Table S1:	Concentration	of elements	in AWF.
-----------	---------------	-------------	---------

Element	Conc. (ppm) ^a	Std Dev. (ppm)	Conc. (M) ^b	Std Dev. (M)
Ca	389.1	44.9	9.7 mM	1.1 mM
	1250.7	210.5	22. 14	5.4.24
K	1250.7	210.5	32 mN	5.4 mM
Mg	107.8	7.5	4.4 mM	0.3 mM
Na	25.7	6.1	1.1 mM	0.3 mM
Р	36.9	10.4	1.2 mM	0.3 mM
S	247.3	82.8	7.7 mM	2.6 mM
В	2.8	0.9	258.5 μM	80.4 µM
Fe	0.12	0.02	2.16 µM	0.4 µM
Mn	2.6	0.2	47.5 μM	3.1 µM
Zn	0.44	0.03	6.7 μM	0.5 μΜ
Cd	0.008	0.001	66.7 nM	12.4 nM

a. Concentration of element given in parts per million

b. Concentration of element given in molarity

Table S2: Primers used in this study.

Primer	Sequence (5'-3')	Description
	ATGCTTCCGGCTCGTATGTTGT	
oSWC01445	GT	Forward M13 primer
	GGCGATTAAGTTGGGTAACGC	
oSWC01446	CAG	Reverse M13 primer
oSWC01662	TCGTTGATCGCGGTCGCCACC	Downstream forward cvsS KO
	CACATGGAATTCTTTCCGAGC	Downstream forward nested <i>cvsS</i>
oSWC01663	GTTGCGCCTGC	KO with EcoRI site
oSWC01664	ATTGACCTGCCGGAACGTACC	Downstream reverse <i>cvsS</i> KO
	GGTACGTTCCGGCAGGTCAAT	Upstream forward cvsS KO with
oSWC01665	CAACCGCCTTTGTATGGACTTC	overlap
	TGATGCGCAGGATATTGAGTG	
oSWC01666	G	Upstream reverse <i>cvsS</i> KO
	CACATGGGATCCAGCGTCTCT	Upstream nested reverse <i>cvsS</i> KO
oSWC01667	GTGCCATCCTTGG	with BamHI site
oSWC01668	TCGTCGTCAATCAACAGGC	Downstream forward cvsR KO
	CACATGGAATTCAAACGCACC	Downstream forward nested <i>cvsR</i>
oSWC01669	TCGCTATCGGC	KO with EocRI site
	TATCTTTACGGTGGAGCCGGG	
oSWC01670	G	Downstream reverse <i>cvsR</i> KO
	CGGCTCCACCGTAAAGATATT	Upstream forward <i>csvR</i> KO with
oSWC01671	CAACCAGTAACAGGCGCATC	overlap
oSWC01672	TGTCTGTCAGTGCCACCAG	Upstream reverse <i>cvsR</i> KO
	CACATGGGATCCTTCGCTTAG	Upstream nested reverse <i>cvsR</i> KO
oSWC01673	GCAGGGAAGG	with BamHI site
		Downstream forward PCR screen
oSWC01700	TTGGGCACAGGTTCGGTCTTG	cvsS KO
		Downstream reverse PCR screen
oSWC01701	AAGCACCAGTCCTGATGGC	cvsS KO
		Upstream forward PCR screen
oSWC01702	TTGAGTCCGGCAGACTCCAGC	cvsS KO
GUUG01702		Upstream reverse PCR screen
oSWC01703	TAAGGGTCTGGCGACACCG	CVSS KO
		Downstream forward PCR screen
2SWC01704		CVSR KO and used in RT-PCR for
05WC01704	AGCAAGIGGIIGAICIGGG	CVSK-CVSS
SWC01705		Downstream reverse PCR screen
05WC01705		Unstream forward DCD screen
oSWC01706	TGATTCCTGTAGACCTGGC	Cyse KO
0.5 W C01/00		Unstream reverse DCD scroop
oSWC01707	ATGCCAAAGCACTGAGCAAG	cvsRKO
0.0 11 0.0 1 / 0 /		

		Reverse for RT-PCR for
oMRF0150	GCCTTGCGGGGTCAACAA	PSPTO_3383-PSPTO_3382
	GACAAGCGTCTCTGTGCCATC	Forward primer for RT-PCR for
oSWC05046	СТ	PSPTO_3382-cvsR
	GGCCAGGTCTACAGGAATCAT	Forward primer for RT-PCR for
oMRF0145	C	PSPTO_3383-PSPTO_3382
		Reverse primer for RT-PCR for
oMRF0148	GGTGTCGCCAGACCCTTACC	PSPTO_3382-cvsR
		Reverse primer for RT-PCR for
oMRF0535	GGCGTGCGGTGATCGAG	cvsR-cvsS
		reverse promoter fusion without
	CACCGTTTTCATTGTTAGGAG	PSPTO_3383 gene, begins at end
oMRF0010	GGTCCATAG	of PSPTO_3383
	TGTCGTAATGCTGTGTCTGTCA	forward promoter fusion 400bp
oMRF0011	GTG	upstream of PSPTO_3383
	GCGGCTTAACTCAAGCGTTAG	
oMRF0016	A	forward primer for pBS59
	TCCTGAGGTAGCCATTCATCC	
oMRF0017	A	reverse primer for pBS59
		C-terminal FLAG-tag gateway
	TCACTTGTCATCGTCGTCCTTG	overexpression C-terminus of
oMRF0050	TAGTCACCCCGGCTCCACCG	cvsR
		C-terminal FLAG-tag gateway
	CACCATGCGCCTGTTACTGGTT	overexpression N-terminus of
oMRF0051	GAAG	cvsR
oMRF0233	CAAGCGTCTCTGTGCCATC	<i>algD</i> qPCR sense
oMRF0234	CGAGCGGAAGAATGACACC	<i>algD</i> qPCR antisense
	TTTCTGCAGCAACCGCCTTTGT	
oSWC02061	ATGG	<i>cvsR</i> complement forward primer
	TTTAAGCTTTTGGCATGTTTTT	· · · · ·
oSWC02063	GATGG	<i>cvsR</i> complement reverse primer
	CGGCGGCCGCCGCCTTTGTAT	Reverse primer for <i>cvsR</i> insertion
oMRF0355	GGACTTCAACC	into pET21 with NotI site
	CGGGATCCATGCGCCTGTTAC	Forward primer for <i>cvsR</i> insertion
oMRF0357	TGGTTGAA	into pET21 with BamHI site
		<i>hrpR</i> peak #2 ChIP-seq peak 5'-
		FAM tag for EMSA and DNase
oMRF0375	CTGTAAGCGCTTGTTCGCATT	footprinting
		<i>hrpR</i> peak #2 ChIP-seq peak 3'
		for EMSA and DNase
oMRF0376	AGAAACGCGCTATTCATTGCA	footprinting
		spf ChIP-seq peak 5'-FAM tag for
oMRF0377	TGCGGAGTAAATCGCAGGC	EMSA and DNase footprinting
		spf ChIP-seq peak 3' for EMSA
oMRF0378	GCAGTGCCGCTGCTGGT	and DNase footprinting

		PSPTO_3383 ChIP-seq peak 5'-
		FAM tag for EMSA and DNase
oMRF0381	TGCAGGCGTCGAGTCTAACA	footprinting
		PSPTO_3383 ChIP-seq peak 3'
		for EMSA and DNase
oMRF0382	TGCGGATCGATGCCACG	footprinting
		PSPTO_0203 ChIP-seq peak 5'
	GCAAGTGTCAATATTGAGTTG	for EMSA and DNase
oMRF0385	ACTCAAC	footprinting
		PSPTO 0203 ChIP-seq peak 3'
		with 5'FAM for EMSA and
oMRF0386	CCTTGATGCTTCCACCAGGA	DNase footprinting
		<i>katB</i> ChIP-seq peak 5'-FAM for
oMRF0387	TGGCCGTTATTTAACGCATTG	EMSA and DNase footprinting
		<i>katB</i> ChIP-seq peak 3' for EMSA
oMRF0388	GCGCGACGTTAAGAGTGCA	and DNase footprinting
		tRNA-cvs-1 ChIP-seq peak 5'-
		FAM for EMSA and DNase
oMRF0389	CCTTACGCAGCCCGTGAG	footprinting
		tRNA-cvs-1 ChIP-seq peak 3' for
oMRF0390	GCCGAGGTCGGAATCGAA	EMSA and DNase footprinting
		PSPTO 4969 ChIP-seq peak 5'
		for EMSA and DNase
oMRF0391	GGCATCGACCTTGTCAGATCC	footprinting
		PSPTO 4969 ChIP-seq peak 3' w/
		5'FAM tag for EMSA and DNase
oMRF0392	TATGGTTTCCCGGTCAAGGA	footprinting
	CACGAAAATCTTCATCGAGTG	gidA ChIP-seq peak 5' for EMSA
oMRF0393	GA	and DNase footprinting
		gidA ChIP-seq peak 3' with 5'
		FAM tag for EMSA and DNase
oMRF0394	AGCTGTGGAAAACTCGCGAA	footprinting
		oprF ChIP-seq peak 5'-FAM for
oMRF0395	CGGACTTGATCGCTGGCTT	EMSA and DNase footprinting
		oprF ChIP-seq peak 3' for EMSA
oMRF0396	TCATCCGTTAAATCCCCATCTG	and DNase footprinting
		PSPTO 5255 3' FAM-tag for
oKMD0123	GCGCTAGCGCTCAAGGGA	EMSA and DNase footpriniting
		PSPTO 5255 5' for EMSA and
oMRF0062	TGTCACTCTTGTAACGAACTTG	DNase footprinting
		<i>hrpR</i> peak #1 3' FAM-tag for
oKMD0137	GCCATCACCTAGAATGT	EMSA and DNase footprinting
	CGAACAACACAGAGGCTTGGA	hrpR peak #1 5' for EMSA and
oSWC06572		
	TAC	DNase footprinting

oMRF0192	GCTCAAAGTCAGAGAGA	<i>fliC</i> qPCR antisense
oMRF0231	GGATAAACAAGGCGTAAA	hopAH2-1 qPCR sense
oMRF0232	GCCTGATTCAACTTGTC	hopAH2-1 qPCR antisense
oSWC06118	GTGCCAACGGACAGGCACA	<i>rsmZ</i> qPCR sense
oSWC06119	CCCTTGTCATCGTCCTGATGAA	rsmZ qPCR antisense
	GCAGGAAGCGCAACAAGACA	
oSWC06338	Т	<i>rsmY</i> qPCR sense
	GCTTTCCAGACTGTTTCCCTGA	
oSWC06339	Т	<i>rsmY</i> qPCR antisense
	GGTGAACAAGGAGTTCACCAG	
oSWC06348	GA	<i>rsmX-3</i> qPCR sense
	CCAAGACCATTCCAACTCCCT	
oSWC06349	GT	<i>rsmX-3</i> qPCR antisense

Strain Name	Genotype	Reference	
Pseudomonas syring	zae pv. tomato DC3000 strains		
	Pseudomonas syringae pv. tomato		
Pto (WT)	DC3000 wild type, Rif ^R	(1)	
BBPS33	$Pto \Delta cvsS$	(2)	
BBPS34	$Pto \Delta csvR$	(2)	
	BBPS34 <i>att</i> Tn7:: <i>Tn</i> 7-		
BBPS35	PSPTO_3383-cvsR	(2)	
MFPS03	Pto pBS59::P _{cvsSR}	This study	
MFPS04	<i>Pto</i> $\Delta cvsS$ pBS59::P _{cvsSR}	This study	
MFPS04	<i>Pto</i> $\Delta cvsR$ pBS59::P _{cvsSR}	This study	
BMS2	Pto pBS44	(3)	
PS392	Pto ΔalgD	(4)	
MFPS10	Pto ΔalgD ΔcvsS	This study	
MFPS11	Pto ΔalgD ΔcvsR	This Study	
CUCPB5113	<i>Pto</i> $\Delta hrcQb$ - U , Sp ^R	(5)	
MFPS05	<i>Pto</i> $\Delta hrcQb-U\Delta cvsS$, Sp ^R	This study	
MFPS06	<i>Pto</i> $\Delta hrcQb-U\Delta cvsS$, Sp ^R	This study	
MFPS09	<i>Pto</i> Δ <i>cvsR</i> pBS46:: <i>cvsR</i> -FLAG	This study	
MFPS20	<i>Pto</i> pBS58::P _{<i>hrpRS</i>}	This study	
MFPS21	<i>Pto</i> $\Delta cvsS$ pBS58::P _{hrpRS}	This study	
MFPS22	<i>Pto</i> $\Delta cvsR$ pBS58::P _{hrpRS}	This study	
MFPS24	Pto pBS63	This study	
MFPS25	<i>Pto</i> Δ <i>cvsS</i> pBS63	This study	
MFPS26	<i>Pto</i> Δ <i>cvsR</i> pBS63	This study	
Escherichia coli			
strains		l	
	huA2 lac(del)U169 phoA glnV44 Φ 80' lac7(del)M15 gyr 406 rec 41		
DH5a	relA1 endA1 thi-1 hsdR17	ThermoFisher Scientific	
	$F-mcrA \Delta(mrr-hsdRMS-mcrBC)$		
	$\Phi 80 lac Z \Delta M 15$		
	$\Delta lac X74 \ rec A1 \ ara D139 \ \Delta(ara \ leu)$		
TOD10	7697 galU galKrpsL		
10110	(StrK) endA1 nupG	I hermoFisher Scientific	

Table S3: Strains and plasmids used in this study.

			fhuA2 [lon [dcm] Δhs ΔEcoRI-B int::(lacI::
BL21 (DE3)			$i21 \Delta nin5$
Plasmids			
			_
Name	Description	Reference	
pK18mobSacB	pMB1 mob sacB sucrose ^S Km ^R	(6)	_
	pK18mobSacB with regions		
n7P20	flanking PSPTO_3380 cloned into it	(2)	
	pK18mobSacB with regions		
70.1	flanking PSPTO_3381 cloned into it		
pZB21	Directional classics constant for extended	(2)	
pENTR/D/TOPO	to the Gateway System	ThermoFisher Scientific	
	Directional cloning vector with		
	ribosome binding site for entry to		
pentr/SD/TOPO	the Gateway System	I nermoFisher Scientific	_
pMRF2	pENTR/D/TOPO::P _{cvsSR}	This study	
pBS58	IuxCDABE destination vector	(3)	
pBS59	luxCDABE destination vector	(3)	
pMRF11	pBS59::P _{cvsSR}	This study	_
	luxCDABE destination vector		
pBS44	control without insertion	(3)	
	mini-Tn7 mobilizable transposon		
pUCI8miniTn7	with multicloningsite, GmR	(7)	

pNTS2	mini-Tn7 helper plasmid	(7)
pJZ1	pUC18miniTn7::PSPTO_3383-cvsR	This study
pBS46	nptII destination vector	(8)
pMRF14	pENTR/SD/TOPO:: <i>cvsR</i> -FLAG	
pMRF15	pBS46:: <i>cvsR</i> -FLAG	This study
	Bacterial expression vector with T7	
	lac promoter, N-terminal T7 epitope	
pET21	tag, and C-terminal His tag, ApR	Novagen
pMRF21	pET21:: <i>cvsR</i>	This study
pMRF22	pBS58::P _{hrpRS}	This Study
pBS63	pBS58::P _{hrpL}	(9)

- Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M, Deng W-L, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A. 2003. The complete genome sequence of the *Arabidopsis* and tomato pathogen *Pseudomonas syringae* pv. *tomato* DC3000. Proceedings of the National Academy of Sciences 100:10181-10186.
- Butcher BG, Bronstein PA, Myers CR, Stodghill PV, Bolton JJ, Markel EJ, Filiatrault MJ, Swingle B, Gaballa A, Helmann JD, Schneider DJ, Cartinhour SW. 2011. Characterization of the Fur regulon in *Pseudomonas syringae* pv. *tomato* DC3000. J Bacteriol 193:4598-4611.
- 3. Markel E, Maciak C, Butcher BG, Myers CR, Stodghill P, Bao Z, Cartinhour S, Swingle B. 2011. An extracytoplasmic function sigma factor-mediated cell surface signaling system in *Pseudomonas syringae* pv. *tomato* DC3000 regulates gene expression in response to heterologous siderophores. J Bacteriol **193:**5775-5783.
- 4. **Markel E, Stodghill P, Bao Z, Myers CR, Swingle B.** 2016. AlgU Controls Expression of Virulence Genes in *Pseudomonas syringae* pv. *tomato* DC3000. J Bacteriol **198:**2330-2344.
- Badel JL, Shimizu R, Oh H-S, Collmer A. 2006. A *Pseudomonas syringae* pv. tomato *avrE1/hopM1* Mutant Is Severely Reduced in Growth and Lesion Formation in Tomato. Molecular Plant-Microbe Interactions 19:99-111.
- 6. **Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A.** 1994. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids

pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene **145:**69-73.

- 7. **Choi KH, Schweizer HP.** 2006. mini-Tn7 insertion in bacteria with single attTn7 sites: example *Pseudomonas aeruginosa*. Nat Protoc **1:**153-161.
- Swingle B, Thete D, Moll M, Myers CR, Schneider DJ, Cartinhour S. 2008.
 Characterization of the PvdS-regulated promoter motif in *Pseudomonas syringae* pv. *tomato* DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Molecular Microbiology 68:871-889.
- McCraw SL, Park DH, Jones R, Bentley MA, Rico A, Ratcliffe RG, Kruger NJ, Collmer A, Preston GM. 2016. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in *Pseudomonas syringae* pv. *tomato* DC3000. Molecular Plant-Microbe Interactions 29:938-949.

Fig. S1: (A) Genomic arrangement of operon where *cvsS* and *cvsR* are located. (B) Bands produced by PCR of primers overlapping the junction between 3383 and 3382, 3382 and 3381, and 3381 and 3380 using either *Pto* genomic DNA (gDNA), cDNA produced by reverse transcription with random hexamers of RNA (+RT), or a no reverse transcriptase control reaction (-RT). RNA was extracted from *Pto* grown for 18 hours on NB supplemented with CaCl₂ and sodium succinate.

Fig. S2: Luminescence assay to assess transcription of P_{cvsSR} WT, $\Delta cvsR$, and $\Delta cvsR$ pBS46::cvsR-FLAG when grown in MG supplemented with Ca²⁺. The relative luminescence was calculated using the total luminescence relative to the OD₆₀₀. This experiment was repeated with independent replicates three times and the three independent experiments were compiled using a least-squares regression. The error bars represent standard error generated by the differences observed between samples.

Fig. S3: EMSA with concentrations of CvsR increasing from left to right as written. Probes were chosen based on the location of ChIP-seq peaks, except for PSPTO_3383 and PSPTO_0786. No peak was found near either of those areas in the chromosome. CvsR was predicted to bind upstream of PSPTO_3383 since CvsSR autoregulates. The probe for PSPTO_0786 is used as a negative control. Probes show a shift with an increased concentration of CvsR due to reduced mobility of the probes upon binding of CvsR. This is not seen for the probe for PSPTO_0786.

Fig. S4: Fluorescent, non-radioactive DNase footprinting assays showing binding of CvsSR. The red line is a line of best fit that estimates the bp size of each fragment made using a LIZ500 ladder. The blue peaks are fluorescent signal and represent the size of fragmented DNA. The areas that are highlighted in orange are regions with little fluorescence when CvsR is added at 1 μ M or 4 μ M to the reaction as compared to when no CvsR is added. These regions signify areas in the probes that were bound by CvsR. A probe for the region PSPTO_0786 was used as a negative control. There were not any regions that CvsR bound to in this probe.

Fig. S5

PSPTO_5255

5' – TGTCACTCTTGTAACGAACTTGGTACTATCGTGCAAACCCGCGTCCCAGAGCCATC<mark>GCATTCAGTTTCGCTTAAGCTTGGGCGA</mark>TTAGTCTGTAACTCTGAGTGACAGCAGCGCTA GCGCTCAAGGGATTTTTTCGTGATGCCCGTTACAGGTGATCACATCCGGCTCTGGTCAAACAGGCATGAAGAATCGACATCA – 3'

PSPTO_4969

5' – GGCATCGACCTTGTCAGATCCCGCCGCAACGTACGGAGTCGTCTGGCAAGTGGAGGGGACATTGCAGGATGTCAGGATCCCGGTTTTACGGGGCTGGTTTGTGTTTCGCC CCCTGCAGCCGTGGCTGCATCCGTGGATGAAT<mark>ATGAATATGAAGATGAAGATGAAGATGAAGATGAAGATGAAGATG</mark>AAGATGCAACCAGCC<mark>AAAAGAATCTTACAATATTCTTAAT</mark> <mark>CGAAAAATATAA</mark>ATCAAGAATTTTTGTAGCGTACATGCTTGCCGCCTCCATTACAGACGCCGATCTCTATTCTTATTCGAAAGTCCTTGACCGGGAAACCATA – 3'

hrpR peak #1

hrpR peak #2

PSPTO_3383

5' – TGCGGATCGATGCCACGCGCCTGGGTCACACAGGTAGCCATGACCATGGTCAGGGCCGCAAGCAGGGTTGTCAGCGTTTTCATTGTTAGGAGGGTCCATAGCGGTCGATGCTTC TATGGTGTTTACCTTAACGGGTG<mark>CAACTTAACTCAAGCTGAATCGGTCT</mark>GGCCGAGTGCCATCAAAAACATGCCAAAAAGGTCATTAGGTCCAGGCCCTGCATGGCGTTTCAGGTCTT TGCTGTTAGACTCGACGCCTGCA – 3'

katB

5' – GGTGGCCGTTATTTAACGCATTGACTTAACACGAACAACCCTGTTTAAAAGACATCAAATAGCCACTA<mark>ACCGAACATGAACTTTAATTGACTATTCAGTATGCT</mark>CGTTCCACATTC ACCTGACTTACTGGCAAATAGTCATCAGCCATCAAGTTGATAATGATTACTATCCCGCCCATAAAAGCGACCGCCAGCAGGCTTTTAATTTTCGCCGTCATACAAATAAAAAACCTATTT ATTTTCAATGAGTTAAATAACTAAAAAACTTTTTAAAACAGAAATAAAAATGCACTCTTAACGTCGCG – 3'

tRNA-cys-1

5' – GCCGAGGTCGGAATCGAACCGGCGTAGGCGGATTTGCAATCCGCTGCATAACCATTTTGCTACTCGGCCTCATACGTCGGATGCCTTACCGCAACATCAAACG<mark>TGGGTGAACTG</mark> CATGCGAAACCAGTATTTCCTTGGCTTCTAA CCATGCGAAACCAGTATTTCCTTGGCTTCTAACCCATTGAATCTTAAGGGTTTTTTTCAATTCCGCGTTCAGGAATGGACGCAATTCTCTACTGGTTCGCAGGCCATGTCAAGAACAGGG TGAAAATAATTCACCGGGCCGGCCGCAGACGCTTGAGCCTAGCGCTCACGGGCTGCGTAAGG-3'

PSPTO_0203

5' – CCTTGATGCTTCCACCAGGATTGTATTTC<mark>TCTAACTTAACAATG</mark>ACGTTAGTACTTATTTCCTTATTGATCCTTGC<mark>AAGATCAATAAGCGGAGTTTTAGAAA</mark>TTCCATCAATTACGTT TTTCTTTGCAAACGACATAATTTACCTCATGATTTCCATATGCTACGGTTTTTGTGTGGGTTTTATTAGCCGAGTGACTCCGCTCATCAAATTGATATTTATGAGTAGAATGAGCAATTAT AATGACGCGACTATCATTTGATTTTTCAATTGGCTAGTCA<mark>TAACTTTAATAAAGTTGAG</mark>TCAACTCAATATTGACACTTGC – 3'

gidA

spf

5' – TGCGGAGTAAATCGCAGGCAAAAAAAAGACCCCGGACTTCACATGGGGAGGGGG<mark>AAGTACCGGGGCTTAAGGT</mark>CCGGACCTTAGGGTGGGGTCCGGAATAACT<mark>GCCAACACTTA ACACAACTTAAGAGCA</mark>CGATGGATTTTTCAATCAATCGGAACCTCTGACTCCT<mark>GTCCAAACGGTTAAGTTCCAGCAATTAAGAAAAG</mark>TTCACATTTCCTACAATGTTTGACGAATCCCC CCACGAA<mark>TTCGTCGTTTTTCAGCGTTAATGTGCCTCG</mark>TCCCAGTTGTTGCCGACCCCGACTTCCACCAGCAGCGGCACTGC – 3'

oprF

Fig. S5: Sequences of the DNA probes used for the DNase footprinting assay. The highlighted bases in each probe correspond to bps in the probe that were bound by CvsR.

Fig. S6: The predicted binding motif for CvsR discovered using MEME from the compiled Dnase footprinting data.

Fig S7: Concentration of alginate produced by WT, $\Delta cvsS$, and $\Delta cvsR$ after one day of growth on NB agar plates. The experiment was repeated using four independent biological replicates. Error bars represent standard deviation between replicates.

Fig S8: (A) Swarming assays of WT, $\Delta cvsS$, $\Delta cvsR$, and $\Delta cvsR$ c strains grown on NB medium. Pictures of swarming assays taken a day after spotting. (B) Diameters of swarming colonies measured 24 hours after spotting on NB with 5 mM CaCl₂. The experiment was performed three times with three replicates per experiment. Diameter of colonies was measured across two locations and averaged. Error bars represent standard deviation between replicates.

Fig. S9: Swimming assays of WT, $\Delta cvsS$, $\Delta cvsR$, and $\Delta cvsR$ c strains grown on swimming media. (A) Picture or strains taken two days after the start of a swimming assay without CaCl₂. (B) Diameter of swimming by strains in swimming media taken two days after the start of the assay. (C) Picture of strains taken two days after the start of a swimming assay with CaCl₂. (D) Diameter of swimming by strains in swimming media with CaCl₂ taken two days after the start of the assay. Pictures of the plates are representative of swimming assays that were performed three times. The diameters are averaged from three biological replicates. The error bars represent standard deviation across from the three biological replicates.

Fig. S10: Diameters of swarming colonies for $\Delta algD$, $\Delta cvsS$, and $\Delta algD \Delta cvsR$ strains measured 24 hours after spotting on (A) NB or (B) NB supplemented with CaCl₂. Diameter of colonies was measured across two locations and averaged. The experiment was performed three times with three replicates per experiment. The graph is from a single experiment and is representative of trends observed in each experiment. Error bars represent standard deviation between replicates. The * denote a statistically significant difference with a p-value < 0.01 in swarming diameter between $\Delta algD$, $\Delta algD$, $\Delta cvsS$, and $\Delta algD \Delta cvsR$ strains.

Fig. S11: Growth of WT, $\Delta cvsS$, $\Delta cvsR$, and $\Delta cvsR$ c on NB supplemented with CW after 16 hours (A) and 3 days (B) of growth. Fluorescence of the bacterial strains under ultra-violet light indicated production of cellulose. Bacterial strains were grown to stationary phase in KB media were resuspended at an OD₆₀₀ of 0.3 in NB media and then five μ L of each culture were spotted onto the appropriate media. The plate is representative of assays that were performed three times.

Fig. S12

Fig. S12: Luminescence assay to assess transcription of (A) P_{hrpRS} and (B) P_{hrpL} in WT, the $\Delta cvsS$, and the $\Delta cvsR$ when grown in MG. The relative luminescence was calculated using the total luminescence relative to OD_{600} . This experiment was independently replicated three times. The three independent experiments were compiled using a least-squares regression. The error bars represent standard error generated by the differences observed between samples.

Fig. S13

Fig. S13: (A) HR in *N. tabacum* to WT, $\Delta cvsS$, $\Delta cvsR$, and $\Delta cvsRc$ from *Pto* strains at 2 x 10⁸ (black), 2 x 10⁷ (blue), and 2 x 10⁶ (yellow) cful/mL. (B) HR in *N. benthamiana* with the same *Pto* strains using the same amount of inocula as in *N. tabacum*. Bacterial strains that were inoculated at the same level of inoculum are circled with the same color. The images shown were photographed 2 days after inoculation for *N. tabacum* and 1 day after inoculation for *N. benthamiana*. The experiment was repeated three times.

Fig. S14: The least-squares mean of three separate growth curves of WT, $\Delta cvsS$, $\Delta cvsR$, and $\Delta cvsR$ c grown in (A) MG or (B) MG supplemented with Ca²⁺. The * denotes statistically significant differences determined using a Tukey HSD test with a p-value < 0.01 between OD₆₀₀ of WT, $\Delta cvsS$, and $\Delta cvsR$.

Fig. S15: (A) Picture of syringe infiltrated leaf of tomato at 6 DPI. Areas infected with $\Delta hrcQb$ -U, $\Delta hrcQb$ -U $\Delta cvsS$, and $\Delta hrcQb$ -U $\Delta cvsR$ are labeled as such(B)Growth curves over time in log cfu/mg are shown for $\Delta hrcQb$ -U, $\Delta hrcQb$ -U $\Delta cvsS$, and $\Delta hrcQb$ -U $\Delta cvsR$ infecting tomato at 4 DPI and 6 DPI. The strains were inoculated at 1 x 10⁶ cfu/mL using a blunt syringae. Average bacterial growth in three plants was used with the error bars representing the standard error between the three replicates.