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Supplementary Discussion 

There is an extensive history demonstrating that iron-sulfur clusters (ISCs) are particularly 
sensitive to O2 [1]. Approximately 3 billion years ago when the concentration of O2 in the Earth’s 
atmosphere was minimal [2], one of the most important reactions for all future life on Earth was the 
fixation of N2 to NH3 or other molecules, a reaction carried out by the enzyme nitrogenase [3]. A key 
feature of nitrogenase is that it contains ISCs required for its function. Indeed, NFS1 (homolog of 
Nitrogen-Fixing bacteria S) was named for the role of NFS1 homologs in supporting nitrogen fixation [4]. 
Nitrogenase activity is highly sensitive to the concentration of O2 [3, 5]. Therefore when the earth’s 
atmosphere underwent an increase in O2 concentration approximately 2.5 billion years ago, microbial life 
likely evolved mechanisms to protect the nitrogenase from damage [2]. This phenomenon can be 
observed in cyanobacteria, where the nitrogenase reaction is carried out largely in heterocysts [6, 7], 
specialized structures that exclude O2 [5, 8].  

Another interesting system which demonstrates the sensitivity of ISCs to O2 is the E. coli enzyme 
fumarate and nitrate reductase (FNR). FNR acts as a physiologic O2 sensor with an ISC switch: in 
hypoxic conditions FNR contains an ISC, permitting nucleic acid binding and the transcriptional 
activation or repression of hundreds of oxygen responsive genes, analogous to the mammalian HIFs 
(reviewed in [9]). Importantly, in a high oxygen environment, the FNR ISC directly interacts with O2, 
resulting in cluster degradation [10]. These experiments, and others, have led scientists to conclude that 
the FNR cluster degrades according to the following chemical equation [9]: 

 

Moreover, ISCs are well-established to be oxidized by O2 in vitro and in vivo. Biophysical 
methods such as EPR, UV, and circular dichroism spectroscopy on isolated proteins have been used to 
demonstrate that O2 can degrade ISCs [9, 11, 12]. Despite these important examples, one can still imagine 
a scenario by which O2 is converted to another reactive oxygen species which then leads to cluster 
degradation. While the antioxidant defenses of the cell severely curtail the presence of H2O2 and O2

–, 
several studies also directly address the differential ability of O2 and other reactive oxygen species to 
degrade ISCs. Quoting from [1]: 

Importantly, [the enzyme] PFOR is more easily oxidized by oxygen than by superoxide [13], in 
marked contrast to the [4Fe-4S] dehydratases. Hydrogen peroxide and superoxide oxidize metals 
by inner-sphere mechanisms [14], which require that the oxidant directly bind the cluster in order 
to receive electrons from it. In contrast, it is likely that electrons can hop from the slightly buried 
PFOR cluster to nearby molecular oxygen, as they normally do to the cluster of ferredoxin. In this 
way molecular oxygen may oxidize a fully coordinated cluster, while H2O2 and O2

– cannot. 

A similar sentiment is expressed by a different set of authors in [15]: 

Redox active Fe-S clusters, like in ferredoxin, do not need to keep the fourth position open for 
ligation with substrates or cofactors. Ferredoxins may have four buried protein ligands and be 
protected by the protein matrix. Consequently, ROS will not react the same way, or at all, with 
each type of Fe4S4 cluster. It has been proposed that buried Fe4S4 clusters with four protein 
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ligands are less sensitive to oxidation by superoxide and hydrogen peroxide. Nevertheless they 
can still be oxidized by molecular oxygen, most probably via outer-sphere transfer… 

Therefore, for ISCs coordinated by four cysteines, O2 may be the only oxygen species capable of 
easily oxidizing the cluster. Indeed, of the top ten ISC proteins rated most essential by high throughput 
screens (Extended Data Figure 5b), nine are coordinated by four cysteine ligands based on UniProt 
annotations. Thus, the most essential ISC proteins are of the class described above which are predicted to 
be relatively resistant to oxidation by H2O2 and O2

–. Reactive oxygen species can have a role in degrading 
iron-sulfur clusters, particularly in vitro. However, cellular antioxidant defenses largely neutralize these 
highly reactive species, while permitting O2 access to important cellular enzymes requiring it as a 
substrate. Indeed, we observed that culture of cells in 21% oxygen decreases aconitase activity, but 
treatment of tbHP does not (Figure 3f); and culture of cells in 21% oxygen increases TFRC expression, 
but treatment of tbHP does not (Figure 3h). These same tbHP conditions increase cellular ROS, whereas 
these same O2 conditions do not increase cellular ROS, as measured by ROS active dyes (Figure 3g). 
These observations are consistent with O2 playing a greater role than other ROS in degrading ISCs in 
cells with an intact antioxidant defense.  

Several studies have demonstrated that cancer cells alter cellular iron concentrations via 
regulation of iron uptake, storage and efflux pathways [16-18]. For example, cirrhotic patients with 
primary hemochromatosis, an iron overload disorder, exhibit a higher occurrence of hepatic cancer [19], 
and correlation between iron overload and with other cancer types has been suggested [20, 21]. Given its 
possible role in tumorigenesis, iron depletion has been proposed as a potential therapeutic approach for 
cancer in preclinical studies. However, clinical trials utilizing iron chelators such as DFO showed only 
mixed results [22, 23].  

Although several studies suggest a link between cancer and iron [24], less is known about how 
tumors utilize iron to support neoplastic growth. Several investigators have proposed that iron could be 
neoplastic via upregulating the activity of iron-dependent enzymes. Excess iron could also contribute to 
tumor initiation via iron-dependent ROS production [25]. Indeed, alteration of genes involved in iron 
metabolism can affect ROS levels [26], and disruption of iron metabolism can induce sensitivity to 
chemotherapeutic agents [27].  

Alternatively, studies have attempted to increase intracellular free iron to induce cellular toxicity. 
Ascorbate, a potent reducing agent, increases available cellular iron by releasing insoluble Fe3+ from the 
iron storage protein ferritin reducing it to Fe2+, thereby increasing susceptibility to ROS-producing agents 
specifically in cancer cell lines expressing high levels of ferritin [28-30]. Therefore, oral administration of 
ascorbate has been tested in clinical trials, but this treatment failed to prevent cancer growth due to poor 
absorption and transport [31, 32]. In contrast, intravenous ascorbate injections have enhanced chemo-
sensitivity in some cancers, renewing interest in the potential of ascorbate treatment, although targeting 
iron metabolism is not cited as the rationale for current applications [33-35]. The synergistic effect of 
high cellular iron to induce ROS is also exploited by targeting cancer cells with iron-containing micelles 
with promising pre-clinical results [36-38]. However, targeting the iron starvation response to predispose 
tumors to oxidative damage has not been previously proposed. Activation of the iron starvation response 
is expected to increase cellular labile iron levels by both increasing iron import via the transferrin receptor 
while releasing iron from intracellular stores via ferritinophagy and decreased ferritin expression. 
Therefore, altering iron metabolism to enhance existing ROS sensitivity presents an unexplored 
therapeutic potential to target cancer cells. 
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We propose that elevated oxygen level exerts a selective metabolic pressure on incipient lung 
adenocarcinomas. While prior work demonstrates that tumour hypoxia selects for cells that are more 
migratory and metabolically adapted [39], available evidence points to the strong influence of hyperoxia 
on normal cell biology and tissue physiology. In vitro oxygen levels increase DNA damage and impact 
the time to senescence [40], and in ischemia/reperfusion injury tissue reoxygenation induces damage via 
reactive oxygen species [41, 42]. The lung exists in an oxygen-rich environment requiring a heightened 
control of redox balance and oxidative damage [43]. Defective anti-oxidant or redox management has 
been linked to pulmonary fibrosis [44, 45], and oxidative damage is exacerbated in cystic fibrosis [46], as 
pulmonary mucus protects lung epithelium from oxidative damage [47, 48]. Interestingly, low elevation 
correlates significantly with the development of neoplasms in the lung, but not other tissues, an 
observation attributed to higher atmospheric oxygen levels driving tumourigenesis [49]. Indeed, pathways 
that support the anti-oxidant response, such as NRF2/KEAP1, are frequently altered in lung cancer [50].  

The ISC biosynthetic enzyme NFS1 is an exemplar of a gene whose cellular requirement is 
impacted by environmental oxygen level. NFS1 lies in a region of genomic amplification under positive 
selection in lung adenocarcinoma. This amplification is required for anchorage independent growth and 
optimal growth in atmospheric oxygen conditions. Our data support the notion that high oxidative stress 
present in the lung renders acquisition of a robust anti-oxidant defense a key alteration in lung 
tumourigenesis, and are consistent with the hypothesis that robust NFS1 expression supports the early 
phases of lung adenocarcinoma development. By increasing NFS1 levels, lung tumour cells protect ISCs, 
cofactors that are particularly sensitive to molecular oxygen and are required for several cell-essential 
enzymes. Moreover, ISCs trigger the iron starvation response when damaged, increasing the free iron 
pool. Intracellular iron level has been linked to the propensity for exogenous oxidants to damage cells and 
tissues [51], resulting in ferroptosis due to oxidative damage to polyunsaturated fatty acids [52-54]. 
However, because in vivo ferroptosis markers have not been identified, we are unable to determine 
whether ferroptosis occurs in human tumours or xenograft models. 
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