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Supplementary Figure 1: Pairwise correlation coefficients as computed
from a mixed population of THP-1 cells are significantly influenced
by the cell cycle state. (a) Comparison of Spearman correlation coeffi-
cients computed using only G0/G1 cells, ρG0/G1, and using all cells, ρall cells

(details in Supplementary Note 1) indicates that the majority of protein
pairs (292 out of total 465) exhibit statistically significant changes in corre-
lation across the cell cycle (p-value ≤ 0.05). (b) Excluding M phase cells
from the data and repeating the analysis reveals a minor improvement in the
introduced bias; however significant changes in the correlation coefficients
are still observed in almost half of the protein pairs (222 out of 465).
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Supplementary Figure 2: Cell cycle effects in cell surface markers. To
assess the effect of the cell cycle in a dataset that includes cell membrane
markers, we analyzed the data from [1], where the authors used mass cytom-
etry to analyze a population of human T cells and included in their panel cell
surface markers (e.g., CD3, CD4, CD45) as well as cell cycle markers (e.g.,
p-HH3, p-RB, IdU, cyclin B1). When examining the distribution of the cell
surface markers across the cell cycle phases, as identified by the authors via
manual gating, we observed fluctuations in levels across the cell cycle for
some of the measured markers (a). Specifically, CD45, CD45RA, CD3, and
CD33 progressively increase during the entire cell cycle, peaking at the M
phase (2.5- to 11-fold increase with respect to G0/G1 phase (b)). Overall,
this finding indicates that, even in well-studied systems where the cell cycle
is not expected to be a prominent confounder, cell-cycle signatures can have
a non-negligible imprint on the measured protein abundance.
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Supplementary Figure 3: Validation of ASCQ Ru as an indicator of
cell volume. (a) Structure of ASCQ Ru and biochemical mechanism of
ASCQ Ru staining: ASCQ Ru covalently binds to the amines on unspecific
proteins. (b) Confocal images of MDA-MB-231 cells stained with ASCQ Ru
and Hoechst 33342 (DNA staining). (c) 3D reconstruction of imaged cells
using ASCQ Ru to determine cell volume. (d) Linear regression on summed
ASCQ Ru fluorescence intensity in single cells versus computed cell volume.
Scale bar, 100µm.
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Supplementary Figure 4: Pairwise correlation coefficients are signifi-
cantly influenced by cell volume. Pairwise correlations computed using
the whole cell population are significantly different (p-value ≤ 0.05) than
pairwise correlations computed using only (a) small cells (214 out of 465
pairs show statistically significant differences), (b) intermediate (247 out of
465 pairs) and big (c) (40 out of 465 pairs). The pairwise correlations are
thus driven by large cells, and the cell volume can act as a confounding factor.
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Supplementary Figure 5: Cell cycle classification using decision trees.
(a) Measurements of the four cell cycle markers IdU, cyclin B1, p-HH3 and
p-RB can be used for manual cell cycle phase assignment as described in [1].
Shown here are the results of this gating process for a THP-1 cell line, as
performed in Cytobank. (b) Resulting structure of the decision tree after the
training phase, with class labels and percentages indicated at the terminal
nodes. The decision tree faithfully recapitulates the class assignment per-
formed by manually gating, both in terms of the markers selected per class
and the order of selection. (c) Cell cycle phase ratios in the three studied
cell lines, as predicted by a decision tree trained on measurements of IdU,
cyclin B1, p-HH3 and p-RB.
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Supplementary Figure 6: Decision trees and Gaussian mixture models
enable automatic class assignment. (a) Results of supervised learning
with decision trees, in the space of hypothetical markers y1, y2 for two hy-
pothetical classes 1 and 2. The decision boundaries are shown as areas with
different colors. Class means (red circles), data covariance matrices and class
proportions are used as initial parameters in a Gaussian mixture model with
two components. (b) After fitting using the Expectation-Maximization (EM)
[7] algorithm, the posterior probability that a single cell belongs to each class
is returned and the class with the higher posterior is selected. Here, color
indicates class assignment and opacity indicates posterior probability value.
Refined class means are indicated as red circles.
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Results after Prediction Refinement 
with GMMs

Supplementary Figure 7: The Gaussian Mixture Model improves cell
cycle classification results of decision trees. (a) Confusion matrix of
the classification performance on an independent test set from HEK293T
data after prediction using decision trees. (b) Final confusion matrix after
classification refinement by fitting a Gaussian mixture model of four compo-
nents to the same HEK293T data. The results indicate an overall improve-
ment of the prediction across all classes when decision trees and GMMs are
combined.
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Supplementary Figure 8: Outline of the trajectory reconstruction
method. Toy example of the trajectory reconstruction method for two
classes in a two-dimensional space of hypothetical markers y1, y2. Given
prior information about the single cell class labels and the class ordering,
the best embedding fα(y) is computed by selecting the function that opti-
mally preserves the class ordering in the new subspace spanned by fα(y). As
class ordering violations are expected in the embedding due to noise or mea-
surement outliers, we introduce slack variables, i.e. positive variables that
penalize each constraint violation, and we minimize over the sum of all slack
variables.
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Supplementary Figure 9: Cell cycle trajectories of p-CDK1 and cyclin
E as independent validation. (a) Phosphorylation of CDK1 on Tyr15
progressively increases during S and G2, peaks at the G2-M transition, and
CDK1 is then dephosphorylated once cells enter M phase. Internal progres-
sions of S phase and G2 phase are captured, and the G2-M transition is
sharp. (b) At the same time, cyclin E progressively increases during G1,
peaks at G1-S transition and degrades during S phase. In conclusion, the
inferred cell cycle trajectories validate that our approach accurately captures
S and G2 internal progression and the G2-M transition (p-CDK1), as well as
the G1 phase progression and G1-S transition (cyclin E).
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CellCycleTRACER MATLAB 9 
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(CYT implementation)
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Diffusion Maps MATLAB 
(estimated σ = 0.16)
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TSCAN Bioconductor package 120
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Supplementary Figure 10: (a) Comparison of CellCycleTRACER with
widely used trajectory reconstruction and embedding methods, as
inferred from our four cell cycle marker measurements on a popula-
tion of n =3753 THP-1 cells. The cell cycle fluctuations of the markers do
not represent the underlying biology. Wanderlust [2] ordered the cells in the
wrong order (G1→G2→S→M). SCUBA [6] reconstructed a G2→S→G0/G1
trajectory and incorporated M phase cells in the other clusters. TSCAN [4]
reconstructed a M→S/G2→G0/G1 trajectory by mixing together G2 and S
cells, and Monocle [8] ordered the data as G0/G1→M→G0/G1→G2→S, by
ordering M phase cells in the middle of the G0/G1 cluster. Last, diffusion
maps [3] constructed a non-linear, low-dimensional embedding of the data,
which did not capture the known ordering. (b) Implementation details and
runtimes of the above-mentioned methods.
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Supplementary Figure 11: Cell cycle trajectories of cell surface mark-
ers. Analysis of the published human T cell data [1] with CellCycleTRACER
allowed the reconstruction of cell cycle trajectories of the cell surface mark-
ers. In agreement with the marker distributions across the cell cycle, shown
in Supplementary Fig.2, the resulting trajectories for some of the surface
proteins exhibited an increasing trend across the cell cycle, peaking as the
cells enter M phase.



13

Supplementary Figure 12: Cell-cycle-dependency of p38 phosphoryla-
tion in response to TNFα stimulation confirmed by flow cytometry.
THP-1 cells treated with TNFα for 15 min were measured by flow cytometry.
A 1.5 fold increase of p-p38 level from the G0/G1 phase to G2/M phase can
be observed, validating that the phosphorylation of p38 (Thr180/Tyr182) in
response to TNFα stimulation is cell-cycle-dependent.
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Supplementary Figure 13: Trajectory alignment through cell cycle
phase equalization removes duration-specific variability. Trajecto-
ries of p-RB during TNFα stimulation in a population of HEK-293T cells,
before and after cell cycle alignment. A larger population of S phase cells
in time points 2, 4, 5, and 6 (a) results in relatively elevated levels of p-RB.
When the cell cycle phases are aligned (b) no duration-specific variation is
observed. Subsequently, estimating the fold change of the abundance of p-
RB with respect to the control time point (c) results in large fold change
values of time points 2, 4, 5, and 6; however, after equalizing the duration
of the phases, p-RB levels are comparable across time points and the fold
change is negligible.
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Supplementary Figure 14: Validation of housekeeping proteins as a cell
volume indicator. (a-c) MDA-MB-231 cells were stained with Hoechst
33343 for the nucleus and Alexa Fluor 647 carboxylic acid succinimidyl es-
ter for the cell outline. Housekeeping proteins actin, GAPDH and RAB7
were stained in (a), (b) and (c), respectively. (d-f) 3D reconstruction of cor-
responding images (a-c), using cell outline determined by Alexa Fluor 647
carboxylic acid succinimidyl ester. (g-i) Linear regression on the computed
cell volume versus summed actin, GAPDH and RAB7 fluorescence intensity,
respectively. Scale bar, 100µm.
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Supplementary Figure 15: Housekeeping protein measurements across
different cell lines reveal significant differences in protein abun-
dances. Probability density plots and pairwise scatter plots of the single
cell measurements of housekeeping proteins GAPDH, RAB7 and actin in
HEK293T, MDA-MB-231 and THP-1 cells show cell-line-specific variations
in amounts of these proteins. For example, THP-1 cells have the lowest
GAPDH levels but the highest actin levels. Thus, contrary to our expecta-
tions, housekeeping protein levels differ across cell types and are not optimal
markers for cell volume correction.
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Supplementary Figure 16: ASCQ Ru measurements are not affected
by cell line variability. Probability densities and pairwise scatter plots
of the single cell measurements for four ruthenium stable isotopes, spanning
all atomic masses, in HEK293T, MDA-MB-231 and THP-1 cells. In con-
trast to the housekeeping protein measurements, ASCQ Ru is significantly
more robust against cell-line-specific variations, allowing thus a more accu-
rate quantification of cell volume.
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Supplementary Figure 17: Cell volume correction applied to ASCQ Ru
measurements removes cell type variability. Data from all seven sta-
ble isotopes of ASCQ Ru, indicated with different colors, as measured in in
HEK293T, MDA-MB-231 and THP-1 cells (left). After cell volume correc-
tion (right), the measurements are aligned vertically and no cell-line-specific
variation is observed.
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Supplementary Figure 18: Pairwise correlation coefficients between
GAPDH and MEK1/2, ERK1/2 (total and activated state), be-
fore and after cell volume correction. We assessed the abundance of
both the total amount and the phosphorylated amount for proteins ERK1/2
and MEK1/2 and we subsequently examined whether and to which extent
they are affected by volume. We used the ruthenium isotopes to normalize
the data and correct for volume, and quantified the housekeeping protein
GAPDH as an independent validation marker (GAPDH measurements were
not corrected). (a) Before volume correction both ERK1/2 and MEK1/2
were correlated with GAPDH (Spearmans correlation coefficients shown on
the left), in both their total and the activated state. (b) However, after cell
volume correction the effect disappeared and correlation coefficients with
GAPDH were significantly lower for all proteins in both states (total and
active). Within-protein correlations were preserved, however.
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Supplementary Figure 19: Solution time and robustness of the linear
programming (LP) optimization process. (a) Runtime of the LP solu-
tion with respect to the number of single cells considered. (b) Boxplots of
distributions of estimated values of parameters α, acquired after 100 random
repetitions of the optimization process, for a varying percentage of sampled
single cells, indicates robust results when a minimum of 5% of the total
population is sampled.



Supplementary Table 1: Antibody panel 

Isotope Antigen Immunogen Suppli
er 

Clone Staining 
Concent

ration 
[μg/ml] 

Gene ID UniProt 
Entry 

La139 p-
CREB/AT

F1 

p-Ser133 of 
CREB/pSer63 

of ATF1 

BD J151-21 1 CREB1 

ATF1 

P16220 

P18846 

Pr141 p-STAT1 p-Tyr701 BD 4a 2 STAT1 P42224 

Nd142 p-SRC p-Tyr418 eBiosci
ence 

SC1T2M3 1 SRC P12931 

Nd143 p-FAK p-Tyr397 CST Polyclonal 2 PTK2 Q05397 

Nd144 p-MEK1/2 p-Ser221 CST 166F8 0.5 MAP2K1 

MAP2K2 

Q02750  

P36507  

Nd145 p-
MAPKAPK

2 

p-Thr334 CST 27B7 1 MAPKAPK

2 

P49137 

Nd146 p-STAT5 p-Tyr694 BD 47/Stat5 2 STAT5A P42229 

Sm147 p-MKK4 Ser257/Thr261 CST C36C11 1 MAP2K4 P45985 

Nd148 p-p70S6K p-Thr389 CST 1A5 2 RPS6KB1 P23443 

Sm149 p-p53 p-Ser15 CST 16G8 1 TP53 P04637 

Nd150 p-NFκB p-Ser529 BD K10-
895.12.50 

1.5 RELA Q04206 

Eu151 p-p38 p-Thr180/p-
Tyr182 

BD 36/p38 2 MAPK14 

MAPK11 

MAPK12 

MAPK13 

Q16539  

Q15759  

P53778  

O15264  

Sm152 p-AMPKα p-Thr172 CST 40H9 1.5 PRKAA Q13131 

Eu153 p-AKT p-Ser473 CST D9E 1 AKT1 

AKT2 

AKT3 

P31749 

P31751  

Q9Y243  

Sm154 p-ERK1/2 p-Thr202/p-Tyr-
204 

BD 20A 1 MAPK3 

MAPK1 

P27361  

P28482 

*Sm154 cyclin E1 Recombinant 
human cyclin 

E1 

CST HE12 2 CCNE1 P24864 



Gd156 cyclin B1 Recombinant 
human cyclin 

B1 

BD GNS-11 0.5 CCNB1 P14635 

Gd158 p-GSK3β p-Ser9 CST D85E12 0.25 GSK3B P49841 

Tb159 GAPDH Purified rabbit 
muscle GAPDH 

Thermo 6C5 0.25 GAPDH P04406 

Gd160 p-MKK3/6 p-Ser189 of 
MKK3/p-
Ser207 of 

MKK6 

CST D8E9 0.5 MAP2K3 

MAP2K6 

P46734 

P52564 

Dy161 p-PDK1 p-Ser241 BD J66-
653.44.22 

0.05 PDPK1 O15530 

Dy162 p-BTK/ITK p-Tyr551 of 
BTK/p-Tyr551 

of ITK 

BD 24a/BTK 1 BTK 

ITK 

Q06187 

Q08881 

Dy163 p-p90RSK p-Ser380 CST D5D8 2 RPS6KA1 

RPS6KA2 

RPS6KA3 

Q15418 

Q15349 

P51812 

Dy164 RAB7 A synthetic 
peptide 

corresponding 
to residues 
surrounding 
Glu188 of 

human Rab7 
protein 

CST D95F2 0.05 RAB7A P51149 

Ho165 β-catenin Non-phospho 
Ser33/37/Thr41 

CST D13A1 0.5 CTNNB1 P35222 

*Ho165 p-CDK1 Tyr15 BD pY15 2 CDK1 P06493 

Er166 p-STAT3 p-Tyr705 BD 4/P-
STAT3 

2 STAT3 P40763 

Er167 p-JNK p-
Thr183/Tyr185 

CST G9 4 MAPK8 

MAPK9 

MAPK10 

P45983 

P45984 

P53779 

Er168 p-
MARCKS 

p-Ser167/170 CST D13E4 4 MARCKS P29966 

Tm169 p-PLCγ2 p-Tyr759 BD K86-
689.37 

1 PLCG2 P16885 

Er170 p-HH3 p-Ser28 BD HTA28 0.1 H3F3A P68431 



Yb171 p-S6 p-
Ser235/Ser236 

BD N7-548 0.1 RPS6 P62753 

Yb172 cleaved 
PARP 

A peptide 
corresponding 

to the N-
terminus of the 
cleavage site 
(Asp 214) of 

human PARP 

BD F21-852 2 PARP1 P09874 

Yb173 PCNA Recombinant 
rat PCNA 

BioLeg
end 

PC10 0.05 PCNA P12004 

Yb174 actin A synthetic 
peptide 

corresponding 
to residues 

near the amino 
terminus of 

human β-actin 
protein 

CST D6A8 0.025 ACTB P60709 

Lu175 p-RB p-807/811 CST D20B12 1 RB1 P06400 

Yb176 p-4EBP1 p-Thr37/46 CST 236B4 0.1 EIF4EBP1 Q13541 

*Alternative antibodies for the channel Sm154 and Ho165, respectively 
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Supplementary Note 1 Exploring confounding

factors in CyTOF data

In this section we present some illustrative examples of cell-
volume and cell-cycle-induced variability and discuss how this
effect can confound statistical analysis of CyTOF data. As-
suming j = 1, . . . ,m denotes protein markers and i = 1, . . . , n
individual cells, let yi,j denote the raw abundance of marker j
in cell i. In our CyTOF experiments, a total of m = 31 proteins
were quantified in a population of n ≈ 3750 THP-1 (embryonic
kidney) cells. According to common practice in cytometry, the
single cell raw measurements were transformed using the inverse
hyperbolic sine function (asinh):

ytransi,j = asinh(yi,j) = ln

(
yi,j
c

+

√(yi,j
c

)2
+ 1

)
(1)

where c is a scaling factor set to 5.

Transformed single-cell measurements were manually gated
according to the four cell cycle phases – G0/G1, S, G2 and
M – following standard protocols [1]. We estimated Spearman
correlation coefficients between pairs of proteins in each stage
of the cell cycle and in ungated cells, which represent a mixed,
non-synchronized population. Striking differences across phases
were observed, as for instance between proteins pAMPK and
pPDK1 (see scatter plot of main Fig.1a). More specifically, M
phase cells are highly correlated, inducing an overall increase of
the whole cell population correlation. To investigate the extend
of this effect, we computed all pairwise Spearman correlation
coefficients, using all cells, ρall cells, and G0/G1 cells, ρG0/G1. To
compare these two groups, the correlation coefficients ρ were
transformed into normally distributed variables z(ρ) using the
Fisher z-transformation [5]:
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z(ρ) = arctanh(ρ) =
1

2
ln

(
1 + ρ

1− ρ

)
(2)

Under this transformation, variables z(ρ) follow a normal dis-

tribution with standard deviation σ =
√

1.06
N−3 , where N is the

number of observations. We can therefore compare any two cor-
relations ρ1, ρ2 estimated from two sets containing N1, N2 obser-
vations using a t-test:

Z(ρ1, ρ2) =
z(ρ1)− z(ρ2)√

1.06
N1−3 + 1.06

N2−3

(3)

We estimated the p-values of all Z-scores at a significance level
a of 0.05. The results are shown graphically in the heatmap of
Supplementary Fig. 1a. Most pairs of proteins show a significant
change in correlation computed using all cells versus correlations
computed using G0/G1 cells. To determine whether this effect
is due to the bias introduced by M phase cells, we excluded the
data of these cells and repeated the analysis. The results are
shown in the heatmap of Supplementary Fig.1b; the effect is
less pronounced when data on M phase cells is excluded, but for
a high percentage of protein pairs, correlations are significantly
different.

To investigate whether the cell volume has a similar effect,
cells in G0/G1 phase were manually gated and separated in three
categories based on their size, indicated by ASCQ Ru staining.
Similarly as above, Spearman correlation coefficients between
pairs of proteins in each category (ρsmall, ρintermediate, ρbig) and in the
whole population of cells (ρall cells) were compared. The results
are shown graphically in the heatmaps of Supplementary Fig.
4. We observe that most pairs of proteins show a statistically
significant change in correlation coefficients computed using all
cells versus correlation coefficients computed using small or in-
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termediate cells.
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Supplementary Note 2 Cell volume correction

We describe here how the ASCQ Ru measurements are used for
cell volume correction. Reusing previous notation, let yi,j denote
the raw abundance of marker j in cell i, where i = 1, . . . , n and
j = 1, . . . ,m. Let v = 1, . . . , l denote the cell volume marker
index, with l < m. Initially, the raw cell volume measurements
yi,v are normalized by dividing by the mean value for each cell
volume marker v across all cell lines:

ynormi,v =
yi,v

1
n

∑n
i=1 yi,v

The resulting measurements are averaged across all markers,
resulting in a normalization factor voli:

voli =
1

l

l∑
v=1

ynormi,v

We use the mean of all cell volume markers, as voli is less noisy,
less likely to contain zero elements and a more robust indica-
tion of cell volume that the individual markers. Lastly, raw
measurements of all markers j are divided by voli to correct for
volume-induced variability:

ycorri,j =
yi,j
voli

The results of the volume correction step are shown graphically
in Supplementary Fig.17. We observe that Ruthenium measure-
ments from three different cell lines almost perfectly align after
the correction step.
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Supplementary Note 3 Cell cycle classification

Decision tree implementation

In this section we provide a detailed description of the implemen-
tation of the decision tree and its performance on experimental
CyTOF data. Let p ∈ {1, . . . , 4} represent the class label, in
our case the cell cycle phase index (1: G0/G1, 2: S, 3: G2 and
4: M). For the purposes of training the decision tree, we used
existing measurements of four well-established cell cycle mark-
ers IdU, cyclin B1, p-HH3 and p-RB, from a THP-1 cell line
together with cell class labels, derived by manual gating in Cy-
tobank (see Supplementary Fig. 6 (a)). Prior to the training,
the data was transformed and standardized using eqs. 1 and 5
and then randomly split into training and testing sets, in the
proportions of 70% and 30%, respectively. During the learning
phase, the algorithm examines the training data together with
the class labels and identifies an optimal split that minimizes
a predefined optimization criterion. In our implementation, we
chose the Gini diversity index (gdi) as optimization criterion:

gdi = 1−
4∑
p=1

r2p, (4)

where rp denotes the observed proportion of single-cell measure-
ments belonging to phase p. A pure node (i.e., a node that con-
tains observations belonging to only one class) has a gdi equal
to zero, and all non-pure nodes have gdi > 0. The partition-
ing continues in the children nodes until one of two termination
conditions is fulfilled: 1) a node is pure or 2) the putative new
split produces leaves with fewer observations than a specified
threshold, set here to 10. After the training is finalized, a class
index is assigned to each terminal node, according to the preva-
lent class in the leaf (i.e., the class with the highest proportion
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of observations). The resulting decision tree is shown in Supple-
mentary Fig.6b below. In our case, all terminal nodes were pure,
indicating a 100% accuracy on the training set. Similarly, accu-
racy on the test set was also 100%. We then examined whether
the trained classifier produced accurate predictions using mea-
surements from other cell lines. Results for HEK293T cells are
shown in Supplementary Fig.7a in the form of a confusion ma-
trix, where rows correspond to the actual class of the samples,
assigned through manual gating, and columns to the class pre-
dicted by the decision tree. Elements in the diagonal correspond
to the number of correctly classified samples per class and ele-
ments away from the diagonal correspond to elements wrongly
classified. Using the decision tree G0/G1, S and M classifica-
tion performance exceeded 97.5%; for G2 phase performance was
marginally lower at 88.3%. While the classification performance
is satisfactory, we show in the next section how it can be im-
proved by using Gaussian mixture models in conjunction with
decision trees.

Fitting Gaussian mixture models to the measurements

Gaussian mixture models (GMMs) are probabilistic models that
aim to represent a sample population as a mixture of Gaus-
sian subpopulations, each characterized by different mean vec-
tors and covariance matrices [7]. The definition is formalized as
follows: let Y = {y1, . . . , yn} denote the four-dimensional data
matrix of the cell cycle markers, transformed and standardized
according to eqs. 1. To eliminate any systematic bias introduced
by differences in antibody concentrations or affinities prior to the
analysis, the measurements were standardized as follows:

ystandi,j =
ytransi,j − ȳtransj

stransj

(5)
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where ȳtransj and stransj denote the sample mean and standard
deviation of each marker respectively, computed across all cells
and time points.

A GMM with parameters θ is defined as follows:

p(Y |θ) =
4∑
p=1

wp N (y|µp,Σp) (6)

where each N (Y |µp,Σp) is a component of the model, defined as
a four-dimensional Gaussian density with mean vector µp and
covariance matrix Σp:

N (Y |µp,Σp) =
1√

(2π)4|Σ|
exp

(
−1

2
(Y − µp)′ Σ−1p (Y − µp)

)
,

(7)
and wp are the mixture coefficients (proportions of each compo-
nent), that satisfy wp ≥ 0 and

∑4
p=1wp = 1. Each mixture p is

characterized by the parameters θ:

θ = {wp, µp,Σp}, p = 1, . . . , 4. (8)

The optimal parameters θ to fit the single-cell measurements Y
are computed through maximum likelihood (ML) estimation us-
ing an iterative expectation-maximization (EM) process, where
θ is initialized using the output of the decision tree classifier.
This biases the GMM towards converging to the solution of the
decision tree, while overcoming the problem of the rigidity of
the decision tree’s boundaries. The EM process is repeated un-
til convergence, achieved when the log-likelihood function fails
to decrease more than 10−6, or until a maximum number of 100
iterations is reached (termination without convergence). Results
of this analysis on data from HEK293T cells are shown in Sup-
plementary Fig.7b in the form of a confusion matrix. This anal-
ysis demonstrates that GMMs improve the classification per-
formance achieved by decision trees. The gain in performance
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arises from the GMM probabilistic treatment of class assign-
ments. An outlier cell has a non-zero probability to be assigned
to its real class, even though according to the DT should have
been assigned to a different class.
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Supplementary Note 4 Cell cycle trajectory

In this section we provide details about the trajectory recon-
struction method. Let yi denote the four-dimensional vector of
cell cycle markers (IdU, cyclin B1, p-HH3 and p-RB) and let
pi ∈ {1, ..., 4} denote the cell cycle phase of each single cell i.
Next, let fα(y) denote a linear function that embeds the four-
dimensional space of the cell cycle markers and projects them
into a one-dimensional space, which in our case represents bio-
logical pseudotime:

fα(yi) =
4∑
j=1

αj yi,j , (9)

where the vector of coefficients of the linear terms α = (α1 α2 α3 α4)
takes values in R4

≥0. In the following, we define a linear opti-
mization problem that identifies the optimal coefficients α to
define the biological pseudotime. Let Cp = {i | pi = p} denote
the subpopulation of cells in phase p = 1, ..., 4. Our problem is
then to find coefficients α such that the ordering of the classes
is preserved, that is:

p < q ⇒ fα(yip) < fα(yiq) ∀ ip ∈ Cp, iq ∈ Cq . (10)

By exploiting transitivity and since the order of the classes is
known, we can reduce the number of constraints and impose only
order preservation between consecutive classes, i.e. for q = p+1.
Thus the subsets of cell pairs on which we impose constraints
are defined as:

Sp = {(i1, i2) | i1 ∈ Cp, i2 ∈ Cp+1} , p = 1, ..., 3.

Enforcing the ordering constraints for all cells in adjacent
classes might be in general infeasible due the high level of noise of
CyTOF data. Therefore, the inequality constraints among cells
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i1, i2 belonging to Sp, p = 1, ..., 3, are redefined by introducing
slack variables si1,i2, positive variables that allow the violation
of the constraints. In this context, a slack variable represents
the degree of constraint violation, and our optimization prob-
lem is translated to estimating α so that the sum over all slack
variables is minimized (Supplementary Fig. 8), formulated as
the following linear program (LP):

min
α ∈ R4

≥0
si1,i2 ≥ 0, (i1, i2) ∈ Sp

p = 1, ..., 3

3∑
p=1

∑
(i1,i2)∈Sp

si1,i2 (11)

subject to: fα(yi1) ≤ fα(yi2) + si1,i2 ∀(i1, i2) ∈ Sp, p = 1, ..., 3.

The LP stated in eq.11 has a trivial solution (i.e., α = 0). In
order to exclude this trivial solution, we impose the following
constraint:

4∑
j=1

αj = 1. (12)

The choice of the right-hand-side of eq.12 is arbitrary. A differ-
ent positive choice would only amount to a scaling of the LP,
leaving the qualitative results unchanged.

Slack penalization on cell pairs from adjacent classes implic-
itly puts an over-proportional weight on larger classes, in par-
ticular on adjacent larger classes, due to the imbalance in the
number of constraints. Thus, we add weights to the objective
function to obtain a balanced result. The weight for each pair
of adjacent classes is given as:

wp =
1√

|Cp| · |Cp+1|
. (13)
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Together with eq.12 this leads to the following modified version
of the LP presented in eq.11:

min
α ∈ R4

≥0
si1,i2 ≥ 0, (i1, i2) ∈ Sp

p = 1, ..., 3

3∑
p=1

wp
∑

(i1,i2)∈Sp

si1,i2 (14)

subject to: fα(yi1) ≤ fα(yi2) + si1,i2 ∀(i1, i2) ∈ Sp, p = 1, ..., 3
4∑
j=1

αj = 1.

Depending on the number of cells considered, as shown in
Supplementary Fig.19a the running time to solve the resulting
LP can be very large and thus the problem becomes computa-
tionally intensive. To reduce the solution time, we randomly
pick a fixed percentage of cells from each class (Cp, p = 1, ..., 4)
and adjust the weights wp accordingly. To investigate the ro-
bustness of the solution with respect to the sampling, we solved
the LP 100 times with randomly picked cells and repeated this
for an increasing total number of cells. Results are summarized
in Supplementary Fig.19b. The resulting solutions - the val-
ues of parameters α - are robust to the sampling of cells even
for a small percentage of cells (>5%). Once parameters α are
identified, all single cells i = 1, . . . , n are arranged on the new
pseudotemporal dimension by sorting them in an ascending or-
der based on the value of fa(yi), resulting in a new ordering
index is. Then, the corresponding cell cycle trajectories for each
marker j = 1, . . . ,m are denoted as yis,j.



35

Supplementary Note 5 Cell cycle alignment

In this section we provide further details on how the relative cell
cycle phase proportions across individual samples can be aligned
ain order to correct for cell cycle phase duration variability. This
correction does however imply downsampling the data, which
modifies the initial data distribution, and thus should be used
cautiously and only for the purpose of comparing data across
different cell lines.

Let p ∈ {1, . . . , 4} represent the cell cycle phase (1: G0/G1,
2: S, 3: G2 and 4: M). Then, let k = 1, . . . , K denote the differ-
ent samples, nkp the number of cells in sample k and phase p and
rkp denote the observed proportion of single-cell measurements

belonging to phase p in sample k, i.e. rkp =
nkp∑4
p=1 n

k
p

. To align the

cell cycle phase proportions across all samples, we need to equal-
ize all individual rkp to some common target proportions r̄p, in
our case selected either as the mean proportions across samples
or as the proportions of one reference sample. This is achieved
by a downsampling strategy, which aims to equalize the class
proportions while at the same time preserving the maximum
amount of single cell data. More specifically, for each sample k
the following steps are executed:

1. Estimate a sampling indicator λkp that represents the pro-
portion of cells to be removed from sample k in phase p in
order to meet the target proportions:

λkp =
nkp − r̄p

∑4
p=1 n

k
p

nkp
(15)

A negative value of λkp in eq.15 indicates that the existing
number of cells in that phase is not sufficient to match the
target proportions r̄p by downsampling.
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2. Identify the index of phase pm with the lowest indicator:

λkpm = minλkp

3. The number of samples n̄kp to be drawn from each phase
p in order to satisfy the target proportions is computed as
follows:

n̄kp = nkpm

(
r̄p
rkpm

)
An example of the alignment results is shown graphically in

Supplementary Fig.13 for protein p-RB in HEK 293T cells.
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Supplementary Note 6 Cell cycle correction

After (optionally) equalizing cell cycle phase duration, the last
step is to remove cell cycle fluctuations, correcting for unwanted
variability. Reusing the notation of Supplementary Note 4, let
the single cell trajectory of each marker j be yis,j. To correct
for cell cycle variations, the following process is executed for all
markers j = 1, . . . ,m:

1. Compute the mean trajectory ȳis,j by applying a mean filter
on yis,j, where the value of each single cell is is replaced by
the mean of the neighboring cells in a window of fixed size.

2. Normalize ȳis,j by dividing it with its mean value, i.e.:

ȳnormis,j
=

ȳis,j
1
n

∑n
i=1 ȳis,j

3. Divide the single cell trajectory with the normalized mean
trajectory:

ycorris,j
=

yis,j
ȳnormis,j

In this way, cell-cycle-specific fluctuations are removed and
the single cells are redistributed independently of cell cycle vari-
ation.
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