets. The spatial resolution is ∼ 25 µm. Supplementary
Figure 9 clearly shows the same trend that is seen in the experimental data: a significant increase
of the magnetic field following the collision of the two plasma flows. This is reflected in both
the change in morphology of the proton radiographs, and in the path-integrated magnetic fields.

The FLASH code can also be used to investigate the efficacy of some of the techniques em-
ployed for analyzing the proton radiographs: in particular, the Lucy-Richardson deconvolution
scheme used to correct for a finite proton source size, and the calculation of Brms. Synthetic
proton radiographs can be generated using the FLASH simulation with both a point source (Sup-
plementary Figure 10c) and a more realistic finite 40µm source (Supplementary Figure 10a).
This allows the reconstructed path-integrated field from the point source to be compared with
the reconstructed field from the finite source, both with and without the use of the deconvolu-
tion algorithm (Supplementary Figure 10). Supplementary Figure 10a shows that without the
deconvolution algorithm, the reconstruction process leads to lower field strengths. However,
Supplementary Figure 10b shows that with the deconvolution algorithm, a much closer match
is achieved. This is also reflected in the magnetic-field spectra (Supplementary Figure 10d)
predicted from the proton radiography using Supplementary Equation 34.

As mentioned in the main text, FLASH also gives the magnitude of the RMS field generated
initially by the laser interaction as . 4 kG. The simulated time history of the magnetic field and
its amplification (peak values Bmax and RMS values Brms in a 500 µm control volume that
tracks the plasma front and the interaction region, see also [27]) is given in Supplementary Fig-
ure 11b. In order to assess the impact of the Biermann battery mechanism in the amplification
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Supplementary Figure 10: Effect of proton capsule size. (a) Synthetic reconstruction of the
path-integrated magnetic field from simulated proton radiography images creating using a finite-
size proton source of diameter 40 µm. (b) Same as (a) but with the Lucy-Richardson deconvo-
lution scheme included in the reconstruction algorithm. (c) Same as (a) but with a point source
of 2× 10−6 µm diameter. d) Extracted magnetic-field spectra for the three previous cases.
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process, we repeat our calculations and turn the Biermann battery term off in the interaction
region (Supplementary Figure 11a), for times t > 23 ns. The resulting time histories (dashed
lines in Supplementary Figure 11b) do not show significant difference from those done includ-
ing the Biermann effect at all times (solid lines in Supplementary Figure 11b). This applies to
both peak and RMS values of the magnetic field in the interaction region.

The FLASH magnetic fields can also be used to illustrate the phenomenon described above
of suppression of small-wavelength structures when reconstructing magnetic spectra from pro-
ton radiographs. Supplementary Figure 11c shows the magnetic energy spectrum derived from
the path-integrated field as measured by test protons used for imaging, as well as from the re-
constructed path-integrated magnetic field from synthetic proton images of FLASH magnetic
fields. The latter in particular shows a much steeper tail than the true FLASH spectrum, with a
slope that matches the experimental results of Figure 4g of the main text.

The FLASH simulation results have also been used to recover estimates of the Faraday rota-
tion angle, as in Figure 3c of the main text. To compute the angle, we integrate Supplementary
Equation 23 along the complete path of the optical Thomson scattering beam. The latter is
discretized into multiple two-segment lines, each of which connect the entry port of the diag-
nostic laser with a computational cell in the scattering volume, and the computational cell in
the scattering volume with the collection lens. The line integrals are subsequently averaged and
weighed by the electron density of the cell in which they “scattered,” to yield a time-resolved
Faraday rotation angle. Supplementary Figure 11d shows the resulting angle (solid blue line)
for a 3 ns interval, starting at 32.5 ns as the blue line in Figure 3c of the main text. The simulated
rotation angle is qualitatively similar to the experimental result and undergoes sign reversals on
comparable timescales. As a consistency check, the simulated RMS angle can also be used in
the scaling equation for B‖,rms in the main text (assuming ne = 1020 cm−3 and `n`B = 0.2 mm2

as in the experiment). The resulting RMS magnetic field is in good agreement with the in situ
measurement of Brms shown in Supplementary Figure 11b, for the same time interval, corrob-
orating the estimate of `n`B. Conversely, the simulated Faraday rotation angle for the single
flow case (green solid line in Supplementary Figure 11d) has negligible values, as expected: the
seed magnetic fields carried by the plasma flow are too weak to incur a significant change in the
polarization angle (see also the green line in Figure 3c of the main text).
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Supplementary Figure 11: Magnetic field generation in the jet interaction region. (a) Ren-
dering of the FLASH magnetic field strength at t = 40 ns for the 5 ns laser drive. The region
where the Biermann battery is turned off is outlined by white boundaries. (b) Evolution of
maximum field strength, Bmax, and the RMS field, Brms, in the control volume indicated by a
square box in panel (a). The plot includes both the results of the full simulation (solid lines),
and a simulation where the Biermann battery term was switched off after 23 ns (dashed lines).
(c) Magnetic energy spectrum calculated inside the 500 µm control volume using three meth-
ods: using FLASH magnetic field values (red squares, see also Figure 2d of the main text);
integrating the simulated magnetic field in the control volume along the proton probe path (blue
diamonds); and from the reconstructed field from FLASH synthetic proton radiography images
(purple circles). (d) Synthetic Faraday rotation angle from the FLASH simulations: the green
solid line corresponds to the single flow case when the diagnostic is probing the seed magnetic
fields that are advected into the turbulent region. The line is flat and near zero, consistent with
weak magnetic fields. The blue solid line corresponds to the colliding flows case, when the di-
agnostic is probing the magnetic fields after their amplification (see also Figure 3c of the main
text). The line exhibits time-variability and Faraday rotation angles of a few degrees, consistent
with fluctuating strong magnetic fields.
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