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1 Comparison of the DDT and EMPF modeling approaches

Here we consider two different approaches to modeling a stochastic cell cycle, the drift-diffusion+threshold
(DDT) approach and exponentially modified peak function (EMPF) approach. These approaches are similar
in that they both treat the cell cycle as a sequence of stochastic processes. However, there are also important
distinctions between them, which we feel make the DDT approach more suitable for describing the stochastic
cell cycle as it is controlled by a cell’s molecular mitotic state. Such a description is desirable because it
coincides with our current understanding of cellular decision making processes and has the potential to
provide mechanistic biological insights into cell cycle control.

1.1 Exponentially modified peak functions

In this modeling approach the cell cycle is divided into parts which occur in sequence. Some parts of the cell
cycle may be of constant duration or have normally distributed durations while others may be more highly
stochastic. As described in the main text, these more stochastic cell cycle parts may be considered as the
time a cell waits to pass a checkpoint having obtained an admissible state (e.g. having obtained a sufficient
size). Exit from these more variable cell cycle parts is determined by a random variable in such a way that
the time spent in these parts is either exponentially or gamma distributed. In evaluating this model, it is
instructive to consider the assumptions under which it is derived. Following [1, 2], suppose that over a short
interval [t, t+ ∆t] the probability of observing a certain “cell cycle event” is r∆t+ o(t), where

lim∆t→0
o(∆t)

∆t = 0, while the probability of not observing a cell cycle event is 1− r∆t+ o(t). If we let pi(t)
denote that probability that we have observed i cell cycle events at time t, given we had observed no events
at t = 0, we find that for i ≥ 1,

pi(t+ ∆t) = pi−1(t)(r∆t+ o(t)) + pi(t)(1− r∆t+ o(t)),

and,
p0(t+ ∆t) = p0(t)(1− r∆t+ o(t)).

Rearranging these equations, dividing by ∆t, and taking the limit as ∆t approaches 0, we have that for i ≥ 1,

p′i(t) = r(pi(t)− pi−1(t)),

and p′0(t) = rp0(t). Setting p0(0) = 1 and pi(0) = 0, for i ≥ 1, i.e. assuming that initially no cell cycle events
have been observed, we solve these equations recursively to find that the number of events observed up to
time t is Poisson distributed with parameter rt. It follows that the time to observe one event is exponentially
distributed while the time to observe multiple events is gamma distributed [2]. In summary, if we assume
that exit from a part of the cell cycle coincides with the observation of the kth cell cycle event, the
distribution of time spent in that part of the cell cycle will be exponentially or gamma distributed in case
k = 1 or k > 1, respectively.

While this model is a reasonable first approximation of checkpoint passage, its underlying control variable,
the cell cycle event, is too limited to provide an accurate description of a cell’s molecular mitotic state. The
difficulty is two-fold. First, since the observance of cell cycle events cannot be undone, the number of events
observed is an inflexible representation of a cell’s state. These events, for example, cannot represent the
concentration of a cellular protein because a concentration can both increase and decrease. In addition,
according to this model a cell’s probability of experiencing a single event over an interval of length ∆t is a
constant, r∆t, whereas it is desirable that this probability should vary through time, i.e. with the cell’s
dynamic state [3–5]. Second, this model provides a very limited range of variability because the coefficient of
variation for the gamma distribution with k ≥ 1 (i.e. with one or more events), is bounded above by 1 and
will converge to zero as k (the number of events) grows large [6]. Meanwhile our data suggest that a variable
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portion of G1 has a coefficient of variation that is greater than one. In summary, the EMPF modeling
approach does not describe cell cycle time as it is controlled by a cell’s molecular state because the model’s
underlying timer, the number of cell cycle events observed, is monotone increasing and integer-valued, while
the cell’s molecular mitotic state is dynamic and almost continuous. Moreover, this model of the cell cycle
may not be flexible enough to capture high levels of variability that characterize the most variable cell cycle
parts.

1.2 The drift-diffusion+threshold modeling approach

Recent research suggests that cellular decisions are governed by proteins thresholds [7–9]. As such, we
conceptualize a cell’s molecular mitotic state with respect to a given checkpoint as being represented by a
real-valued function, y, of multiple such proteins p1, p2, . . . pm. Let’s call y the molecular mitotic state
function. Granted, this representation is necessarily a simplification (a cell’s full state is multidimensional),
however, it is a reasonable first approximation that is in line with current thinking about cell cycle control.
For example, in [7], a scalar, the ratio of cyclinD1 activity to that of p21 activity, was proposed to act as a
cell cycle timer. Moreover, evidence suggests that cellular decisions occur when protein-related functions
obtain critical threshold values (e.g. cyclinD1:p21 =1). Hence y is a function that projects a cell’s full
molecular state onto the real line in such a way that cellular states which correspond to checkpoint passage
map to a single critical value. This final point incorporates additional realism into the model because it
allows the full molecular state of a cell at the time of checkpoint passage to vary. That is, the set of all
molecular states that correspond to checkpoint passage is a level curve of the molecular mitotic state
function, not a single point in the cell’s full state space.

The DDT model is based on the preceding considerations. Like the EMPF, its mathematical development
begins with a discrete model, but now we assume the random variable that captures a cell’s molecular
mitotic state can both increase and decrease over a short interval of time. Following [1,10], suppose that over
a short interval of time [t, t+ ∆t], y may increases by ∆y with probability B∆t = ( c

2∆y2 + b
∆y )∆t, or

decrease by ∆y with probability D∆t = ( c
2∆y2 + d

∆y )∆t, where ∆y2 > ∆t. Letting yi = i∆y and p(yi, t)

denote the probability y(t) = yi, we have that

p(yi, t+ ∆t) = p(yi−1, t)B + p(yi+1, t)D + (1−B −D)p(yi, t).

Taylor expanding the left hand side in terms of t, the right hand side in terms of y, and dividing the result by
∆t, we find that

∂p

∂t
(y, t) +

o(∆t)

∆t
= (D −B)∆y

∂p

∂y
(y, t) + (D +B)

∆y2

2

∂2p

∂y2
(y, t) + o(∆y2)

(B +D)

∆t
.

Now letting ∆y and ∆t approach zero, we arrive at a partial differential equation for the probability density
of molecular mitotic states:

∂p

∂t
(x, t) = −(b− d)

∂p

∂x
(x, t) +

c

2

∂2p

∂x2
(x, t).

It can be shown [11] that this probability density corresponds to the following Itô stochastic differential
equation:

dy(t) = µdt+ σdW (t), (A)

where µ = (b− d), σ2 = c, and W (t) is a Wiener process [1]. Importantly, in passing to the limit, we have let
both the time step and increment between adjacent states grow small so that we arrive at a description of
the cell’s molecular mitotic state as a continuous-valued, continuous random variable that can both progress
toward and digress away from a threshold level, the attainment of which corresponds to the checkpoint
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passage. Hence, in addition to yielding a description of a cell’s molecular mitotic state, the DDT modeling
approach, like the EMPF approach, yields transition probabilities for cell cycle checkpoints. These
probabilities, however, now vary with the underlying molecular mitotic state.

2 Connecting the DDT model to biological mechanism

In order to unlock the detailed biochemical mechanisms that underlie checkpoint passage and IMT
variability, which is crucial for developing novel therapies for diseases characterized by cell cycle
dysregulation, such as cancer, we must connect the DDT modeling approach with protein dynamics. The key
to accomplishing this will be to assign a biological identity to the model’s random variables and then test
this assignment in an iterative cycle of model building, experimentation, and refinement. We employ a model
of the restriction point from Ref. [12] to illustrate how hypotheses about the random variables’ identities
might be formed. This model describes the interplay between the transcription factor E2F, which promotes
the G1/S transition, and its repressor, the retinoblastoma protein (Rb).

It includes a positive feedback loop, whereby E2F promotes the inhibition of its own inhibitor, resulting
in bistability [12], i.e., an abrupt system change occurs when a bifurcation parameter, the concentration of a
starter kinase, reaches a critical threshold value. We consider cyclin D as a proxy for the starter kinase since
cyclin D promotes the activity of its kinase partners (CDK4 and CDK6) [13] and accumulation of cyclin D is
essential for passage of the restriction point [14]. In the DDT model (Eq. A), the random variable yh is
normally distributed at all points in time [1, 15]. Since cellular protein concentrations are, on the other hand,
generally log-normally distributed [16], we relate cyclin D concentration to yh through the following equation

yh =
log(z)− log(z0)

log(z∗) log(z0)
, (B)

where z is the cyclin D concentration, z0 is the basal concentration, and z∗ is the threshold value. Note that
this equation implies the z is log-normally distributed, as desired. Solving Eq. (B) for z, we derive a
stochastic differential equation for z. By Itô’s formula [1]

dz(t) =

(
µCz +

1

2
σ2C2z

)
dt+ σCz dWt, (C)

with C := ln z∗

z0
. This equation is of interest because it can represent the dynamics of a cellular protein, or

other biological quantity, that is subject to positive feedback. It is important to note, however, that many
different stochastic differential equations, in fact any equation that corresponds to a twice continuously
differential transformation of y, can be considered as describing a random variable which controls a
checkpoint process under the DDT model.

The above transformation can also be used to parameterize the DDT model in order to test hypotheses
about the identity of the model’s random variable. This is because the basal and threshold levels of the
transformed random variable together with the distribution of checkpoint passage times determine the
transformed variable’s dynamics. Indeed the dynamics of the transformed random variable are sensitive to
the threshold that corresponds to checkpoint passage (see Fig. A).

In summary, we see that the DDT model provides a highly flexible description of IMT variability that is
compatible with mechanistic models and data alike.

3 Numerical methods

The numerical identification of maximum likelihood parameter estimates for convolution models involves
multiple challenges, including the potential for local maxima, numerical error, and discontinuities in the
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Fig. A. Artificial protein trajectories are generated using the Euler-Maruyama method with a step size of
0.01 h and Eq. (B). Values along the trajectory are plotted in 12 min increments to reflect the limited
resolution of the experimental data. The basal level, z0, is normalized to 1. Trajectories for two threshold
values (thick horizontal black lines), z∗, are shown: (left) 1.5; (right) 1.2.

probability density function on the edge of the parameter space.

3.1 Avoiding local maxima and minimizing numerical errors in MLE

To address the problem of local maxima, we varied the initial parameter guess about parameter choices that
match the sample mean and standard deviation. Specifically, for the one-part model (DDT1) we consider all
parameter combinations in which the mean and variance of the IMT represent 0.5, 1, 1.5, or 2 times the
sample mean and variance. For the two-part models (i.e., the EMG and DDT2) we consider all distinct
parameter combinations in which the mean and variance in a part of the cycle represent 0.25, 0.5, or 0.75
times the sample mean or variance of the full IMT. For the three-part model (DDT3), we consider all distinct
parameter combinations in which the mean and variance in a part of the cycle represent 0.1 or 0.7 times the
sample mean or variance of the full IMT. In forming these distinct parameter combinations, we note that the
model is invariant with respect to the ordering of the parts.

To ensure that numerical errors were small, we employed an adaptive method that tracks the error in the
likelihood estimation. This error comes from the numerical integration involved in computing the likelihood
of the data for the convolution models. Because we approximate the convolution as a left-hand Riemann
sum, the error scales with the step size and can be estimated by recalculating the likelihood of the data using
a smaller step-size. Thus, for each parameter choice, beginning with a step size of 0.01, we reduce the step
size by 50% until two subsequent estimations of the likelihood of the data are within 0.001 of the absolute
value of the most recent estimate of the likelihood of the data. That is, our criteria depends on the relative
error in the likelihood of the data.

3.2 Criteria for approximating highly-concentrated distributions as Dirac
delta functions

The numerical approximation of the model probability density function is a more fundamental challenge,
especially for the three-checkpoint (DDT3) model. For both two- and three-checkpoint models (convolution
models), the distribution of time spent in a single part of the cell cycle can become highly concentrated, close
to a point-mass, or Dirac delta, distribution [17] (probability concentrated at a single point) in the course of
parameter estimation. When this is the case, it is exceedingly difficult to get an accurate numerical
approximation of the likelihood function. This difficulty is compounded by the fact that for certain initial
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guesses and data the maximum likelihood routine converges to such Dirac delta distributions. Highly
concentrated distributions can lead to long run times, inaccurate estimates of the likelihood of the data and,
in some cases, lack of convergence. We circumvented the computational challenge associated with highly
concentrated distributions by approximating these distributions as Dirac delta distributions, thus converting
a unwieldy numerical integral to a simple translation. Our criteria for applying this approximation is based
on the point-wise error in the approximation.

Suppose that the probability density of IMTs is given by a convolution of two probability density
functions g and f , where f is highly concentrated with mean m. If the point-wise error of approximating the
convolution of g and f as the convolution of g with Dirac delta distribution centered at m is less than some
small ε, our method is to approximate f as a Dirac delta distribution (ε = .01 in practice). Specifically, we
use the standard deviation of f , which for the inverse Gaussian distribution is given by σ

µ3/2 [11], to

determine if f is concentrated enough to consider an approximation. If σ
µ3/2 < 0.01 h, we estimate the

point-wise error of the approximation as follows. First, a small radius, r, is chosen so that over an interval of
radius r the change in g is less than ε/3. Such an r is determined by first establishing an upper bound, G′,
on {g′(x) : x ∈ [0,∞)} and then choosing r = ε

3G′ . Indeed, with this choice of r and for |x− y| < r, it follows
from the mean value theorem [18] that there exists c between x and y, such that
|g(y)− g(x)| = g′(c)|x− y| < ε/3. An upper bound on the error in the approximation is then established
according to the value of t. We consider three cases:

Case 1 : For t ≥ m+ r, the error in the approximation satisfies∣∣∣∣∫ t

0

f(s)g(t− s)ds− g(t−m)

∣∣∣∣ ≤ ∫ m−r

0

f(s)g(t− s)ds+

∫ ∞
m+r

f(s)g(t− s)ds

+

∣∣∣∣∫ m+r

m−r
f(s)g(t− s)ds− g(t−m)

∣∣∣∣ . (D)

We majorize the first and second terms on the right-hand side of the inequality using an upper bound, G, of
{g(x) : x ∈ [0,∞)}, i.e., ∫ m−r

0

f(s)g(t− s)ds+

∫ ∞
m+r

f(s)g(t− s)ds ≤ GI, (E)

where

I =

∫ m−r

0

f(s)ds+

∫ ∞
m+r

f(s)ds

is small provided that f is concentrated about m. For the the final term to the right of the inequality we use∣∣∣∣∫ m+r

m−r
f(s)g(t− s)ds− g(t−m)

∣∣∣∣ = |(1− I)g(t− y)− g(t−m)|

≤ GI + ε/3, (F)

where the first equality follows from the mean value theorem for integrals [18] with m− r < y < m+ r, and
the final inequality follows from our choice of r. Thus, with r as above and GI ≤ ε/3, the point-wise error of
the approximation is less than ε for t ≥ m+ r.

Case 2 : For t ≤ m− r, the error in the approximation satisfies∣∣∣∣∫ t

0

f(s)g(t− s)ds
∣∣∣∣ ≤ ∫ m−r

0

f(s)g(t− s)ds ≤ GI. (G)
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Thus, if f is so concentrated that GI ≤ ε/3, the point-wise error of the approximation is less than ε for
t ≤ m− r.

Case 3 : To ensure that the error is small for m− r < t < m+ r, we place an additional constraint on r. In
particular, we choose r so that g(t) < ε/2 for t < r. This is possible because if g is an inverse Gaussian
distribution, or a convolution of inverse Gaussian distributions, limr→0+ g(r) = 0 and g′(r) > 0 for small r.
Thus, for small r and m− r < t < m+ r we see that the error satisfies∣∣∣∣∫ t

0

f(s)g(t− s)ds− g(t−m)

∣∣∣∣ ≤ ∫ m−r

0

f(s)g(t− s)ds+

∣∣∣∣∫ t

m−r
f(s)g(t− s)ds− g(t−m)

∣∣∣∣ , (H)

where g(t−m) = 0 for t < m. Note that by the mean value theorem for integrals there exists y such that
m− r < y < t < m+ r and ∫ t

m−r
f(s)g(t− s)ds = g(t− y)

∫ t

m−r
f(s)ds.

In the subcase that m+ r > t > m, the final term in Eq. (H) is then bound by ε/2 as

− g(t−m) ≤ g(t− y)

∫ t

m−r
f(s)ds− g(t−m) ≤ g(t− y)− g(t−m). (I)

The left- and right-hand sides of the inequality are bound in magnitude by ε/2 by our choice of r since
0 < t−m < r and |(t− y)− (t−m)| = |m− y| < r. Similarly, in the subcase m− r < t ≤ m, the final term
in Eq. (H) is bound by ε/2 as

0 ≤ g(t− y)

∫ t

m−r
f(s)ds ≤ g(t− y), (J)

and the right-hand side of the inequality is bound by ε/2 by our choice of r since
0 < t− y < m− (m− r) = r. Since the first term in Eq. (H) is bound by IG, as before, we see that the error
in the approximation is less than ε provided IG < ε/3.

In summary, if r is small so that (i) r < ε/G′ and (ii) g(t) < ε/2 for t < r, then if f is so concentrated
that GI ≤ ε/3, the point-wise error of the approximation is less than ε and we approximate f as a Dirac
delta distribution centered at m when computing the likelihood of the data. Otherwise, the likelihood is
computed using the full numerical approximation of the convolution of f and g.

In justifying the method described above we used the fact that if g is an inverse Gaussian, i.e., is
distributed according to

pi(t;µ, σ) =
1

σ
√

2πt3
exp

(
−(µt− 1)2

2σ2t

)
, (K)

or a convolution of inverse Gaussian distributions, then limt→0+ g(t) = 0 and g′(t) > 0 is increasing for t.
Looking at Eq. (K), it is easy to see that limt→0+ g(t) = 0 when g is an inverse Gaussian distribution and in
the case that g is a convolution of inverse Gaussian distributions the result follows from the continuity of the
inverse Gaussian. Also, by taking the derivative of Eq. (K) with respect to t, it is also easy to see that this
distribution is increasing for t < T , where T is the value where the distribution takes its mode. To see that a
convolution of inverse Gaussian distributions is increasing for small t note that if g(t) =

∫ t
0
g1(s)g2(t− s)ds,

where g1 and g2 are inverse Gaussian distributions, then

g′(t) =

∫ t

0

g2(s)g′1(t− s)ds
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is positive for t < T1, where T1 is the value where g1 takes its mode. Similarly

g′(t) =

∫ t

0

g1(s)g′2(t− s)ds

is positive for t < T2, where T2 is the value where g2 takes its mode. Thus, g is increasing for
t < max {T1, T2}, and the claim is established. In implementing our method we must first find r < T so that
g(r) < ε/2. This is accomplished in the case that g is an inverse Gaussian distribution by evaluating g at
decreasing values of r < T , where T is the value where g takes its mode. In the case that g is a convolution
of inverse Gaussian distributions, g1 and g2, r is chosen by evaluating both g1 and g2 at decreasing values of
r < T := min {T1, T2} and choosing r so that at least one of g1 or g2 is less than ε/2. Indeed, by the mean
value theorem for integrals, for t < T , g(t) ≤ min {g1(t), g2(t)}. Thus, if gi(r) < ε/2 for some r < Ti, then
g(t) ≤ gi(t) < ε/2 for all t < r.

Our numerical method also requires upper bounds G, G′, and I. We obtain G as follows. In the case that
g is an inverse Gaussian distribution, we calculate G := max {g(x)} by evaluating g at its mode, which can
be solved for directly. If g is a convolution of two inverse Gaussian distributions, g1 and g2, we obtain an
upper bound on g as follows. Since

g(t) =

∫ t

0

g1(s)g2(t− s)ds ≤ G2

∫ ∞
0

g1(s)ds = G2, (L)

where G2 = max {g2(x)}, and similarly g(t) ≤ G1 := max {g1(x)}, we take G := min {G1, G2}. In order to
obtain G′, we also consider two cases. In the case that g is an inverse Gaussian distribution, we find
G′ = max {| g′(x) |} by evaluating g′(x) at each of its critical points (these points correspond to the roots of a
fourth-order polynomial, which are solved for numerically using the MATLAB roots function). In the case
that g is a convolution of inverse Gaussian distributions, g1 and g2, we establish an upper bound on g′(x) as
follows. Since

|g′(t)| ≤
∫ t

0

|g1(s)g′2(t− s)| ds ≤ G′2, (M)

where G′2 = max {| g′2(x) |}, and similarly |g′(t)| ≤ G1, we take G′ = min {G′1, G′2}. In addition, we
approximate I as

I =

∫ m−r

0

f(s)ds+

∫ ∞
m+r

f(s)ds ≈
∫ m−r

0

f(s)ds+

∫ T

m+r

f(s)ds, (N)

where T = max
{
m+ r + 1000σ/µ3/2, 100

}
and the integrals are approximated as Riemann sums. In

performing this approximation, we take the initial step size as 0.001 and reduce the step size by a factor of
1/2 until the absolute value of the change in the approximation in less than 10−4.

3.3 Outline of the algorithm

The algorithm for determining if a distribution may be approximated as a Dirac delta function, for the
purpose of evaluating its convolution with one or more inverse Gaussian distributions, is summarized below.
In what follows, let f denote an inverse Gaussian distribution, and let g denote a convolution of one or more
inverse Gaussian distributions (which have greater standard deviations than f). Let τ denote the average of
f . Let f ∗ g denote the convolution of f and g. Let sd(f) denote the standard deviation of f .
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Algorithm 1

Input: [µ1, σ1 . . . µm, σm]: a vector of m drift (µ) and diffusion (σ) parameters.
T : a vector of n intermitotic times (data).

Output: L: The likelihood of the data.

0. If sd(f) ≥ 0.01, calculate the likelihood, L =
∏n
i=1(f ∗ g)(Ti), using numerical integration to compute

each factor in the product;
else, determine if |(f ∗ g)(t)− g(t− τ)| < ε, for all t ∈ [0,∞], as follows:

1. Determine the maximum value of g′, the first derivative of g. This value is used to determine a radius r1

so that |g(t1)− g(t2)| < ε/3 for |t1 − t2| < r1.

• To determine r1 from the maximum of g′ we use the mean value theorem (see Sec. 3.2). If g is an
inverse Gaussian distribution, the maximum of g′ is found by evaluating g′ at each of its critical
points, which are identified using MATLAB’s root finder (roots.m). If g is a convolution of inverse
Gaussian distributions the maximum is bounded above using these same methods and properties of
the inverse Gaussian distribution and the convolution as described in Sec. 3.2.

• We require |g(t1)− g(t2)| < ε/3, because this magnitude represents one of three components of the
error in Eq. (D) (see also Eq. F).

2. Determine a radius r2 so that g(t) < ε/2 for t < r2.

• Properties of the inverse Gaussian distribution, as described in Sec. 3.2, are used to design an
algorithm for finding such an r2. Specifically, beginning at t0 = min(r, tM ), where tM is the value
where g takes its mode, evaluate g(ti). If g(ti) < ε/2, set r2 = t1, else set ti+1 = ti/2 and repeat.

• The value of g(t) for t < r2 is one of two components of the error in Case 3 (see Eqs. H–J).

3. Set r = min(r1, r2) (so that the error estimate will hold in Cases 1–3 of Sec. 3.2).

4. Evaluate I := 1−
∫ τ+r

τ−r f(s) ds.

• Numerical integration: Note that by properties of a distribution, we can evaluate this integral by
instead integrating over the complement of [τ − r, τ + r], this is preferable because f is not
concentrated here.

• Note that IG is a component of the error in Cases 1–3 of Sec. 3.2 (see Eqs. D, G and H).

5. Evaluate G := maxt∈[0,∞] g(t).

• The maximum is found by evaluating g at its critical point, if g is an inverse Gaussian distribution.
If g is a convolution of inverse Gaussian distributions the maximum is bounded above using similar
methods and properties of the inverse Gaussian distribution and the convolution, as described in
Sec. 3.2.

6. If GI < ε/3, then |(f ∗ g)(t)− g(t− τ)| < ε, approximate (f ∗ g)(Ti) as g(Ti − τ) when computing the
likelihood, L =

∏n
i=1(f ∗ g)(Ti);

else, evaluate L =
∏n
i=1(f ∗ g)(Ti) using numerical integration to compute each factor in the product.

7. Return L.

Note that in case g itself is a convolution of inverse Gaussian distributions, the above algorithm is
executed again in order to evaluate g.
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3.4 Validation of the numerical method

In order to test the accuracy of our numerical method, we apply it to synthetic data: for each model, we use
the maximum likelihood parameter estimates for MCF10A cells treated with erlotinib to generate data sets
of increasing size (n = 200, n = 1000, and n = 10 000). For a fixed data size, we generate and fit 10 sets of
data and compute the average relative error (supplementary Table E). For the DDT2 model, the relative
error for n = 200 is on the order of 10−1–10−2. As the data size increases the error declines modestly, so that
the average error at n = 10 000 is typically on the order of 10−2–10−3. The relative errors in the DDT3
parameter estimates also decrease modestly as the sample size increases. Interestingly, the relative errors for
the parameter estimates of σ are generally larger than those for µ, reflecting greater uncertainty in the
estimates of σ.
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Supplementary Figures
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Fig. B. IMT scatter plots illustrating data censoring. Individual cell IMTs vs. birth time (time of the first mitotic event) for
seven cell line/growth conditions. (•) Cells included in the analysis; ( ) cells excluded because they reached the EoE without
dividing; (◦) cells excluded either because they were born during the initial drug effect stabilization period (< 10 h in B) or their
birth times exceed the last time at which > 96% of cells divided (19.6 h in A; 27.6 h in B); (×) cells excluded because they died
during the experiment (only observed in PC9 and A375). Note that the correlation between birth time and IMT (cell crowding) was
not significant at the late-time cutoffs in any case, based on Spearman correlation coefficients. Hence, no additional data points were
excluded.
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Fig. C. The stochastic process modeling approach. 1. A continuous-stochastic process describing the
time evolution of a model random variable is derived from a discrete-stochastic model. 2. The distribution of
checkpoint passage times is found as the distribution of exit times for the continuous model and the
checkpoint passage distributions are convolved to yield the IMT distribution.

13



DDT2 Part H DDT2 Part L

p
μ
 = 0.039 

p
σ
 = 0.245

DMSO
CHX

p
μ
 = 0.002 

p
σ
 = 0.003 

DMSO
CHX

DDT2 Phase H DDT2 Phase L

Fig. D. Parameter estimates from both model-predicted phases (H and L) are affected by
cycloheximide. IMT data from MCF10A cells treated with 50 µg/ml cycloheximide (CHX; yellow) or
vehicle control (DMSO; blue) were fit with the DDT2 model and parameters were obtained by maximum
likelihood estimation. Two-sided p-values were obtained using the null hypothesis that the parameter values
for cells treated with DMSO are from the same distribution as cells treated with CHX.
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Supplementary Tables

Table A. Model comparison. MLL: maximum log-likelihood; AICc:
Akaike information criterion with correction for finite size; AICp: pairwise
comparsion metric.

MCF10A, DMSO (n=379) MCF10A, erlotinib (n=198)
Model MLL AICc AICp MLL AICc AICp

EMG -775.211 1 556.486 0 -552.853 1 111.830 0
DDT1 -847.544 1 699.120 0 -609.710 1 223.482 0
DDT2 -757.852 1 523.811 1 -542.296 1 092.800 1
DDT3 -757.859 1 527.944 0.127 -541.484 1 095.408 0.271

MCF10A, CHX (n=268) MCF10AT1, untreated (n=188)
Model MLL AICc AICp MLL AICc AICp

EMG -742.745 1 491.581 0.381 -396.004 798.138 0.013
DDT1 -761.073 1 526.191 0 -423.389 850.843 0
DDT2 -740.749 1 489.650 1 -390.634 789.487 1
DDT3 -740.750 1 493.822 0.124 -390.618 793.700 0.122

MCF10A, untreated (n=106) PC9 (n=132)
Model MLL AICc AICp MLL AICc AICp

EMG -304.885 616.005 0.017 -430.149 743.553 0.017
DDT1 -323.614 651.345 0 -454.058 808.992 0
DDT2 -299.723 607.842 1 -424.529 727.288 1
DDT3 -299.723 612.294 0.108 -424.529 731.355 0.108

A375, untreated (n=266)
Model MLL AICc AICp

EMG -852.060 1 710.212 0.099
DDT1 -892.381 1 788.808 0
DDT2 -848.715 1 705.583 1
DDT3 -848.179 1 708.872 0.193
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Table B. Best-fit maximum likelihood parameter values.

DDT2 DDT3

Data set µH σH µL σL µH σH µL1 σL1 µL2 σL2

MCF10A (DMSO) 0.73 1.8 0.080 0.024 0.73 1.8 0.61 0.18 0.092 0.027
MCF10A (erlotinib) 0.18 0.59 0.082 0.015 0.19 0.67 0.42 0.26 0.10 0.0002

MCF10A (CHX) 0.31 0.74 0.053 0.029 0.319 0.74 0.61 0.34 0.058 0.032
MCF10A (untreated) 0.25 1.0 0.064 0.031 0.25 1.0 0.15 0.07 0.11 0.055

MCF10AT1 (untreated) 1.6 5.4 0.070 0.029 1.9 7.7 0.83 0.36 0.076 0.032
PC9 (untreated) 0.16 0.69 0.040 0.022 0.16 0.69 0.16 0.089 0.054 0.029
A375 (untreated) 0.11 0.34 0.072 0.023 0.11 0.33 0.30 0.20 0.10 0.0004

Table C. DDT2 model-estimated passage time statistics
(hours). mean = 1/µ; s.d. =

√
σ2/µ3.

Data Set
Phase H Phase L

mean s.d. mean s.d.

MCF10A (DMSO) 1.4 2.8 13 1.0
MCF10A (erlotinib) 5.7 7.9 12 0.65

MCF10A (CHX) 3.2 4.3 19 2.4
MCF10A (untreated) 3.9 8.0 16 1.9

MCF10AT1 (untreated) 0.62 2.7 14 1.6
PC9 (untreated) 6.2 11 25 2.7
A375 (untreated) 9.1 9.4 14 1.2

Table D. DDT3 model-estimated passage time statistics (hours).
mean = 1/µ; s.d. =

√
σ2/µ3.

Data Set
Phase H Phase L1 Phase L2

mean s.d. mean s.d. mean s.d.

MCF10A (DMSO) 1.4 2.8 1.60 0.38 11 0.98
MCF10A (erlotinib) 5.3 8.3 2.4 0.94 10 0.0065

MCF10A (CHX) 3.2 4.3 1.6 0.71 17 2.3
MCF10A (untreated) 3.9 8.0 6.7 1.2 8.8 1.4

MCF10AT1 (untreated) 0.53 3.0 1.2 0.47 13 1.5
PC9 (untreated) 6.2 10.7 6.1 1.3 19 2.4
A375 (untreated) 9.2 9.4 3.4 1.2 10 0.012
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Table E. Relative error in maximum likelihood parameter
estimates.

DDT2 Model

parameter true value (n = 200) (n = 1000) (n = 10000)

µH 0.1765 0.0897 0.0348 0.0134
σH 0.5875 0.1261 0.0510 0.0250
µL 0.0891 0.0203 0.0098 0.0052
σL 0.0152 0.1781 0.0920 0.0368

DDT3 Model

parameter true value (n = 200) (n = 1000) (n = 10000)

µH 0.1879 0.1349 0.0517 0.0120
σH 0.6733 0.2010 0.0982 0.0290
µL1 0.4182 1.1037 0.1103 0.0519
σL1 0.2555 0.4278 0.2822 0.0977
µL2 0.0982 0.0986 0.0560 0.0135
σL2 0.0002 7.3212 0.5258 0.1501
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