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Supplementary Figure 1. Complete clinical course of the patient

A 57-year-old Japanese woman was referred to our hospital for assessment of a
nodule in her left lung that was detected in a medical checkup. Bronchoscopic
and mediastinoscopic examinations revealed adenocarcinoma of the lung with
mediastinal lymph node metastases. The patient underwent concurrent
chemoradiotherapy with cisplatin and vinorelbine, resulting in a partial
response; however, multiple bone metastases were detected 2 years later.
Genetic examination revealed no mutation in EGFR. The patient received
second- to sixth-line chemotherapies consisting of gefitinib, pemetrexed,
docetaxel, gemcitabine, and S-1. During sixth-line chemotherapy, the patient

developed right cervical lymphadenopathy, and biopsy of the lymph node



again revealed adenocarcinoma (bottom left, indicated as #1 by a white arrow). A
CCDC6-RET fusion was detected by reverse transcriptase—polymerase chain
reaction (RT-PCR) analysis of total RNA extracted from the snap-frozen
biopsied tumor cells in a nation-wide genetic screen, LC-SCRUM-Japan (Lung
Cancer Genomic Screening Project for Individualized Medicine in Japan). The
patient was enrolled into our investigator-initiated clinical trial, LURET (Lung
Cancer with RET Rearrangement Study; clinical trial registration number:
UMINO000010095), and began treatment with vandetanib (300 mg, once daily). A
computed tomographic (CT) scan of the chest obtained after 12 weeks showed a
decrease in the short axis of the metastatic cervical lymph node from 20 to 7 mm
(65% reduction) in response to vandetanib treatment (bottom middle). However,
another cervical lymphadenopathy developed 38 weeks after initiation of
treatment (bottom right, indicated as #2 by a yellow arrow). A biopsy of the
newly developed lymph node was performed. The blue line indicates the serum
CEA level, and the orange line indicates the size of the target lesion (the right

metastatic cervical lymph node).



#1 Pretreatment #2 Progression
R L 'L;: N 2 A e

TTF-1 © <& %l W s
.- '. : .-,i.' '._\_ % “::., Wie = LS ':'

g :“!-’ 'I’ + > t‘“...‘. ‘:‘:::: ) p 5 -.: - ‘ *
- b » & i -.‘:'.. -

Thyroglobulin

Genomic DNA CCDC6 intron 1 RET intron 11
S?;D]'I%_D?I'G TG © T T a4 T T
A1 A1 4 A AT A A

#1 Lung tumor

(pretreatment) /\ /\/W\/\ N\ /\/\NW\/\/\/\/\A/\(

seq 014 1506

#2 Lung tumor
ot [ Al

Supplementary Figure 2. Pathological and genomic features of the recurrent

tumor

(@) Lymph node biopsy specimens were stained for two biomarkers for the

diagnosis of lung adenocarcinoma, TTF-1 and thyroglobulin, before treatment

(left, biopsy #1) and at the time of progression (right, biopsy #2).



(b) Sanger sequencing of genomic-PCR products encompassing the breakpoint
junction. Genomic DNAs from the two biopsy specimens obtained before
treatment and at the time of progression showed the same breakpoint junction,
confirming the presence of the same CCDC6-RET fusion in both specimens.
Given the high diversity of breakpoints for RET fusions!, this result confirmed
that the resistant tumor originated from the tumor present before vandetanib

treatment.
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Supplementary Figure 3. Identification of an acquired RET mutation

(a) Genome images from the Integrative Genomics Viewer (Broad Institute) for

the targeted deep-sequencing analyses of genomic DNA, revealing a mutation



of cytosine 2,902 to thymine (serine 904 to phenylalanine) observed only in
progressive disease. (Left) Results of the analysis performed using a NCC
Oncopanel to examine 90 cancer-related genes. (Right) Results of the analysis
performed using an Ion AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher

Scientific) covering 52 cancer-related genes.

(b) Next-generation sequencing of tumor samples before treatment and at
progression. The results of targeted deep-sequencing analyses and
whole-exome sequencing analyses are shown. Whole-exome sequencing
revealed four mutations specific to the recurrent tumor, including the

RET-S904F mutation.
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Supplementary Figure 4. Alignments of the amino acid sequences of the
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The serine residue at position 904 of RET is located in the activation loop of the
catalytic domain (residues 900-905). The S904 residue is not conserved among
human tyrosine kinases belonging to the RET superfamily or clinically relevant
tyrosine and serine-threonine kinases. Tyrosine kinases belonging to the RET
superfamily were listed via the Ensembl Genome Browser (www.ensembl.org)

and the human kinome?, whereas other kinases were selected based on their

clinical utility as drug targets.
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Supplementary Figure 5. Resistance of the S904F mutant CCDC6-RET fusion

protein to vandetanib in Ba/F3 cells

(a) Immunoblot analysis showing the predicted size of CCDC6-RET fusion

proteins (56 kDa) from IL3-independent Ba/F3 cells stably expressing the

full-length wild-type and S904F mutant CCDC6-RET proteins. CCDC6-RET

protein expression was similar in the two cells. The ratio was calculated by

dividing the signal intensity of the CCDC6-RET protein by that of ACTB after

subtraction of the background.

(b) Sanger sequencing of genomic products from Ba/F3 cells, confirming a



mutation of cytosine to thymine at residue 2,902 in the S904F mutant.

(c) Immunoblot analysis of Ba/F3 cells stably expressing the wild-type or S904F
mutant CCDC6-RET fusion protein. Cell lysates were extracted at 6 h after

exposure to 0, 0.1, 0.3, 1.0, 3.0, or 10 uM vandetanib.

(d) The mean ratios of phospho-Ret (pTyr905) to total RET from three separate
experiments are shown with standard deviation from the experiment in (c)
performed separately three times. The graph shows the mean ratios of
phospho-Ret (pTyr905) to total RET from three separate experiments with
standard deviations (shown as error bars). Concentrations showing statistical

significance (p < 0.05 by t-test) are marked with an asterisk. ACTB: beta-actin.
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Supplementary Figure 6. Kinetic enzyme assay using purified RET kinase
domain polypeptides

Inhibited velocities (Vi) of wild-type (upper) and S904F mutant (lower) RET KDs
treated with vandetanib in the presence of ATP (3.125, 12.5, 50.0, and 200 nM).
Reactions were performed in triplicate in a reaction mixture containing serially
diluted vandetanib. The graph shows the ratio of the inhibited to control in vitro

kinase activities of the RET KDs with or without the S904F mutation measured



in the presence of serially diluted vandetanib using the IGF1Rtide synthetic
peptide substrate (KKKSPGEYVNIEFG). An increase in ATP concentration
caused a decrease in the inhibitory effects of vandetanib, an ATP-competitive
TKI, as predicted. The inhibitory constants were calculated by fitting to the

non-linear regression method using GraphPad Prism version 6.0 (Figure 3a).
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Supplementary Figure 7. Molecular dynamics (MD) of RET kinase in

complex with vandetanib

(@) The dynamic cross-correlations in

wild-type/mutant RET bound to

vandetanib/ATP were analyzed using molecular dynamics trajectories of 1 ps x

3. After the backbone Co atoms in RET were structurally aligned to remove



rotational and translational motion, the dynamic cross-correlation coefficient
between each Ca atom was calculated as described previously®*:. Compared
with the map of non-mutant RET, the emergence and disappearance of dynamic
correlations involving GRL and AL are indicated by arrows and a dashed box,
respectively. In the presence of vandetanib, but not of ATP, novel dynamic

coupling between GRL and AL was evident in the S904F mutant KD.

(b) Root-mean-square fluctuation (RMSF) of backbone Ca atoms for residues
715-745 (left) and 900-935 (right) in RET in complex with vandetanib and ATP.
RMSF values were calculated using MD trajectories of 1 ps x 3. In the presence
of vandetanib, but not of ATD, the S904F mutation decreased the flexibility of
proximal residues 910-915 in the activation loop (AL), concomitantly with that
of distant residues 733-735 in the glycine-rich loop (GRL) (locations are
indicated by arrows). This change was thought to result in the distortion of the
hydrogen-bond network formed by E734 in the GRL, and D771 and R912 in the

AL (see also, Figure 3b).

(c) Dynamic structures of the 5904 wild-type (left) and F904 mutant (right) RET
in complex with vandetanib. Two nanosecond mean structures observed in
simulations of 50 ns x 15 times were superimposed. F735, S/F904, and
vandetanib are indicated. F735 in the open/closed and intermediate conformations
is represented by green and magenta sticks, respectively, based on clustering of
the 375 2 ns mean structures. The population of the intermediate conformation

was evident only in the F904 mutant (right). Green/magenta, carbon; blue,



nitrogen; orange, phosphorus; red, oxygen; light blue, fluorine; and light pink,

bromine.

(d) Conformational states of the glycine-rich loop (Gly731-Lys737) of wild-type
and S904F mutant RET KDs in complex with vandetanib (upper) and ATP (lower)
as determined by simulations. Two nanosecond mean structures extracted from
simulations (1 upsx3, 1,500 structures) were hierarchically clustered as
described in “Clustering of MD structures of the RET-vandetanib complex” in
Methods. The data show two energetically distinct conformers of vandetanib
binding, where Cluster nos. 1 and 2 correspond to the open/closed and
intermediate conformers, respectively. The percentage of each conformational
population was calculated for wild-type (left) and S904F mutant (right) KDs,
indicating that the intermediate conformer occurred preferentially in simulations
of the S904F mutant KD in complex with vandetanib (upper). A percentage of
the population of the energetically clustered structure is shown on the right of

each graph.

(e) Conformational states and binding free energies (AG) of RET kinase in
complex with vandetanib and ATP. The binding free energy values (AG) were
calculated by MP-CAFEE. A population of RET kinase in complex with
vandetanib in each conformational state was calculated using long-time (1 ps)
MD trajectories. (*) AG for wild type-vandetanib in intermediate conformation
was not calculated because the conformation was observed too transiently in

both short and long MD trajectories, indicating that the conformation is



unstable for wild-type RET in complex with vandetanib.

(f) Snapshots of Supplementary Movies 1 (left) and 2 (right) representing 1 us
MD simulations of the human RET kinase domain in complex with vandetanib.
Each movie represents a 1 ps simulation for wild-type RET (simulation no. 5)
(left)y and S904F RET mutant (simulation no. 4) (right) KDs in (d). F735 and
S/F904 are represented by thick sticks, and vandetanib is represented by Corey-
Pauling—Koltun space-filling models. Green, carbon/fluorine; blue, nitrogen; red,

oxygen; and light pink, bromine.

(g) Deduced interactions between vandetanib and F735 in the S904 wild type
(left)y and F904 mutant (right). The mean structures of F735 and vandetanib
generated by simulations of 50 ns x 15 are represented by thick stick and Corey—
Pauling-Koltun space-filling models®. The mean structure of the open/closed
conformers clustered in a low free-energy state and that of the intermediate
conformer clustered in a high free-energy state (e) are depicted in green and
magenta, respectively. Open and closed conformers were energetically equivalent
and aggregated into a low free-energy state. All structures observed in the 15
trajectories were used to calculate the atomic distance between CC in F735 and
the methyl carbon in vandetanib as 14.8 + 3.8, 13.9 + 4.0, and 5.1 + 0.9 A for the
wild type in the open/closed conformer, S904F mutant in the open/closed

conformer, and S904F mutant in the intermediate conformer, respectively.



Figure 2a (Original immunoblots)
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Supplementary Figure 8. Sources of immunoblotting data

The experiments were independently repeated three times. Figure 2a was

composed of data #1. The graph of Figure 2a was calculated using all three

experiments.
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Supplementary Figure 9. Sources of immunoblotting data




Supplementary Table 1. Data collection and refinement statistics for RET

S904F mutant bound to adenosine

Data Collection

Spacegroup P452:2
Cell Dimensions (A) 50.90, 50.90, 242.51
o B,y (°) 90, 90, 90
Resolution (A) 48.5 - 2.08 (2.19 - 2.08)
Rpim (%) 4.6 (34.0)
Completeness (%) 98.5 (97.0)
Multiplicity 24.5 (25.5)
Wilson B 28.3
CC(1/2) 99.8 (64.1)
Mean(I)/sd 12.8 (2.0)
Refinement
Total No. reflections (free) 27003 (1364)
Resolution (A) 23
Rwork / Reree (%) 19.8 /23.7
No. atoms

Protein 2297

Adenosine 19

Formate/glycerol 9

Waters 34
B-factors

Protein 51.3

Ligands 53.3
Rmsd

Bond lengths (/A) 0.005

Bond angles (/°) 0.72
Ramachandran

Favoured (/%) 96.9

Outliers (/%) 0.0
Clashscore 2.6
Rotamer Outliers 2.65

Rmsd, root-mean-square deviation.

Parenthesis shows the value for the highest resolution shell.



Supplementary Table 2. Melting temperature (Tm) by thermal shift assay using purified RET kinase domain

polypeptides
Tm derivative (°C)
No drug Vandetanib
RET kinase domain
Non-phosphorylated Phosphorylated Non-phosphorylated Phosphorylated

(CIP treated) (ATP treated) (CIP treated) (ATP treated)
Wild-type 4278 + 0.27 43.00 = 0.06 4539 = 0.11 49.11 + 0.19
S904F mutant 4428 + 0.04 4416 + 0.04 4694 =+ 0.44 4792 + 0.17

Mean melting temperature (Tm) values with standard error.

Wild-type and S904F mutant proteins were either dephosphorylated using CIP-phosphatase or phosphorylated by the
addition of Mg-ATP, followed by incubation with DMSO or 1 uM vandetanib.
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