Supplementary Information for:

DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives

Fernanda Neumann¹, Stéphanie Gourdain¹, Christelle Albac², Alain D. Dekker^{2,3}, Linh Chi Bui⁴, Julien Dairou⁵, Isabelle Schmitz-Afonso¹, Nathalie Hue¹, Fernando Rodrigues-Lima⁴, Jean M. Delabar², Marie-Claude Potier², Jean-Pierre Le Caër¹, David Touboul¹, Benoît Delatour², Kevin Cariou¹, and Robert H. Dodd¹

¹ Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. ² Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013 Paris, France. ³ Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. ⁴ Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France. ⁵ UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270 Paris, France. Supplementary information contains:

1. Synthesis of the fluoro-DANDY inhibitors			
1.1 General Remarks	S3		
1.2 General Procedure and Analytical Data for 2a-2d and 3a-3e.	S4		
1.3 General Procedure and Analytical Data for 4a-4f. 1.4 General Procedure and Analytical Data for 5a-5g			
3. Supplementary Figures	S45		
Figure SI1: MS/MS spectrum of compound 5a	S45		
Figure SI2: Extracted Ion Chromatograms	S46		
4. Supplementary Table			
Table SI2: Optimized SRM transitions for compound 5a and IS	S47		

1. Synthesis of the fluoro-DANDY inhibitors

1.1 General Remarks.

Melting points were measured in capillary tubes on a Büchi B-540 apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer Spectrum BX FT-IR spectrometer. Proton (¹H) and carbon (¹³C) NMR spectra were recorded on Bruker spectrometers: Avance 300 MHz (QNP - ¹³C, ³¹P, ¹⁹F - probe or Dual ¹³C probe) and Avance 500 MHz (BB0 - ATM probe or BBI - ATM probe). Carbon NMR (¹³C) spectra were recorded at 125 or 75 MHz using a broadband decoupled mode with the multiplicities obtained using a DEPT sequence. NMR experiments were carried out in deuterochloroform (CDCl₃), for which chemical shifts (δ) are reported in parts per million (ppm) with reference to CDCl₃ (¹H: 7.26; ¹³C: 77.16) and deuteromethanol (CD₃OD), for which chemical shifts (δ) are reported in parts per million (ppm) with reference to CD₃OD (¹H: 3.34; ¹³C: 49.86). The following abbreviations are used for the proton spectra multiplicities: s: singlet, brs: broad singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. Coupling constants (J) are reported in Hertz (Hz). Mass spectra were obtained either with an LCT (Micromass) instrument using electrospray ionization (ES) or from a Time of Flight analyzer (ESI-MS) for the high resolution mass spectra (HRMS). Thin-layer chromatography was performed on silica gel 60 F254 on aluminum plates (Merck) and visualized under a UVP Mineralight UVLS-28 lamp (254 nm) and with 4-anisaldehyde and phosphomolybdic acid stains in ethanol. Flash chromatography was conducted on Merck silica gel 60 (40-63 µm) at medium pressure (300 mbar). All reagents were obtained from commercial suppliers unless otherwise stated.

1.2 General Procedure for the Preparation of the 3-Aryl-7-azaindole Derivatives 2a-2d and 3,5-Diaryl-7-azaindoles 3a-3e.

To solution of 5-bromo-3-iodo-1-(phenylsulfonyl)-1*H*-pyrrolo[2,3-*b*]pyridine (**1**, 1 equiv)³² or of 5-bromo-3-aryl-1-(phenylsulfonyl)-1*H*-pyrrolo[2,3-*b*]pyridine (**2a-2d**, 1 equiv) in a degassed mixture of toluene and ethanol (3:1, 0.03 M) were added the appropriately substituted phenylboronic acid (1 equiv), K_2CO_3 (2M solution in water, 3 equiv) and Pd(PPh₃)₄ (1.5 mol%). The reaction mixture was heated at 110 °C for 5 h under argon then cooled to room temperature and concentrated under vacuum. The residue was partitioned between water and CH₂Cl₂ and the aqueous layer was extracted with CH₂Cl₂ (2x). The organic extracts were combined, dried over MgSO₄ and the solvents were removed under vacuum. The residue was purified as described below to give the following compounds:

3-(4-Fluorophenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2a).

Prepared as described above using **1** (200 mg, 0.43 mmol) and 4-fluorophenylboronic acid (60 mg, 0.43 mmol) and purified by flash chromatography on silica gel (6:4 heptane/CH₂Cl₂). White solid (120 mg, 65%). ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.22 (m, 2H), 7.50-7.65 (m, 5H), 7.85 (s, 1H), 8.16 (d, *J* = 2.1 Hz, 1H), 8.21-8.24 (m, 2H), 8.50 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 115.6, 116.1(d, *J* = 20.0 Hz, 2C), 118.8, 123.0, 123.8, 127.9 (d, *J* = 3.3 Hz, 1C), 128.1, 129.0 (d, *J* = 8.2 Hz, 2C), 129.1, 130.9, 134.4, 137.9, 145.7, 145.8, 160.8 (d, *J* = 248.1 Hz, 1C). IR (cm⁻¹) *v* 3146, 3077, 2922, 1379, 1165. HRMS (ES+) *m/z* calcd for C₁₉H₁₃FN₂O₂S⁷⁹Br [M + H]⁺ 430.9865, found 430.9845; *m/z* calcd for C₁₉H₁₃FN₂O₂S⁸¹Br [M + H]⁺ 432.9845, found 432.9831.

3-(3,4-Difluorophenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2b).

Prepared as described above using **1** (300 mg, 0.65 mmol) and 3,4-difluorophenylboronic acid (50 mg, 0.32 mmol) and purified by trituration in CH₃OH/CH₂Cl₂. White solid (175 mg, 60%). ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.39 (m, 3H), 7.51-7.57 (m, 2H), 7.61-7.66 (m, 1H), 7.87 (s, 1H), 8.15 (d, *J* = 2.1 Hz, 1H), 8.22-8.26 (m, 2H), 8.52 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 115.8, 116.3 (d, *J* = 18.1 Hz, 1C), 117.8, 118.1 (d, *J* = 18.1 Hz, 1C), 122.6, 123.5 (m, 1C), 124.2, 128.2, 128.9 (d, *J* = 3.8 Hz, 1C), 129.2, 130.7, 134.5, 137.7, 145.6, 146.1, 148.3 (dd, *J* = 249.7, 12.6 Hz, 1C), 149.0 (dd, *J* = 249.7, 12.6 Hz, 1C). IR (cm⁻¹) ν 3140, 3069, 1369, 1168. HRMS (ES+) *m*/*z* calcd for C₁₉H₁₂F₂N₂O₂S⁷⁹Br [M + H]⁺ 448.9771, found 448.9782; *m*/*z* calcd for C₁₉H₁₂F₂N₂O₂S⁸¹Br [M + H]⁺ 450.9750 found, 450.9767.

3-(3-Fluoro-4-methoxyphenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2c).

Prepared as described above using 1 (604 mg, 1.31 mmol) and 3-fluoro-4methoxyphenylboronic acid (111 mg, 0.65 mmol) and purified by flash chromatography on silica gel (CH₂Cl₂). White solid (297 mg, 50%). ¹H NMR (300 MHz, CDCl₃) δ 3.96 (s, 3H), 7.04-7.10 (m, 1H), 7.26-7.30 (m, 2H), 7.50-7.55 (m, 2H), 7.60-7.65 (m, 1H), 7.83 (s, 1H), 8.17 (d, *J* = 2.3 Hz, 1H), 8.20-8.23 (m, 2H), 8.50 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.4, 114.0 (d, J = 2.7 Hz, 1C), 115.0 (d, J = 19.2 Hz, 1C), 115.6, 118.5 (d, J = 2.2 Hz, 1C), 123.0, 123.3 (d, J = 3.8 Hz, 1C), 123.6, 124.8 (d, J = 7.1 Hz, 1C), 128.1, 129.2, 130.9, 134.4, 137.8, 145.7 (d, J = 15.9 Hz, 1C), 145.9, 147.4, 150.9 (d, J = 247.6 Hz, 1C). IR (cm⁻¹) v 3121, 3037, 2886, 1378, 1161. HRMS (ES+) m/z calcd for C₂₀H₁₅FN₂O₃S⁷⁹Br [M + H]⁺ 460.9971, found 460.9975; m/z calcd for C₂₀H₁₅FN₂O₃S⁸¹Br [M + H]⁺ 462.9950, found 462.9966.

3-(3,4-Dimethoxyphenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2d).

Prepared as described above using **1** (115 mg, 0.25 mmol) and 3,4-dimethoxyphenylboronic acid (45 mg, 0.25 mmol) and purified by flash chromatography on silica gel (95:5 CH₂Cl₂/heptane). White solid (85 mg, 72%). ¹H NMR (300 MHz, CDCl₃) δ 3.94 (s, 3H), 3.96 (s, 3H), 6.97 (d, J = 8.3 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.09 (dd, J = 8.3, 2.1 Hz, 1H), 7.49-7.55 (m, 2H), 7.59-7.64 (m, 1H), 7.84 (s, 1H), 8.18 (d, J = 2.1 Hz, 1H), 8.20-8.24 (m, 2H), 8.49 (d, J = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 110.7, 111.7, 115.5, 119.8, 120.0, 123.3, 124.5, 128.1, 129.1, 131.1, 134.3, 138.0, 145.7, 149.1, 149.6. IR (cm⁻¹) ν 3127, 3000, 2928, 2853, 1384, 1148. HRMS (ES+) *m/z* calcd for C₂₁H₁₈N₂O₄S⁷⁹Br [M + H]⁺ 473.0171, found 473.0150; *m/z* calcd for C₂₁H₁₈N₂O₄S⁸¹Br [M + H]⁺ 475.0150, found 475.0135.

3-(4-Fluorophenyl)-5-(3,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-

b]pyridine (3a).

Prepared as described above using **2a** (150 mg, 0.35 mmol) and 3,4-dimethoxyphenylboronic acid (64 mg, 0.35 mmol) and purified by flash chromatography on silica gel (CH₂Cl₂). White solid (159 mg, 92%). ¹H NMR (300 MHz, CDCl₃) δ 3.93 (s, 3H), 3.94 (s, 3H), 6.96 (d, *J* = 8.5 Hz, 1H), 7.05 (d, *J* = 1.9 Hz, 1H), 7.09 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.17-7.22 (m, 2H), 7.50-7.64 (m, 5H), 7.87 (s, 1H), 8.12 (d, *J* = 2.1 Hz, 1H), 8.27-8.30 (m, 2H), 8.67 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 110.8, 111.7, 116.0 (d, *J* = 22.0 Hz, 2C), 119.6, 120.0, 121.5, 123.1, 126.6, 128.1, 128.6 (d, *J* = 3.3 Hz, 1C), 129.1, 129.1 (d, *J* = 8.2 Hz, 2C), 131.2, 133.1, 134.1, 138.3, 144.4, 146.5, 149.1, 149.4, 160.8 (d, *J* = 248.1 Hz, 1C). IR (cm⁻¹) ν 3131, 3059, 2935, 1381, 1154. HRMS (ES+) *m*/*z* calcd for C₂₇H₂₂FN₂O₄S [M + H]⁺ 489.1284, found 489.1290.

3-(4-Fluorophenyl)-5-(2,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-

b]pyridine (3b).

Prepared as described above using **2a** (108 mg, 0.25 mmol) and 3,4-dimethoxyphenylboronic acid (45 mg, 0.25 mmol) and purified by flash chromatography on silica gel (8:2 CH₂Cl₂/heptane). White solid (92 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 3.78 (s, 3H), 3.87 (s, 3H), 6.58-6.61 (m, 2H), 7.14-7.24 (m, 3H), 7.50-7.63 (m, 5H), 7.84 (s, 1H), 8.13 (d, *J* =

1.7 Hz, 1H), 8.27 (d, J = 7.4 Hz, 2H), 8.60 (d, J = 1.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 55.5, 55.6, 99.0, 104.9, 115.9 (d, J = 21.4 Hz, 2C), 119.6, 120.1, 121.0, 122.5, 128.1, 129.0 (m, 2C), 130.0, 131.4, 134.0, 138.4, 146.2, 146.4, 157.5, 160.9 (d, J = 230.5 Hz, 1C). IR (cm⁻¹) v 3140, 3060, 2921, 1371, 1155. HRMS (ES+) m/z calcd for C₂₇H₂₂FN₂O₄S [M + H]⁺ 489.1284, found 489.1288.

3-(3,4-Difluorophenyl)-5-(3,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3b]pyridine (**3**c).

Prepared as described above using **2b** (100 mg, 0.22 mmol) and 3,4-dimethoxyphenylboronic acid (40 mg, 0.22 mmol) and purified by flash chromatography on silica gel (CH₂Cl₂). White solid (97 mg, 87%). ¹H NMR (300 MHz, CDCl₃) δ 3.94 (s, 3H), 3.95 (s, 3H), 7.00 (d, *J* = 8.3 Hz, 1H), 7.04 (d, *J* = 2.1 Hz, 1H), 7.10 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.25-7.38 (m, 2H), 7.39-7.46 (m, 1H), 7.51-7.57 (m, 2H), 7.60-7.66 (m, 1H), 7.89 (s, 1H), 8.10 (d, *J* = 2.1 Hz, 1H), 8.27-8.30 (m, 2H), 8.68 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 110.8, 111.8, 116.3 (d, *J* = 18.1 Hz, 1C), 118.0 (d, *J* = 17.0 Hz, 1C), 118.6 (d, *J* = 2.2 Hz, 1C), 120.0, 121.1, 123.5, 123.5-123.7 (m), 126.4, 128.2, 129.1, 129.6-129.7 (m), 131.0, 133.2, 134.2, 138.2, 144.6, 146.5, 148.2 (dd, *J* = 249.7, 12.6 Hz, 1C), 149.0 (dd, *J* = 249.2, 12.6 Hz, 1C), 149.2, 149.5. IR (cm⁻¹) ν 3167, 3030, 2936, 1381, 1170. HRMS (ES+) *m/z* calcd for C₂₇H₂₁F₂N₂O₄S [M + H]⁺ 507.1190, found 507.1198.

3-(3,4-Difluorophenyl)-5-(2,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-

b]pyridine (3d).

Prepared as described above using **2b** (200 mg, 0.44 mmol) and 2,4-dimethoxyphenylboronic acid (80 mg, 0.44 mmol) and purified by flash chromatography on silica gel (8:2 CH₂Cl₂/heptane). White solid (37 mg, 35%). ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 3H), 3.87 (s, 3H), 6.59-6.62 (m, 2H), 7.21-7.28 (m, 2H), 7.30-7.36 (m, 1H), 7.38-7.45 (m, 1H), 7.50-7.55 (m, 2H), 7.59-7.64 (m, 1H), 7.86 (s, 1H), 8.13 (d, *J* = 2.1 Hz, 1H), 8.27-8.30 (m, 2H), 8.61 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 55.48, 55.54, 99.0, 104.9, 116.2 (d, *J* = 18.1 Hz, 1C), 117.8 (d, *J* = 17.6 Hz, 1C), 118.6 (d, *J* = 1.6 Hz, 1C), 119.9, 120.6, 123.0, 123.4-123.6 (m), 128.1, 129.0 (d, *J* = 8.2 Hz, 1C), 129.1, 129.8 (d, *J* = 2.2 Hz, 1C), 130.2, 131.4, 134.1, 138.3, 146.1, 146.6, 148.1 (dd, *J* = 249.2, 12.1 Hz, 1C), 148.9 (dd, *J* = 249.2, 12.6 Hz, 1C), 157.5, 161.0. IR (cm⁻¹) v 3134, 3060, 2930, 1373, 1160. HRMS (ES+) *m/z* calcd for C₂₇H₂₁F₂N₂O₄S [M + H]⁺ 507.1190, found 507.1179.

3-(3-Fluoro-4-methoxyphenyl)-5-(4-benzyloxyphenyl)-1-(phenylsulfonyl)-1H-

pyrrolo[2,3-b]pyridine (3e).

Prepared as described above using **2c** (167 mg, 0.36 mmol) and 4-benzyloxyphenylboronic acid (82 mg, 0.36 mmol) and purified by flash chromatography on silica gel (CH₂Cl₂). White solid (108 mg, 53%). ¹H NMR (300 MHz, CDCl₃) δ 3.96 (s, 3H), 5.13 (s, 2H), 7.05-7.11 (m,

3H), 7.32-7.55 (m, 11H), 7.58-7.64 (m, 1H), 7.84 (s, 1H), 8.14 (d, J = 2.1 Hz, 1H), 8.26-8.29 (m, 2H), 8.67 (d, J = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.3, 70.1, 113.9 (d, J = 2.7 Hz, 1C), 115.1 (d, J = 19.2 Hz, 1C), 115.4, 115.9 (d, J = 3.8 Hz, 1C), 119.3, 121.4, 122.8, 123.3 (d, J = 3.3 Hz, 1C), 125.5 (d, J = 7.1 Hz, 1C), 126.5, 127.4, 128.0, 128.5, 128.6, 129.1, 130.9, 132.7, 134.1, 136.7, 138.2, 144.2, 146.5, 147.2 (d, J = 11.0 Hz, 1C), 150.9 (d, J = 247.0 Hz, 1C), 158.7. IR (cm⁻¹) v 3033, 2932, 1381, 1232, 1175. HRMS (ES+) m/z calcd for C₃₃H₂₆FN₂O₄S [M + H]⁺ 565.1597, found 565.1594.

3-(3,4-Dimethoxyphenyl)-5-(3,4-dibenzyloxyphenyl)-1-(phenylsulfonyl)-1H-

pyrrolo[2,3-b]pyridine (3f).

To solution of **2d** (63 mg, 0.13 mmol), 3,4-dibenzyloxyphenylboronic acid pinacol ester³⁴ (67 mg, 0.16 mmol) and PPh₃ (2 mg, 6 mol%) in degassed dioxane (5 mL) were added potassium acetate (0.4 mL of a 2 M aqueous solution, 0.78 mmol) and Pd(PPh₃)₂Cl₂ (3 mg, 3 mol%). The reaction mixture was heated at 100 °C for 12 h under argon then cooled to room temperature and concentrated under vacuum. The residue was partitioned between water and CH₂Cl₂ and the aqueous layer was extracted with CH₂Cl₂ (2x). The organic extracts were combined, dried over MgSO₄ and the solvents were removed under vacuum. The residue was purified by flash column chromatography on silica gel (9:1 CH₂Cl₂/heptane) affording compound **3f** as a yellow solid (54 mg, 61%). ¹H NMR (300 MHz, CDCl₃) δ 3.95 (s, 3H), 3.96 (s, 3H), 5.22 (s, 4H), 6.98-7.03 (m, 1H), 7.06-7.09 (m, 1H), 7.13 (d, *J* = 1.9 Hz, 1H), 7.14 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.33-7.39 (m, 7H), 7.45-7.55 (m, 7H), 7.58-7.63 (m, 1H), 7.84 (s, 1H), 8.08 (d, *J* = 2.1 Hz, 1H), 8.25-8.28 (m, 2H), 8.59 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 71.2, 71.5, 110.7, 111.6, 114.6, 115.3, 120.0, 120.5, 120.6, 121.8,

122.6, 125.2, 126.8, 127.2, 127.3, 127.8, 127.9, 128.0, 128.5, 129.1, 131.8, 132.7, 134.1, 136.9, 137.0, 138.3, 144.2, 146.6, 148.9, 149.0, 149.2, 149.5. IR (cm⁻¹) v 3063, 3031, 2927, 2854, 1380, 1174. HRMS (ES+) m/z calcd for C₄₁H₃₅N₂O₆S [M + H]⁺ 683.2216, found 683.2224.

1.3 General Procedure for the Preparation of the *N*-Deprotected 3,5-Diaryl-7azaindoles 4a-4f.

To a solution of the 3,5-diaryl-1-(phenylsulfonyl)-1*H*-pyrrolo[2,3-*b*]pyridine (**3a-3f**, 1 equiv) in methanol (0.4 M) was added an aqueous solution of NaOH (2N, 0.5 equiv). The reaction mixture was heated at 80 °C for 2 h, then cooled to room temperature and concentrated under vacuum. The residue was partitioned between water and CH_2Cl_2 and the aqueous layer was extracted with CH_2Cl_2 (2x). The organic extracts were combined, dried over MgSO₄ and the solvents were removed under vacuum. The residue was purified as described below to give the following compounds:

3-(4-Fluorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4a).

Prepared as described above from **3a** (159 mg, 0.32 mmol) and purified by flash chromatography on silica gel (99:1 CH₂Cl₂/MeOH). Pale yellow solid (84 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 3.96 (s, 3H), 4.00 (s, 3H), 7.00 (d, J = 8.3 Hz, 1H), 7.14-7.21 (m, 4H), 7.56 (s, 1H), 7.61-7.65 (m, 2H), 8.31 (d, J = 1.9 Hz, 1H), 8.59 (d, J = 2.1 Hz, 1H), 11.0 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 110.9, 111.7, 115.7 (d, J = 21.4 Hz, 2C), 115.8, 118.7, 119.9, 123.0, 126.5, 128.6 (d, J = 7.7 Hz, 2C), 130.3, 130.8 (d, J = 3.3 Hz, 1C), 132.3, 141.9, 148.1, 148.7, 149.4, 160.0 (d, J = 245.4 Hz, 1C). IR (cm⁻¹) ν 3130, 3033, 2904, 1247. HRMS (ES+) *m/z* calcd for C₂₁H₁₈FN₂O₂ [M + H]⁺ 349.1352, found 349.1357. UPLC *R*₁ = 4.07 min; area 100%.

3-(4-Fluorophenyl)-5-(2,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4b).

Prepared as described above from **3b** (61 mg, 0.12 mmol) and purified by preparative chromatography on silica gel (9:1 CH₂Cl₂/MeOH). Pale yellow solid (37 mg, 88%). ¹H NMR (300 MHz, CDCl₃) δ 3.83 (s, 3H), 3.89 (s, 3H), 6.62-6.64 (m, 2H), 7.12-7.18 (m, 2H), 7.29-7.32 (m, 1H), 7.54 (s, 1H), 7.59-7.64 (m, 2H), 8.31 (s, 1H), 8.53 (s, 1H), 11.32 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 55.5, 55.6, 99.1, 104.8, 115.6 (d, *J* = 21.4 Hz, 2C), 118.5, 121.1, 122.6, 127.0, 128.5, (d, *J* = 7.7 Hz, 2C), 129.3, 131.0 (d, *J* = 3.3 Hz, 1C), 131.5, 143.5, 147.4, 157.6, 159.9 (d, *J* = 244.8 Hz, 1C), 160.6. IR (cm⁻¹) *v* 3118, 3011, 2837, 1208. HRMS (ES+) *m/z* calcd for C₂₁H₁₈FN₂O₂ [M + H]⁺ 349.1352, found 349.1356.

UPLC $R_t = 4.34$ min; area 100%.

3-(3,4-Difluorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4c).

Prepared as described above from **3c** (70 mg, 0.14 mmol) and purified by preparative chromatography on silica gel (96:4 CH₂Cl₂/MeOH). Pale yellow solid (37 mg, 72%). ¹H NMR (300 MHz, CDCl₃) δ 3.96 (s, 3H), 3.99 (s, 3H), 7.00 (d, J = 8.1 Hz, 1H), 7.13 (d, J = 1.9 Hz, 1H), 7.17 (dd, J = 8.3, 1.7 Hz, 1H), 7.22-7.31 (m, 1H), 7.35-7.40 (m, 1H), 7.42-7.50 (m, 1H), 7.58 (s, 1H), 8.32 (d, J = 1.7 Hz, 1H), 8.59 (d, J = 1.9 Hz, 1H), 11.19 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 56.1, 110.9, 111.8, 114.9, 115.7 (d, J = 17.6 Hz, 1C), 117.7 (d, J = 17.0 Hz, 1C), 118.4, 119.9, 122.9-123.0 (m), 123.4, 126.4, 130.6, 131.8-131.9 (m), 132.1, 142.2, 147.4 (dd, J = 247.6, 12.6 Hz, 1C), 148.1, 148.8, 148.9 (dd, J = 247.6,

1C), 149.4. IR (cm⁻¹) v 3128, 3027, 2965, 1268. HRMS (ES+) m/z calcd for C₂₁H₁₇F₂N₂O₂ [M + H]⁺ 367.1258, found 367.1266.

UPLC $R_t = 4.24$ min; area 100%.

3-(3,4-Difluorophenyl)-5-(2,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4d).

Prepared as described above from **3d** (35 mg, 0.07 mmol) and purified by preparative chromatography on silica gel (9.8:0.2 CH₂Cl₂/MeOH). Pale yellow solid (21 mg, 81%). ¹H NMR (300 MHz, DMSO- d_6) δ 3.77 (s, 3H), 3.82 (s, 3H), 6.63 (dd, J = 8.4, 2.4 Hz, 1H), 6.69 (d, J = 2.4 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.42-7.51 (m, 1H), 7.56-7.60 (m, 1H), 7.73-7.81 (m, 1H), 7.95 (d, J = 2.6 Hz, 1H), 8.22 (d, J = 1.8 Hz, 1H), 8.33 (d, J = 2.0 Hz, 1H), 12.03 (s, 1H). ¹³C NMR (75 MHz, DMSO- d_6) δ 55.3, 55.6, 99.0, 105.4, 112.4, 114.7 (d, J = 17.3 Hz, 1C), 116.6, 117.7 (d, J = 17.0 Hz, 1C), 120.6, 122.7, 124.9, 126.5, 127.5, 131.4, 132.8-132.9 (m), 144.0, 145.9 (dd, J = 244.0, 12.6 Hz, 1C), 147.6, 148.1 (dd, J = 244.3, 12.6 Hz, 1C), 157.2, 160.1. IR (cm⁻¹) v 3108, 3006, 2869, 1257. HRMS (ES+) m/z calcd for C₂₁H₁₇F₂N₂O₂ [M + H]⁺ 367.1258, found 367.1272.

UPLC $R_t = 4.54$ min; area 100%.

3-(3-Fluoro-4-methoxyphenyl)-5-(4-benzyloxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4e).

Prepared as described above from **3e** (90 mg, 0.16 mmol) and purified by preparative chromatography on silica gel (9.8:0.2 CH₂Cl₂/MeOH). Pale yellow solid (45 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ 3.96 (s, 3H), 5.15 (s, 2H), 7.04-7.14 (m, 3H), 7.35-7.59 (m, 10H),

8.32 (d, J = 2.1 Hz, 1H), 8.56 (d, J = 2.1 Hz, 1H), 11.15 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.4, 70.1, 114.1 (d, J = 2.2 Hz, 1C), 114.7 (d, J = 18.7 Hz, 1C), 115.4, 116.0 (d, J = 7.1 Hz, 1C), 118.7, 122.7 (d, J = 3.8 Hz, 1C), 122.9, 126.5, 127.4, 128.0, 128.1, 128.2, 128.5 (d, J = 8.2 Hz, 1C), 129.9, 131.9, 136.9, 141.5, 146.1 (d, J = 10.4 Hz, 1C), 147.8, 151.1 (d, J = 245.9Hz, 1C), 158.4. IR (cm⁻¹) v 3089, 2921, 1237. HRMS (ES+) m/z calcd for C₂₇H₂₂FN₂O₂ [M + H]⁺ 425.1665, found 425.1669.

UPLC $R_t = 5.09$ min; area 96%.

3-(3,4-Dimethoxyphenyl)-5-(3,4-dibenzyloxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4f).

Prepared as described above from **3f** (64 mg, 0.09 mmol) and purified by preparative chromatography on silica gel (9.9:0.1 CH₂Cl₂/MeOH). Pale yellow solid (39 mg, 79%). ¹H NMR (300 MHz, CDCl₃) δ 3.95 (s, 3H), 3.96 (s, 3H), 5.24 (s, 2H), 5.25 (s, 2H), 6.99-7.06 (m, 2H), 7.12-7.15 (m, 2H), 7.18-7.21 (m, 2H), 7.31-7.42 (m, 7H), 7.48-7.54 (m, 5H), 8.30 (s, 1H), 8.49 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 56.0, 71.3, 71.5, 110.7, 111.7, 114.6, 115.4, 116.9, 119.6, 120.5, 123.0, 127.2, 127.3, 127.4, 127.6, 127.8, 127.9, 128.5, 129.8, 132.4, 137.0, 137.1, 146.7, 148.0, 148.7, 149.2, 149.3. IR (cm⁻¹) v 3120, 3033, 2930, 2835, 1251. HRMS (ES+) *m/z* calcd for C₃₅H₃₁N₂O₄ [M + H]⁺ 543.2284, found 543.2279.

UPLC $R_t = 5.17$ min; area 100%.

1.4 General Procedure for Preparation of the De-O-methylated 3,5-Diaryl-7-azaindole Derivatives 5a-5d, 5g. To a solution of the methoxy 3,5-diaryl-1*H*-pyrrolo[2,3-*b*]pyridine derivative (4a-4d, 5e, 1 equiv) in anhydrous CH_2Cl_2 (1.2 M) was added BBr₃ (1N solution in CH_2Cl_2 , 3 equiv/OCH₃). The reaction mixture was stirred for 1 h at room temperature and then cooled to 0 °C before addition of excess methanol. The mixture was concentrated under vacuum and the residue was purified as described below to give the following compounds:

3-(4-Fluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5a).

Prepared as described above from **4a** (67 mg, 0.19 mmol) and purified by preparative chromatography on silica gel (9:1 CH₂Cl₂/MeOH). White solid (21 mg, 34%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 6.83 (d, *J* = 8.1 Hz, 1H), 6.98 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.09 (d, *J* = 2.3 Hz, 1H), 7.24-7.30 (m, 2H), 7.77-7.81 (m, 2H), 7.85 (d, *J* = 2.4 Hz, 1H), 8.24 (d, *J* = 2.1 Hz, 1H), 8.43 (d, *J* = 2.1 Hz, 1H), 8.99 (d, *J* = 3.0 Hz, 2H), 11.90 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 113.4, 114.4, 115.5 (d, *J* = 21.4 Hz, 2C), 116.1, 117.1, 118.0, 124.3, 128.0 (d, *J* = 7.7 Hz, 2C), 129.2, 130.3, 131.5 (d, *J* = 3.3 Hz, 1C), 141.6, 144.8, 145.7, 148.1, 158.9 (d, *J* = 242.1 Hz, 1C). IR (cm⁻¹) v 3246, 3044, 2926, 1217. HRMS (ES+) *m/z* calcd for C₁₉H₁₄FN₂O₂ [M + H]⁺ 321.1039, found 321.1045.

UPLC $R_t = 3.25$ min; area 100%.

Large scale preparation of **5***a*. Prepared as described above from **4***a* (760 mg, 2.18 mmol) and purified by precipitation in CH₂Cl₂ and washing with CH₂Cl₂ then MeOH. White solid (590 mg, 84%). ¹H NMR (300 MHz, CD₃OD) δ 6.94 (d, *J* = 8.1 Hz, 1H), 7.10 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.17 (d, *J* = 2.1 Hz, 1H), 7.24-7.30 (m, 2H), 7.76-7.81 (m, 2H), 7.93 (s, 1H), 8.60 (d, *J* = 1.4 Hz, 1H), 8.86 (d, *J* = 3.6 Hz, 1H).

3-(4-Fluorophenyl)-5-(2,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5b).

Prepared as described above from **4b** (52 mg, 0.15 mmol) and purified by preparative chromatography on silica gel (93:7 CH₂Cl₂/MeOH). White solid (24 mg, 50%). ¹H NMR (300 MHz, CD₃OD) δ 6.42-6.45 (m, 2H), 7.14-7.19 (m, 3H), 7.56-7.59 (m, 1H), 7.66-7.70 (m, 2H), 8.33 (s, 1H), 8.38 (s, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 104.1, 108.5, 116.3, 116.4 (d, *J* = 21.4 Hz, 2C), 119.3, 119.5, 124.2, 129.0, 129.5, (d, *J* = 7.7 Hz, 2C), 129.8, 132.5, 132.8 (d, *J* = 3.3 Hz, 1C), 144.8, 148.3, 156.5, 159.2, 161.2 (d, *J* = 242.6 Hz, 1C). IR (cm⁻¹) *v* 3303, 2586, 1220. HRMS (ES+) *m/z* calcd for C₁₉H₁₄FN₂O₂ [M + H]⁺ 321.1039, found 321.1024. UPLC *R*_t = 3.07 min; area 100%.

3-(3,4-Difluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5c).

Prepared as described above from 4c (27 mg, 0.07 mmol) and purified by trituration with MeOH/CH₂Cl₂. Yellow solid (24 mg, 100%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 6.85 (d, *J* = 8.1 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 1H), 7.16 (s, 1H), 7.45-7.55 (m, 1H), 7.64-7.68 (m, 1H), 7.83-7.90 (m, 1H), 8.05 (s, 1H), 8.48-8.54 (m, 2H), 12.38 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 113.7, 115.1, 115.6 (d, *J* = 17.6 Hz, 1C), 116.6, 118.3 (d, *J* = 16.7 Hz, 1C), 118.8, 119.1 (d, *J* = 5.2 Hz, 1C), 123.6, 126.5-126.7 (m), 127.6-127.7 (m), 129.6, 130.1, 132.5, 139.3-139.7 (m), 145.7, 146.2, 146.7 (dd, *J* = 244.5, 12.6 Hz, 1C), 147.0, 148.6 (dd, *J*

= 244.5, 12.6 Hz, 1C). IR (cm⁻¹) v 3117, 2924, 1269. HRMS (ES+) m/z calcd for $C_{19}H_{13}F_2N_2O_2 [M + H]^+$ 339.0945, found 339.0932.

UPLC $R_t = 3.43$ min; area 100%.

3-(3,4-Difluorophenyl)-5-(2,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5d).

Prepared as described above from **4d** (10 mg, 0.03 mmol) and purified by trituration with MeOH/CH₂Cl₂. Yellow solid (9 mg, 100%). ¹H NMR (300 MHz, CD₃OD) δ 6.45-6.49 (m, 2H), 7.29-7.34 (m, 1H), 7.37-7.43 (m, 1H), 7.50-7.54 (m, 1H), 7.59-7.66 (m, 1H), 7.95 (s, 1H), 8.63 (d, *J* = 1.1 Hz, 1H), 8.94 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 104.0, 109.1, 115.0, 117.3 (d, *J* = 18.1 Hz, 1C), 117.8, 119.0 (d, *J* = 18.1 Hz, 1C), 124.8, 125.0-125.2 (m, 1C), 128.3, 130.0, 131.2, 132.3, 134.7, 138.2, 139.0, 149.3 (dd, *J* = 247.6, 12.6 Hz, 1C), 150.2 (dd, *J* = 247.0, 12.6 Hz, 1C), 156.8, 160.8. IR (cm⁻¹) ν 3095, 2922, 2851, 1267. HRMS (ES+) *m*/*z* calcd for C₁₉H₁₃F₂N₂O₂ [M + H]⁺ 339.0945, found 339.0933.

UPLC $R_t = 3.27$ min; area 100%.

3-(3-Fluoro-4-hydroxyphenyl)-5-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5g).

Prepared as described above from **5e** (12 mg, 0.03 mmol) and purified by trituration with MeOH/CH₂Cl₂. Yellow solid (10 mg, 100%). ¹H NMR (300 MHz, CD₃OD) δ 6.93-6.96 (m, 2H), 7.03 (t, *J* = 8.8 Hz, 1H). 7.34-7.38 (m, 1H), 7.39 (dd, *J* = 12.1, 2.1 Hz, 1H), 7.56-7.59 (m, 2H), 7.79 (s, 1H), 8.56 (s, 1H), 8.74 (d, *J* = 1.3 Hz, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 115.9 (d, *J* = 19.2 Hz, 1C), 117.2, 119.4 (d, *J* = 3.3 Hz, 1C), 124.7 (d, *J* = 2.7 Hz, 1C), 126.2

(d, J = 6.0 Hz, 1C), 126.8, 129.0, 129.7, 133.3, 135.2, 142.1, 145.5 (d, J = 12.6 Hz, 1C), 151.6 (d, J = 241.0 Hz, 1C), 153.5, 153.8, 154.1, 159.2. IR (cm⁻¹) v 3173, 2922, 1259. HRMS (ES+) m/z calcd for C₁₉H₁₄FN₂O₂ [M + H]⁺ 321.1039, found 321.1045.

UPLC $R_t = 2.68$ min; area 95%.

3-(3-Fluoro-4-methoxyphenyl)-5-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5e).

To a solution of **4e** (26 mg, 0.06 mmol) in degassed MeOH (1 mL) were added 10% palladium on charcoal (10 mg) and ammonium formate (19 mg, 0.30 mmol). The reaction mixture was heated for 15 h at 35 °C under argon, then cooled and filtered through Celite. The filter pad was washed with MeOH and CH₂Cl₂, the filtrates were combined and concentrated under vacuum to afford compound **5e** as a white solid (20 mg, 100%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.87 (s, 3H), 6.87 (d, *J* = 8.7 Hz, 2H), 7.20 (t, *J* = 8.9 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 4H), 7.86 (s, 1H), 8.29 (d, *J* = 2.1 Hz, 1H), 8.47 (d, *J* = 1.9 Hz, 1H), 9.69 (s, 1H), 11.93 (s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 56.1, 113.2 (d, *J* = 2.2 Hz, 1C), 113.7 (d, *J* = 18.7 Hz, 1C), 114.4 (d, *J* = 1.6 Hz, 1C), 115.9, 117.1, 122.4 (d, *J* = 2.7 Hz, 1C), 124.3, 124.5, 128.2, 128.3 (d, *J* = 7.1 Hz, 1C), 129.0, 129.6, 141.7, 145.1 (d, *J* = 11.0 Hz, 1C), 148.1, 150.3 (d, *J* = 243.2 Hz, 1C), 157.0 IR (cm⁻¹) v 3371, 3015, 2931, 1266. HRMS (ES+) *m/z* calcd for C₂₀H₁₆FN₂O₂ [M + H]⁺ 335.1196, found 335.1191.

UPLC $R_t = 3.42$ min; area 95%.

3-(3,4-Dimethoxyphenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5f).

To a solution of **4f** (15 mg, 0.03 mmol) in degassed MeOH (1 mL) were added 10% palladium on charcoal (10 mg) and ammonium formate (15 mg, 0.24 mmol). The reaction mixture was heated for 3 h at 35 °C under argon, then cooled and filtered through Celite. The filter pad was washed with EtOH and CH₂Cl₂, the filtrates were combined and concentrated under vacuum to afford compound **5f** as a white solid (11 mg, 100%). ¹H NMR (300 MHz, CD₃OD) δ 3.86 (s, 3H), 3.90 (s, 3H), 6.87 (d, *J* = 8.1 Hz, 1H), 6.95 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.02-7.04 (m, 1H), 7.08 (d, *J* = 2.1 Hz, 1H), 7.21-7.24 (m, 2H), 7.57 (s, 1H), 8.28 (d, *J* = 1.9 Hz, 1H), 8.38 (s, 1H), 8.50 (s, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 56.6, 112.2, 113.6, 115.3, 117.0, 117.2, 119.7, 120.1, 120.6, 124.3, 127.1, 129.6, 131.3, 132.5, 142.3, 146.1, 146.8, 148.9, 149.1, 150.8. IR (cm⁻¹) v 3420, 3005, 2922, 2851, 1251. HRMS (ES+) *m/z* calcd for C₂₁H₁₉N₂O₄ [M + H]⁺ 363.1345, found 363.1337.

UPLC $R_t = 2.74$ min; area 100%.

2. NMR Spectra of 2a-2d, 3a-3e, 4a-4f and 5a-5g

3-(4-Fluorophenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2a).

3-(3,4-Difluorophenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2b).

3-(3-Fluoro-4-methoxyphenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2c).

3-(3,4-Dimethoxyphenyl)-5-bromo-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (2d).

3-(4-Fluorophenyl)-5-(3,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[*2,3-b*]*pyridine* (*3a*).

3-(4-Fluorophenyl)-5-(2,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (**3b**).

6

* ppm

3-(3,4-Difluorophenyl)-5-(3,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3b]pyridine (**3c**).

3-(3,4-Difluorophenyl)-5-(2,4-dimethoxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3b]pyridine (**3d**).

3-(3-Fluoro-4-methoxyphenyl)-5-(4-benzyloxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (**3e**).

* ppm

150 140 130 120

3-(3,4-Dimethoxyphenyl)-5-(3,4-dibenzyloxyphenyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (**3f**).

70

* ppm

160

170

150 140 130 120

110

3-(4-Fluorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4a).

3-(4-Fluorophenyl)-5-(2,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4b).

3-(3,4-Difluorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4c).

3-(3,4-Difluorophenyl)-5-(2,4-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4d).

3-(3-Fluoro-4-methoxyphenyl)-5-(4-benzyloxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4e).

3-(3,4-Dimethoxyphenyl)-5-(3,4-dibenzyloxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4f).

3-(4-Fluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5a), in DMSO-d6

 $3-(4-Fluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5a), in CD_3OD$

3-(4-Fluorophenyl)-5-(2,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5b).

3-(3,4-Difluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5c).

3-(3,4-Difluorophenyl)-5-(2,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5d).

3-(3-Fluoro-4-hydroxyphenyl)-5-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5g).

3-(3-Fluoro-4-methoxyphenyl)-5-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5e).

3-(3,4-Dimethoxyphenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine (5f).

3. Supplementary Figures

Figure SI1: MS/MS spectrum of compound **5a** - parent ion $[M+H]^+$ at m/z 321.0 at collision energy 30.

Figure SI2: Extracted Ion Chromatograms for fragment ion at m/z 275.0 in plasma (A) and brain (B) samples 1- Ts65Dn treated 2- at the LOQ 3- Ts65Dn vehicle.

4. Supplementary Table

Table SI1: Optimized SRM transitions for compound **5a** and IS. As acetonitrile adducts were detected, the sixth transition corresponds to this adduct with the following parent ion: m/z 344.0 m/z 362.1

Internal standard - Rt = 7.68 min		Compound 5a - $Rt = 7.81 min$			
Parent ion m/z 303.0		Parent ion m/z 321.0			
Fragment ions	Optimized collision	Fragment	Optimized collision	Ion Ratio	
(m/z)	energies (V)	ions (m/z)	energies (V)		
192.9	33	210.9	34	0.07	
231.9	34	250.0	35	0.22	
247.1	25	265.0	30	0.17	
257.1	28	275.0	31	0.41	
285.0	27	303.0	27	0.11	
303.0*	15	321.0**	12	0.03	