1 Expression and replication of virus-like circular DNA in human cells

2

Sebastian Eilebrecht, Agnes Hotz-Wagenblatt, Victor Sarachaga, Amelie Burk, Konstantina
Falida, Deblina Chakraborty, Ekaterina Nikitina, Claudia Tessmer, Corinna Whitley,
Charlotte Sauerland, Karin Gunst, Imke Grewe and Timo Bund

6

7 Supplemental material

8 *Reverse transcription (RT) PCR and long PCR.*

For cDNA synthesis 1µg of DNase1-treated total RNA was incubated with either 1µl random 9 hexamer (20µM) or oligo-dT primers (12µM) at 72°C for 3 minutes, before the reaction was 10 cooled to 42°C for 2 minutes. After adjustment to 1x First-Strand Buffer, 2.5mM DTT and 11 1mM dNTPs, 20 U RNase Inhibitor (Clontech) and 100 U SMARTScribe Reverse 12 Transcriptase (Clontech) were added and the reaction was incubated at 42°C for 90 minutes. 13 Subsequently the reaction was terminated by incubation at 70°C for 10 minutes and the total 14 volume was adjusted to 200µl with Tricine-EDTA buffer (Clontech). A reaction lacking 15 16 reverse transcriptase served as a negative control (-RT). For the detection of cDNAs of polyadenylated transcripts of MSBI1.176, 2.5µl of an oligo-dT primed RT reaction were 17 amplified by PCR using SeqAmp DNA Polymerase (Clontech) as recommended by the 18 manufacturer in the presence of the primers MSBI1.176 F384: 5'-CTT TTA AAG TTT TTA 19 AAT GCT TTT AAA TGC-3' and R1693 5'-CCC TGA TTA CAG TGT TTT TGC TTT TG-20 3', F647: 5'-TAT AAC TTA GCT TTG GTT GAA CAG A-3' and R1303: 5'-CGT TTT ATC 21 GCT GTT TTG TTT CTT G-3' or F28: 5'-AGC GAC TCA ATG AAA GTT CGA TTA TTC 22 CCC-3' and R1693. 1 ng of circular MSBI1.176 DNA was used as a template for a positive 23 control reaction for each primer combination. The PCR program was as following: 30 cycles: 24 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 3 minutes. For the detection of cDNAs of 25

polyadenylated transcripts of CMI1.252, 2.5 µl of an oligo-dT primed RT reaction were
amplified as mentioned above in the presence of the primers CMI1.252 F352: 5'-CTT TTA
AAG TTT TTA AAT GCT TTT AAA TGC-3' and R2143: 5'-GGT TGT CCA CGA TAC
TCA CTT TT-3', F1510: 5'-AAA ACA AGC TAG AAG AAT TTG GCG-3' and R2281: 5'CTA CAT TGT TCA GGC TTT AGC TC-3' or F57: 5'-TAC ACG AGC AAA GCG AGT
TCA TA-3' and R2143.

Long PCR for detection of full length MSBI1.176 or CMI1.252 DNA was performed using 32 La Tag polymerase (Takara) as recommended by the manufacturer. 1 ng of DpnI-digested 33 circular MSBI1.176 or CMI1.252 input DNA was used as a template for a negative control 34 reaction and 1 ng of non-digested input DNA was used as a template for a positive control 35 reaction. The corresponding primers were MSBI1.176 F1656: 5'-CCC CTC AAC CCC AAA 36 AGC AA-3' and MSBI1.176 R1655: 5'-TTT ACC CCC ACG GAC TTC CA-3' and 37 CMI1.252 F2250: 5'-CAA CAA TGA GCG AGC TAA AGC C-3' and R 2249: 5'-TAC 38 GAA AGC TAG CAC CG-3'. The long PCR program for MSBI1.176 detection was as 39 following: 94°C for 1 minute, 5 cycles: 94°C for 30 seconds, 58°C for 1 minute, 72°C for 4 40 minutes, 5 cycles: 94°C for 30 seconds, 56°C for 1 minute, 72°C for 4 minutes, 20 cycles: 41 94°C for 30 seconds, 54°C for 1 minute, 72°C for 4 minutes seconds, 72°C for 10 minutes. 42 For CMI1.252 detection the following PCR program was used: 94°C for 1 minute, 5 cycles: 43 94°C for 30 seconds, 66°C for 1 minute, 72°C for 4 minutes, 5 cycles: 94°C for 30 seconds, 44 64°C for 1 minute, 72°C for 4 minutes, 20 cycles: 94°C for 30 seconds, 62°C for 1 minute, 45 72°C for 4 minutes seconds, 72°C for 10 minutes. 46

48 *Quantitative PCR (qPCR).*

Ouantitative PCR (qPCR) analyses were performed using the SYBR Green PCR Master Mix 49 (Applied Biosystems) and a Stratagene Mx3000P qPCR machine (Stratagene) as 50 recommended by the manufacturer. For the quantification of RT-generated cDNA the 51 following primers were used: CMI1.252 F1514 5'-ACA AGC TAG AAG AAT TTG GCG 52 TG-3', CMI1.252 R1734 5'-TGG CAC AGT AGA GCT TTC ATC A-3', CMI3.168 F647 5'-53 AGG CGA GAG AAA CAG GCA AA-3', CMI3.168 R851 5'-TGC GAT ACC CAA CGA 54 CTT GT-3', MSBI1.176 F433 5'-CCC ACA CAG CAA GGC ATA CA-3', MSBI1.176 R717 55 5'-CCT TTG CCT GTT TCT CTC GC-3', MSBI2.176 F1216 5'-TCA CAG CCA CCT ACG 56 AAC AG-3', MSBI2.176 R1381 5'-TTT GCG ATC TGA GGC TCT GT-3', beta actin F 5'-57 CCA CCA TGT ACC CTG GCA TT-3' and beta actin R 5'-ATC TGA GGA GGG AAG 58 GGG AC-3'. For the genome-specific quantification of DpnI-resistent, replicated DNA the 59 following primers were used: MSBI1.176 F235 5'-ACG GGT AGG CTT GCT TAT TTG A-60 3', MSBI1.176 R717 5'-CCT TTG CCT GTT TCT CTC GC-3', CMI1.252 F1514 5'-ACA 61 AGC TAG AAG AAT TTG GCG TG-3' and CMI1.252 R1734 5'-TGG CAC AGT AGA 62 GCT TTC ATC A-3'. Notably, the latter primer combinations cover at least two DpnI 63 restriction sites in either genome and are isolate-specific. Absolute amounts of replicated 64 CMI1.252 and MSBI1.176 DNA molecules were quantified using standard curves with 65 defined amounts of the corresponding circular molecules. 66

67

68 *Rapid amplification of cDNA ends (RACE).*

To generate 5'- and 3'-RACE-ready cDNA, the SMARTer RACE 5'3' kit (Clontech) was used.
For 5'-RACE-ready cDNA, 1µg of DNase1-treated total RNA from transfected HEK293TT
cells was incubated with 1µl of primer MSBI1.176 RT848 (5'-GGT AAC TGA ATT GAC
GGG CA-3'), MSBI1.176 RT1296 (5'-TCG CTG TTT TGT TTC TTG TGC-3') or

MSBI1.176 RT1431 (5'-ATT TCC CCT GTA ACA CGG CT-3') (2.5µM) at 72°C for 3 73 minutes, before the reaction was cooled to 42°C for 2 minutes. In the case of CMI1.252, the 74 primers CMI1.252 RT1052 (5'-TTT TTC CTG TGC TAC GCC AA-3') or CMI1.252 75 RT2095 (5'- ATG CTA CAA AAC CAA CGC CA-3') were used. After addition of 1µl of the 76 SMARTer II A oligonucleotide $(24\mu M)$, the reaction was adjusted to 1x first-strand buffer, 77 2.5mM DTT and 1mM dNTPs, then 20 U RNase Inhibitor (Clontech) and 100 U 78 SMARTScribe Reverse Transcriptase (Clontech) were added and the reaction was incubated 79 at 42°C for 90 minutes. Subsequently the reaction was terminated by incubation at 70°C for 80 10 minutes and the total volume was adjusted to 200µl with Tricine-EDTA buffer (Clontech). 81 3'-RACE-ready cDNA was prepared from 1µg of DNase1-treated total RNA from transfected 82 HEK293TT cells as recommended by the manufacturer. For RACE, 2.5µl of 5'- or 3'-RACE-83 ready cDNA was used as a template for a PCR reaction containing 1µl 5'- or 3'- gene specific 84 primer (10µM), 1x universal primer mix (UPM) and 1µl SeqAmp DNA Polymerase in 1x 85 SeqAmp buffer (Clontech). The PCR program was as following: 5 cycles: 94°C for 30 86 seconds, 72°C for 3 minutes; 5 cycles: 94°C for 30 seconds, 70°C for 30 seconds, 72°C for 3 87 minutes; 20 cycles: 94°C for 30 seconds, 68°C for 30 seconds, 72°C for 3 minutes. Primers 88 used for 5'- RACE of MSBI1.176 were: MSBI1.176 R813 5'-GCA TCT TTG AGG GCT 89 TGA TAT GCC GT-3', MSBI1.176 R1258 5'-TCC TGT AAT CAC TCG CCC TTT TTT 90 GTG T-3' and MSBI1.176 R1383 5'-GCG TTT TCA GGC TGT TTT ACA ATG TTG-3'. 91 Nested 5'-RACE of CMI1.252 were performed using the following primers: CMI1.252 R724 92 5'- GCA TGA ACT GTT AAG GGG TCA TTG GC-3', CMI1.252 R920 5'- CAG GGG 93 CAA AAA TAA TTT CAA CGG TTG-3', CMI1.252 R1883 5'- GGG TTC TTC GCT TTG 94 TCT TCT AAC ATA TTG CT-3' and CMI1.252 R2005 5'- CAG CAG CTT CTT GAT TCT 95 CCA ACA TAG TCA-3'. Primers used for nested 3'-RACE of MSBI1.176 were: MSBI1.1 76 96 F788 5'-ACG GCA TAT CAA GCC CTC AAA GAT GC-3', MSBI1.176 F944 5'-GCC CCT 97

GCG GTT GTT CCT CTG ATT ACA-3', MSBI1.176 F1655 5'-ACC CCT CAA CCC CAA 98 AAG CAA AAA CA-3' and MSBI1.176 F155 5'-TGC TTT TGC TTG TTT TCG GGT CTT 99 AGG GG-3'. Nested 3'-RACE of CMI1.252 were performed using the following primers: 100 CMI1.252 F695 5'- GCC AAT GAC CCC TTA ACA GTT CAT GCA AGT-3', CMI1.252 101 F894 5'- CAA CCG TTG AAA TTA TTT TTG CCC CTG-3', CMI1.252 F1852 5'- AGC 102 AAT ATG TTA GAA GAC AAA GCG AAG AAC CC-3' and CMI1.252 F1976 5'- TGA 103 CTA TGT TGG AGA ATC AAG AAG CTG CTG-3'. For pRACE cloning all primers were 104 equipped with the sequence 5'-GAT TAC GCC AAG CTT-3' at their 5'-end. The PCR 105 program was as following: 5 cycles: 94°C for 30 seconds, 72°C for 3 minutes; 5 cycles: 94°C 106 107 for 30 seconds, 70°C for 30 seconds, 72°C for 3 minutes; 25 cycles: 94°C for 30 seconds, 68°C for 30 seconds, 72°C for 3 minutes. Resulting RACE fragments were separated by 108 agarose gel electrophoresis, eluted using the NucleoSpin gel cleanup kit (Machery & Nagel), 109 subcloned into the pRACE vector (Clontech) as recommended by the manufacturer's and 110 identified by conventional Sanger sequencing. For MSBI1.176 a total of 497 clones were 111 sequenced (primer R813: 128 clones, primer R1258: 108 clones, primer R1383: 167 clones, 112 primer F944: 94 clones). For CMI1.252 a total of 384 clones were sequenced (primer R724: 113 96 clones, primer R1883: 108 clones, primer F894: 120 clones, primer F1976: 60 clones). 114 115 RACE reactions using cDNAs generated from DNase1-treated total RNA of mock transfected HEK293TT cells were used as negative controls. To exclude PCR artifacts, an additional 116 control was included, in which 1 ng of linearized BMMF DNA was used as a template for 117 118 RACE reactions.

119

120 *Synthesis of northern blot probes*

121 Strand-specific RNA probes for northern blot analyses were generated by *in vitro* 122 transcription of double stranded DNA templates containing a T7 promoter using the TranscriptAid T7 High Yield Transcription Kit (Thermo Scientific) in the presence of 1 mM
Digoxigenin-11-UTP (Roche) as recommended by the manufacturer. Probe integrity was
assessed by Bioanalyzer technology (Applied Biosystems).

126

127 Northern blot analyses.

For northern blot analyses 5µg of total cellular RNA were denatured for 5 minutes at 68°C in 128 the presence of 25% Formamide, 1.8M Formaldehyde and 10 mg/ml Ficoll in MOPS buffer 129 (20mM 3-Morpholinopropane-1-sulfonic acid, 5mM NaOAc, 1mM Ethylendiamintetra-acetic 130 acid disodium salt, pH 7.0) and subsequently loaded on a 1% denaturing Formaldehyde 131 132 agarose gel containing 1.8M Formaldehyde in MOPS buffer. Electrophoresis was performed for 2.5 hours at 80V using MOPS buffer containing 80mM Formaldehyde as running buffer. 133 RiboRuler High Range RNA Ladder (Fermentas) was used as a size marker, which was 134 visualized by Ethidium Bromide staining prior to blotting. After electrophoresis the gel was 135 washed in 10xSaline Sodium Citrate (SSC) buffer (Fisher Bioreagents) and diffusion-136 transferred to a Hybond N+ Nylon membrane (Amersham) for 16 hours. After transfer the 137 membrane was washed twice with 2xSSC buffer, before the nucleic acids were crosslinked to 138 the membrane by UV exposure (Stratalinker 1800, 120.000µJ). The membrane was pre-139 hybridized in ULTRAhyb® buffer (Ambion) at 42°C for 6 hours and subsequently hybridized 140 with 100ng/ml Digoxigenin-labeled RNA probe in ULTRAhyb® buffer at 42°C for 16 hours. 141 After hybridization the membrane was washed twice for 5 minutes with 2xSSC containing 142 0.1% SDS and once for 15 minutes with 0.1xSSC containing 0.1% SDS at 42°C. The 143 membrane was incubated in washing buffer (0.1M Maleic acid, 150mM NaCl, 0.3% Tween 144 20, pH 7.5) for 2 minutes and subsequently blocked with blocking buffer (1% skim milk in 145 0.1M Maleic acid, 150mM NaCl, pH 7.5) for 45 minutes before incubating with anti-146 Digoxigenin-AP Fab fragments (Roche) at a dilution of 1:10.000 in blocking buffer for 1 147

hour. Then the membrane was washed twice for 15 minutes with washing buffer and
equilibrated for 3 minutes with equilibration buffer (0.1M Tris-HCl, 100 mMNaCl, pH 9.5).
For development the membrane was incubated with CPD-Star reagent (Applied Biosystems)
for 5 minutes, before signals were detected on a BioRad WesternBlot detection system.

152

153 *Protein purification for ELISAs.*

Chemically competent E. coli (SoluBl21, Genlantis) were transformed with a MSBI1.176 Rep 154 expression plasmid (pEXP5-CT, Invitrogen) followed by clonal selection of high level protein 155 expression colonies on LB-agar plates containing Ampicillin. The colony was then used to 156 157 inoculate 1000 ml LB medium containing Ampicillin and grown until an OD600 of 0.5 was reached. Protein expression was induced by IPTG (0.66mM) over night at 25°C on a shaking 158 device, before cells were centrifuged at 6.000xg and 4°C, washed with PBS and re-dissolved 159 by sonication in 20 packed cell volumes of sample buffer (100mM NaH₂PO₄, 10mM Tris-160 HCl, 5 mM Imidazole, 5mM beta-Mercaptoethanol, pH 8.0) containing 8M Urea. The protein 161 was subsequently purified at denaturing conditions (55mM Imidazole for washing and 162 300mM Imidazole for protein elution) via a C-terminal His₆-tag by affinity chromatography 163 (Clontech His60 Ni Superflow resin). The protein purification was followed by Coomassie 164 165 protein staining and Rep protein purity was calculated densitometrically.

166

167 *Production of mouse monoclonal anti-Rep antibodies.*

Mouse monoclonal antibodies were produced by individual immunizations of mice (DKFZ, in 168 house) with different KLH-coupled synthetic peptides (peptide 169 two 1: CEARETGKGINANDPLTVH; peptide 2: CKQINEHTDITASYEQHKKGRT, PSL GmbH, 170 Heidelberg) or with purified, full length MSBI1 Rep protein obtained by denaturing His-tag 171 affinity purification out of E. coli. Rep-specificity of the double sub-cloned hybridomas was 172

verified by western blotting, immunofluorescence microscopy, immunoprecipitation and
ELISA experiments based on detection of Rep fusion proteins with NanoLuc (Promega),
ZsGreen1CI (Clontech) or 3xFlag (Sigma Aldrich) fusion tags as expression controls.

176

177 *Neutralization ELISAs.*

ELISA neutralization assays were performed as triplicate experiment to verify the binding 178 specificity of human plasma antibodies for the Rep antigens analysed in standard ELISA 179 serological experiments (duplicates within each experiment). The experimental setup included 180 all the experimental steps previously described for the standard ELISA assay, but, in addition, 181 182 included an incubation step (1 h at 37 °C) with a dilution series of a pool of 10 individual, affinity purified Rep-reactive mouse monoclonal antibodies (1:25-1:1600 in superblock assay 183 buffer) after antigen coating and blocking. After binding of mouse anti-Rep antibodies and 184 washing, plasma incubations as well as serological read out with anti-Human IgG HRP-185 coupled secondary antibodies was performed as described previously. Specific binding of 186 anti-Rep mouse antibodies was monitored by parallel experiments confirming Rep antigen 187 binding with a mouse-specific detection antibody (also from Dianova, MinX). 188

189

190 Supplemental figure legends

191 Figure S1.

(A) RT-qPCR assessment of +RT/-RT controls of CMI1.252, CMI3.168, MSBI1.176 and
MSBI2.176 in HEK293TT cells. Circular CMI1.252, CMI3.168, MSBI1.176 and MSBI2.176
was transfected into HEK293TT cells, total RNA was isolated 72 hours post transfection and
subjected to reverse transcription using random hexamer primers (+RT) followed by qPCR
quantification of the resulting cDNA using isolate-specific (left) and beta actin (right)
primers. Reverse transcription reactions lacking the reverse transcriptase enzyme were used as

a negative control (-RT) in order to access the ratio of RNA-derived cDNA to residual input
DNA in biological triplicates. Absolute quantifications were performed using a standard curve
for each isolate. Signals of the +RT reactions were normalized to 100% for each isolate.

(B) RT-qPCR results from BMMFtransfected HEK293TT cells, non-transfected cells as well
 as water controls using each BMMF-specific primer set as indicated. qPCR results were
 normalized to beta actin as a housekeeping gene, amounts are displayed as -fold beta actin.

(C) Putative splicing events for the isolates CMI1.252, CMI3.168 and MSBI1.176 as detected
by RNA-Seq. RNA-Seq reads of HEK293TT cells transfected with each isolate were analyzed
for splicing events using the STAR mapping algorithm [35]. For each splicing event detected
in at least two biological replicates, the intron start site, the intron end, the strand on which the
splicing occurs as well as the maximum observed number of uniquely mapping reads are
indicated.

210

211 *Figure S2.*

(A) MSBI1.176 replication positive control: HEK293TT cells were transfected with an
MSBI1.176 genome containing the SV40 origin of replication. Absolute amounts of DpnIsensitive (black) and DpnI-resistant (replicated, grey) DNA at days 6, 10 and 13 post
transfection were quantified by qPCR.

(B) Assessment of DpnI digestion efficacy: 100 ng of MSBI1.176 or CMI1.252 were digested
with DpnI enzyme as indicated in the materials and methods section of our manuscript either
solely in water or in the presence of 10µg of total genomic DNA from HEK293TT cells.
Reactions lacking DpnI enzyme served as controls. Relative amounts of MSBI1.176 or
CMI1.252 were quantified by qPCR using DpnI-sensitive primers.

221

222 *Figure S3*.

(A) ClustAl W dendogram showing the similarity of the BMMFs MSBI1.176, MSBI2.176,

CMI1.252, CMI3.168 and their closest related *Acinetobacter baumannii* plasmid pAB120
[80]. The relative distances are indicated.

(B) Clustering of the A/T-rich region as well as the iteron-like repeats of the BMMFs
MSBI1.176, MSBI2.176, CMI1.252, CMI3.168 and the *Acineobacter baumannii* plasmid
pAB120. The location of the iteron-like repeats is indicated. Nucleotide numbers correspond
to the corresponding full length genomes. The color code used is based on the nucleotides, the
conservation as well as the consensus sequence is given below the alignment.

231

232 *Figure S4*.

Comparison of putative promoter elements located within the 250 bp upstream of the major transcription start site of the Rep ORF in MSBI1.176 (upper sequence) and CMI1.252 (lower sequence). The transcription start site is indicated as an arrow. The corresponding TATA box sequence is highlighted in grey and corresponds to a tolerated variant of the TATA box identified for a large set of ribosomal protein genes [48]. Transcription factor binding sites have been identified using the Alibaba2 algorithm [47]. Transcription factor binding sites, which are in common for MSBI1.176 and CMI1.252 are highlighted in red.

240

241 *Table S1*.

List of genes significantly (p<0.01) differentially expressed upon MSBI1.176 expression in
HEK293TT cells. The log(2)-fold change and the p-values are indicated.

244

- 245 *Table S2*.
- List of genes significantly (p<0.01) differentially expressed upon CMI1.252 expression in
- 247 HEK293TT cells. The log(2)-fold change and the p-values are indicated.

Figure S4

table S1			
gene	log(2)-fold change	P-Value	
FABP7	6.46	0.000402	
NEUROD6	5.95	0.001435	
TM4SF1	5.60	0.00309	
FEZF2	5.42	0.004375	
FABP4	5.24	0.002747	
LINC01094	5.10	0.001001	
LINC01204	4.95	0.004752	
TNFSF11	4.92	0.00354	
DEFB109P1	4.89	0.004337	
MIR4672	4.64	0.007961	
COL1A2	4.20	0.001681	
SLC25A52	3.46	0.006348	
VHLL	3.32	0.005596	
HCAR3	2.78	0.007769	
SNORD126	1.89	0.006346	
EGR1	1.56	9.61E-05	
SNORA71D	1.50	0.006002	
SNORA74A	1.50	0.001055	
FOS	1.45	0.001061	
FOSB	1.39	0.004301	
ADAMTSL4-AS1	1.34	0.001448	
ADAM32	1.21	0.008342	
C10orf32	1.15	0.007084	
CYR61	1.13	0.000436	
C19orf10	1.13	0.00886	
POLE4	1.13	0.00306	
PRC1-AS1	1.12	0.003718	
U2AF1	1.11	0.000165	
ATAD3B	1.10	0.008987	
PSG4	1.10	0.001196	
NOMO3	1.10	0.001081	
JOSD2	1.09	0.008611	
MRPL12	1.09	0.003548	
RNU4ATAC	1.08	0.006153	
EMC7	1.04	0.000751	
UBE2B	1.02	0.002207	
SNORA71B	1.00	0.006363	
PCBD2	1.00	0.007732	
PIGW	0.99	0.003734	
POP1	0.94	0.004418	
PSMC5	0.94	0.00093	
HMBS	0.93	0.001528	
TXN	0.92	0.006325	
ZNF117	0.92	0.005095	
RRAGC	0.89	0.008277	
STAG1	0.88	0.002319	
MRPL1	0.87	0.005405	
POMP	0.86	0.007887	

SGCB	0.85	0.006209
GTF3C6	0.85	0.003661
HSPE1	0.85	0.004931
EMILIN2	0.83	0.005564
TDP2	0.82	0.002753
BOLA3	0.82	0.005806
TMED9	0.82	0.004308
SIRT1	0.81	0.003086
OTUD1	0.81	0.006245
RRM2	0.79	0.003578
BRCC3	0.78	0.004558
TRMT10A	0.76	0.008961
KLF6	0.76	0.006387
NDUFS3	0.76	0.009084
DSTN	0.74	0.004321
ZNF480	0.74	0.009531
CTR9	0.74	0.003805
RBM3	0.74	0.00483
PSMA1	0.74	0.009903
SEPHS2	0.73	0.003852
ADI1	0.71	0.00605
HNRNPM	0.70	0.009805
MRPL15	0.65	0.008676
E2F2	-0.71	0.006255
TSPYL2	-0.72	0.007667
NIPSNAP1	-0.76	0.009554
TXNIP	-0.79	0.003394
HMGA1	-0.80	0.007529
PCED1A	-0.80	0.005222
ARHGEF6	-0.85	0.007401
AES	-0.86	0.005081
SEC31B	-0.90	0.006365
PLA2G6	-0.91	0.009329
PDK1	-0.91	0.008367
SERINC2	-0.92	0.007766
FSCN1	-0.93	0.005617
KLF7	-0.93	0.009869
CDR1	-0.95	0.009388
PLEKHB1	-0.95	0.009105
METTL7A	-0.96	0.009095
MGC12916	-0.96	0.009909
CACNB1	-0.96	0.00607
PLEKHH2	-0.98	0.001501
CYP26B1	-0.98	0.006242
NOXA1	-0.98	0.004756
CRABP2	-0.99	0.005456
IFI6	-1.00	0.003896
GABBR1	-1.01	0.005817
TRIM46	-1.01	0.003907
PRSS30P	-1.02	0.004606

SDC3	-1.02	0.005935
HSPG2	-1.02	0.006004
ZFHX2	-1.03	0.008763
LOC100652736	-1.04	0.007096
FAM131B	-1.05	0.007442
PIM1	-1.05	0.005478
BMF	-1.06	0.003037
TMCO6	-1.06	0.006823
IFITM2	-1.07	0.005081
SYT6	-1.07	0.006889
CAMK1D	-1.07	0.00859
NAV2	-1.07	0.002881
SUSD4	-1.08	0.002035
TMEM255A	-1.08	0.007569
DOC2A	-1.09	0.002639
TP53I11	-1.10	0.003542
C1orf233	-1.12	0.009433
TSPAN18	-1.12	0.005081
SEMA4G	-1.13	0.001413
GAP43	-1.15	0.004709
ATHL1	-1.15	0.000568
LIPE-AS1	-1.15	0.007323
SYT7	-1.17	0.007807
ST3GAL1	-1.17	0.00204
CEACAM1	-1.17	0.0095
PPP1R13L	-1.18	0.001203
ASS1	-1.18	0.002322
PPDPF	-1.19	0.003725
BCL11B	-1.19	0.00411
COL24A1	-1.20	0.003901
CRIP2	-1.20	0.004433
ESRRG	-1.20	0.005133
FOXD2-AS1	-1.20	0.003566
FXYD6	-1.21	0.001208
GSTM4	-1.21	0.008592
SLC16A2	-1.21	0.00096
AHNAK2	-1.22	0.000508
LPCAT4	-1.22	0.00322
NRM	-1.23	0.003113
AMT	-1.23	0.002786
PPM1J	-1.24	0.004247
SHANK2	-1.24	0.005587
LINC00086	-1.24	0.001471
SIX5	-1.24	0.001995
IFITM1	-1 25	0.001415
UNC5A	-1 25	0.009903
CTC-338M12 4	-1 25	0.002209
SI C25A35	-1.26	0.004168
NRBP2	-1.26	0.000325
ΡΚΝΟΧ2	-1 26	0 003171
	1.20	5.0051/1

BASP1	-1.27	0.001713
HSD17B14	-1.27	0.007576
SLC30A3	-1.27	0.005977
MN1	-1.27	0.001911
TUBB4A	-1.28	0.003399
LOC100506142	-1.29	0.001796
DLX4	-1.30	0.002639
GYPC	-1.30	0.001831
PLLP	-1.31	0.003795
LOC646903	-1.31	0.006679
KCNN3	-1.32	0.002974
BAI1	-1.32	0.00135
SEMA4A	-1.32	0.009668
LINC00910	-1.33	0.004931
SPDYE3	-1.33	0.007722
USH1C	-1.33	0.005961
EFNB3	-1.35	0.000581
SLIT3	-1.36	0.005448
HLA-DOB	-1.36	0.001805
C1orf213	-1.37	0.001005
HOXC-AS1	-1.37	0.003294
FAM84B	-1.39	0.00103
CRIP3	-1.40	0.008311
GMDS-AS1	-1.41	0.003528
DENND6B	-1.42	0.000483
NLGN2	-1.43	0.000121
PADI2	-1.44	0.00279
PLEKHA6	-1.47	0.003535
TMEM171	-1.50	0.007248
NXPH4	-1.50	0.000809
PPFIA4	-1.50	0.000535
MIR3609	-1.51	0.00689
MAPK15	-1.52	0.000146
GLI1	-1.54	0.001049
PHKA2-AS1	-1.54	0.004936
LOC100272217	-1.55	0.006098
HLA-DMA	-1.56	0.002177
MRPL23-AS1	-1.56	0.004726
ADRB2	-1.57	0.005967
SLC7A3	-1.57	0.000437
SPDYC	-1.57	0.000936
IGSF21	-1.57	0.004581
DDIT4	-1.58	0.000306
CTAGE7P	-1.58	0.000202
CRHR1	-1.68	0.001519
HES7	-1.69	0.003344
SLC22A31	-1.70	0.000621
SSPO	-1.73	0.001991
MFI2-AS1	-1.77	0.001566
EDA2R	-1.80	0.005739

LOC101928689	-1.80	2.71E-05
IGFBP6	-1.84	0.008811
C19orf66	-1.87	0.009129
PCOLCE-AS1	-1.89	0.003421
ARHGAP23	-1.92	0.001525
MLC1	-1.92	0.002299
ENDOU	-1.94	0.004885
SOSTDC1	-1.95	0.008596
ZBTB32	-1.95	0.000908
PRRT2	-1.96	1.35E-05
MPZ	-1.98	0.001163
C16orf11	-1.98	0.009079
PTGES	-1.98	0.000493
C1orf95	-1.98	8.22E-05
LOC113230	-1.99	0.001844
KCNQ4	-2.00	0.003894
PRKCG	-2.01	0.000885
PACSIN1	-2.03	0.009528
LIF	-2.07	0.006503
LINC00896	-2.16	0.003691
H19	-2.20	0.007163
KRT75	-2.23	0.001872
IGFBP5	-2.25	6.13E-05
P2RY4	-2.27	0.006515
CACNG6	-2.27	0.001229
LINC00173	-2.35	0.000667
ASB11	-2.36	0.007159
DKFZP434H168	-2.43	0.006553
CACNA1I	-2.59	0.005098
IL12A-AS1	-2.61	0.008842
NUPR1	-2.62	0.00081
PNCK	-2.64	0.00125
GPR112	-2.66	0.007563
SYNDIG1L	-2.68	0.009232
LGI3	-2.75	0.004521
RHOXF1	-2.97	0.006693
CIART	-2.99	0.001059
RNF113B	-3.12	0.001587
SDR16C5	-3.21	0.009068
LRRC37A11P	-3.28	0.007061
TRH	-3.35	0.002194
PCAT6	-3.35	0.00064
FAS-AS1	-3.40	0.000191
KLK10	-3.63	0.000895
AC011738.4	-3.71	0.008404
MIR301B	-4.04	0.004559
LOC101928158	-4.08	0.003146
UPK2	-4.25	0.004323
MSLN	-4.36	0.003994
MIR196A2	-4.55	0.005243
		5.000210

EDN2	-4.69	0.009738
A4GNT	-4.79	0.007393
LINC00633	-4.90	0.004418
MIR4634	-4.93	0.004036
RP5-1029K10.2	-4.93	0.004671
REN	-4.99	0.005668
CRYAA	-5.08	0.008273
MIR4768	-5.11	0.005682
MIR6774	-5.16	0.003855
GADL1	-5.17	0.005322
CTAGE9	-5.23	0.003032
LOC101928767	-5.24	0.005086
MIR6870	-5.38	0.005011
LINC00943	-5.39	0.003841
LOC643355	-5.55	0.000759
DDX11L10	-5.91	0.000853

table S2			
gene	log(2)-fold change	P-Value	
LINC00575	4.83	0.0065572	
SPANXA2-OT1	4.73	0.0072595	
NCR3	4.65	0.0083563	
KLRC4	4.15	0.0037143	
MIR578	3.96	0.0074699	
LPP-AS1	2.76	0.0039224	
SNORD97	1.66	0.0044813	
FOS	1.58	0.0011066	
SNORA74A	1.41	0.000637	
EGR1	1.37	0.0015771	
SNORD45B	1.21	0.0033671	
U2AF1	1.19	6.74E-05	
FIF1AX-AS1	1.17	0.008158	
C10orf32	1.16	0.0066349	
HSPF1	1.15	0.0001766	
MRPI 12	1 13	0.0051451	
PFDN4	1.02	0.0049079	
PSG4	1.02	0.002726	
HIST1H1D	1.02	0.0052125	
TXN	1 02	0.0027833	
HIST1H2AB	1.00	0.004968	
SNRPF	0.98	0.0060926	
POP1	0.95	0.0044858	
TMFM126A	0.95	0.0085596	
MRPI 1	0.94	0.0048162	
FMC7	0.92	0.0069788	
UBE2B	0.91	0.0095151	
GTE3C6	0.84	0.0040184	
7CCHC12	0.83	0.0085864	
BOLA3	0.05	0.0073795	
VRD1	0.30	0.00757508	
HDRT1	0.79	0.0087558	
	0.75	0.0048521	
DSIN	0.78	0.0028448	
	0.78	0.0008833	
	0.77	0.0080373	
	0.73	0.0083813	
	0.75	0.0033141	
	0.72	0.0062440	
	0.72	0.0064913	
	0.70	0.0080023	
	0.70	0.00/959	
	0.68	0.0048559	
	0.66	0.0096815	
	-0.65	0.0055072	
PVKLZ	-0.71	0.00/9343	
	-0.72	0.0051851	
SKEBF2	-0.80	0.0043/6/	
LENG8	-0.81	0.0035866	

PCED1A	-0.81	0.0039934
TXNIP	-0.81	0.0039243
ERF	-0.83	0.0081612
E2F2	-0.83	0.0024121
AES	-0.83	0.0050496
TBKBP1	-0.83	0.0088437
RNF44	-0.88	0.0081893
FTL	-0.91	0.0094281
RHBDD2	-0.93	0.0016784
PRR12	-0.94	0.0092897
LMOD1	-0.94	0.0059122
TMEM79	-0.94	0.0069906
HCN3	-0.97	0.004871
TMEM198B	-0.98	0.0073583
PLA2G6	-0.98	0.0040264
SEMA4G	-0.99	0.0043221
SLC22A17	-0.99	0.0075784
TPT1-AS1	-0.99	0.0080775
GABBR1	-1.00	0.0039269
EFNB3	-1.00	0.0061089
GRIP2	-1.00	0.0061548
CACNB1	-1.01	0.0041981
SEC31B	-1.02	0.0050225
SERINC2	-1.02	0.0035103
SLC25A35	-1.03	0.0075506
SLC16A2	-1.03	0.0041286
SUSD4	-1.03	0.005332
TMEM8B	-1.03	0.0074665
INO80E	-1.04	0.0067985
GRINA	-1.05	0.0035849
DENND6B	-1.06	0.0068051
CDR1	-1.07	0.0054565
MYADM	-1.08	0.0042851
DGCR11	-1.08	0.0061595
DLX4	-1.08	0.0087857
PPDPF	-1.08	0.0092484
CTC-338M12.4	-1.09	0.0095676
WNK4	-1.12	0.0037724
LOC100506142	-1.12	0.0036296
IGFBP5	-1.13	0.004886
SLC7A3	-1.13	0.0055249
COL1A1	-1.15	0.0057876
WASH5P	-1.16	0.0091126
NRBP2	-1.16	0.0023559
NLGN2	-1.16	0.0014477
GLUD1P3	-1.18	0.0072511
LOC100652736	-1.20	0.0019061
TRIM46	-1.21	0.000733
SLC6A9	-1.21	0.007884
CTAGE7P	-1.24	0.0095779

PCBP4	-1.25	0.0002551
BCAN	-1.26	0.0032855
SPDYC	-1.29	0.0035237
TRIM58	-1.30	0.0085151
SLC30A3	-1.30	0.0033087
LINC00877	-1.31	0.0072858
NR1D1	-1.31	0.0014958
KRTAP19-1	-1.33	0.0052631
PLEKHA6	-1.33	0.0076762
ASIC3	-1.34	0.0017028
WNT8B	-1.34	0.0065969
L1CAM	-1.35	0.0043219
SLC22A31	-1.36	0.0051794
CYP2E1	-1.37	0.0004016
MAPK15	-1.41	0.0005429
RFPL4A	-1.45	0.0040522
NTRK3	-1.46	0.0084716
RAPGEF3	-1.48	0.0089316
SNORD88B	-1.52	0.0009048
TMEM151A	-1.54	0.0097119
GLI1	-1.55	0.0004804
CCDC147-AS1	-1.55	0.006987
IL17RE	-1.58	0.0077628
ZBTB32	-1.59	0.0050863
КСМК9	-1.60	0.0082419
SSPO	-1.62	0.0035774
ENDOU	-1.72	0.0056333
TCERG1L	-1.73	0.0048335
ITGAL	-1.73	0.0066669
ZMAT1	-1.74	0.0089053
PRPH	-1.75	0.0084262
ATP6V1G2	-1.83	0.0008974
PRRT2	-1.85	0.000829
LIF	-1.88	0.0040283
BCYRN1	-1.89	0.0031251
SPG20OS	-1.97	0.0015627
GREM2	-1.99	0.0080243
MIR3609	-2.00	2.21E-05
ALOXE3	-2.02	0.0005102
SHISA7	-2.04	0.0016433
CIART	-2.07	0.0048897
NELL1	-2.09	0.0027595
PKD1L2	-2.16	0.0059482
VWA5A	-2.17	0.0025375
AR	-2.19	0.0004853
MPZ	-2.25	0.0012836
TCTE3	-2.35	0.0050986
SLC30A2	-2.42	0.0097051
MATN4	-2.55	0.0050881
CACNA1I	-2.64	0.0062659

RP11-67M1.1	-2.84	0.0045802
MIR3677	-3.10	0.0083205
EDA2R	-3.11	1.96E-05
CNTD2	-3.13	0.0001547
ZSCAN10	-3.42	0.0025556
DCST2	-3.49	5.41E-05
FABP5P3	-3.66	0.0038056
SPRR2F	-3.76	0.0056194
MIR1914	-3.81	0.0069007
LOC101928158	-3.86	0.0052413
GDF15	-3.87	6.45E-06
DCX	-3.87	0.0048471
ARMC12	-4.76	0.0003432
OTOP2	-4.86	0.0062546
MIR7109	-4.98	0.0093277
AC019118.2	-4.99	0.0086605
OPN5	-5.11	0.0050492
TEX36	-5.15	0.0036454
LINC01214	-5.19	0.0085767
LINC00943	-5.21	0.0058894
RBPJL	-5.23	0.0020774
BANK1	-5.43	0.0032171
LOC285768	-5.46	0.0031214
SLC6A3	-5.55	0.00338
SDPR	-5.62	0.0026785
TRIM55	-5.69	0.0016336
TAS2R40	-5.70	0.0016855

Figure 2c, loading control, full blot

