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Supplemental Material 

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies  

 
Item 

No Recommendation 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the 

abstract 

We state that this is a cross-sectional study in the title. 

(b) Provide in the abstract an informative and balanced summary of what was 

done and what was found 

We describe the study populations, outcome measures, exposure measures, 

statistical methods, and results of our analysis in the abstract. 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported 

 

Scientific Background: We provide a comprehensive summary of previous 

work on the relationship between agriculture and malaria, noting that much 

of this work focuses either on the mosquito population or the human 

population, but not both. We further note that these studies tend to be 

conducted in a small number of settings, limiting generalizability. Given the 

diversity of human ecosystems and of vectors, we argue that more work on 

the role of agriculture in malaria transmission is needed. 

 

Rationale: We write in the introduction that Africa’s population is expected 

to double in the coming decades, with such population growth necessitating 

further development of the region’s agricultural sector. Such development, 

however, may slow or reverse recent progress in reducing malaria 

transmission since agricultural development produces habitat characteristics 

favoured by Anopheles gambiae s.l. mosquitoes. Thus, we argue that better 

understanding this ecology is a critical component of future malaria control. 

 

Objectives 3 State specific objectives, including any prespecified hypotheses 

 

We state that our objective is to “examine the relationship between 

agriculture, the mosquito population, and malaria risk using data from a 

population-based cross-sectional survey of children under 5 years of age 

living in the Democratic Republic of Congo…and contemporaneous 

entomological monitoring data collected over time across DRC’s ecological 

zones.” 
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We state that our hypothesis is that increasing exposure to agriculture is 

associated with increased malaria risk, and seek to understand how changes 

in vector behaviour may be a mechanism underlying this hypothesized 

increase. 

 

Methods 

Study design 4 Present key elements of study design early in the paper 

 

We state both in the title and in the introduction that this is a cross-sectional 

study. We further describe the study populations (children under 5 years of 

age and Anopheles mosquitoes) in detail, including sample sizes and 

selection criteria in the methods section. 

 

Setting 5 Describe the setting, locations, and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection 

 

We describe in detail the country setting, and include a map (Figure 2) 

showing where both the survey was conducted and where entomological 

surveillance occurred. 

 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of 

participants 

 

We describe the eligibility criteria in detail in the methods section. Briefly, 

they are children under 5 years of age living in rural DRC and mosquitoes 

sampled across six rural sites in different ecological zones in the DRC. 

 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and 

effect modifiers. Give diagnostic criteria, if applicable 

 

We define outcomes and exposures in the description of each study 

population, and dedicate a separate section to confounding variables and 

how they were measured. 
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Data sources/ 

measurement 

8*  For each variable of interest, give sources of data and details of methods of 

assessment (measurement). Describe comparability of assessment methods if 

there is more than one group 

 

We describe the source of each variable (outcome, exposure, or 

confounder). We further state that the confounders common to both study 

populations were measured identically. 

 

Bias 9 Describe any efforts to address potential sources of bias 

We address sources of bias in previous work, how our work addresses such 

biases, and further discuss possible bias in our work. We address potential 

sources of bias in our work methodologically through the use of hierarchical 

Bayesian spatial models (including spatially-varying coefficient processes), 

and further by noting other limitations/sources of bias that in the discussion. 

 

Study size 10 Explain how the study size was arrived at 

 

We provide a description of the selection criteria and provide a study flow 

diagram as Figure 1 in our study. 

 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, 

describe which groupings were chosen and why 

 

We provide a detailed description of how quantitative variables were 

handled (e.g. centering and scaling). 

 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 

confounding 

 

We provide a detailed description of our statistical methods, including a 

supplementary appendix that provides the Markov Chain Monte Carlo 

(MCMC) algorithm for each model considered. 

 

(b) Describe any methods used to examine subgroups and interactions 
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We did not consider subgroups or interactions 

 

(c) Explain how missing data were addressed 

 

We state that this is a complete case analysis, as there were only 4 study 

subjects out of 4,616 with any missing data. There was no missing data in the 

mosquito population. 

 

(d) If applicable, describe analytical methods taking account of sampling 

strategy 

 

We provide a detailed description of the methodological approach, and how 

the model specifications address the both the sampling strategy and 

different sources of potential unmeasured confounding. 

 

(e) Describe any sensitivity analyses 

 

We implement 3 different hierarchical Bayesian models to investigate 

possible sensitivity of our main findings due to unmeasured confounding. 

We describe the rationale for these model specifications in the Statistical 

Analyses section of the manuscript. We further describe how we assess 

model fit and provide fit statistics in the accompanying appendix. 

 

Results 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, included in the 

study, completing follow-up, and analysed 

 

This information is included in the introduction 

 

(b) Give reasons for non-participation at each stage 

 

The mothers for all eligible participants assented to their children being 

included in the study. 
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(c) Consider use of a flow diagram 

 

We include a flow diagram in the introduction 

 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) 

and information on exposures and potential confounders 

 

We include this information in Table 1, where we also include the expected 

relationship between the variable of interest on malaria risk. 

 

(b) Indicate number of participants with missing data for each variable of 

interest 

 

Only 4 individuals out of 4,616 had missing data, and we thus 

 

Outcome data 15* Report numbers of outcome events or summary measures 

 

We begin the results section by summarizing malaria prevalence of under-5 

children living in rural communities of the DRC. 

 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 

estimates and their precision (eg, 95% confidence interval). Make clear which 

confounders were adjusted for and why they were included 

 

We do not include a discussion of unadjusted estimates owing to space 

limitations. Additionally, our literature review indicated that confounding is 

an important limitation of studies on the agriculture-malaria relationship, 

and we therefore focus on addressing this confounding both by including 

confounders that are otherwise unavailable in other studies, and by 

exploring possible remaining unmeasured confounding through the use of 

Bayesian spatial models. 

 

(b) Report category boundaries when continuous variables were categorized 

 

We did not categorize continuous variables. 
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(c) If relevant, consider translating estimates of relative risk into absolute risk 

for a meaningful time period 

 

Since we work in a probit regression setting, interpreting the effect of 

agriculture on the probability of malaria infection depends on other 

covariates in the model. Thus, we report our results in terms of risk 

differences. Specifically, we report the range or risk differences in children 

under 5 years of age, together with 95% uncertainty intervals, given a 15% 

increase in agricultural cover. 

 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 

sensitivity analyses 

 

We include the results and discussion from the other models considered in 

the supplementary appendix, and report the main results (i.e. those from 

the best-fitting model) in the main text. 

 

Discussion 

Key results 18 Summarise key results with reference to study objectives 

 

We provide a broad summary that our findings suggest that increasing 

agricultural coverage may lead to increases in malaria transmission, and that 

the mechanism may be through increased indoor biting among An. gambiae 

s.l. mosquitoes. 

 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias 

or imprecision. Discuss both direction and magnitude of any potential bias 

 

We discuss potential bias in our discussion. Specifically, we discuss that we 

treated temperature and precipitation as confounders, but that they may 

also mediate risk, with complex roles in transmission. We provide citations 

to work in this area. 

 

Additionally, we note that it is likely impossible to draw a representative 

sample of a vector population over large land, and note this as a limitation, 
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even though the vector data used in this study was sampled from different 

ecological zones. 

 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 

limitations, multiplicity of analyses, results from similar studies, and other 

relevant evidence 

 

We work to insure a cautious interpretation by using cautious language (i.e. 

the words “suggest” and “may”), e.g.: 

 

-“ Our data suggest increased malaria risk with increasing agriculture.” 

 

-“Results from entomological analyses suggest that increases in agriculture 

are associated with increased probability of indoor biting among An. 

gambiae s.l. mosquitoes” 

 

-“ Given the high abundance of An. gambiae s.l., these results suggest that 

agriculture-malaria relationship may be mediated through effects on indoor 

biting among An. gambiae s.l.” 

 

Generalisability 21 Discuss the generalisability (external validity) of the study results 

 

We note that one of the strengths of this study is that it relies on a 

population-based survey of children under 5 years of age, suggesting that 

the results are generalizable to the population of children under 5 years of 

age. 

 

We further not that one strength of this work is that the mosquito 

population was sampled in different ecological zones, which facilitates 

generalizability (although, as noted, representatively sampling a vector 

population remains a challenge). 

 

Other information 

Funding 22 Give the source of funding and the role of the funders for the present study 

and, if applicable, for the original study on which the present article is based 
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We include the following statements in the manuscript: 

 

The sponsors of the study had no role in study design, data collection, data 
analysis, data interpretation, or writing of the report. The corresponding 
author had full access to all the data in the study and had final responsibility 
for the decision to submit for publication. Parental consent for children’s 
participation in the 2013-2014 Demographic and Health Surveys (DHS) was 
obtained by the DHS Program. The 2013-2014 DRC DHS was reviewed and 
approved by the Institutional Review Board (IRB) at ICF International—the 
implementing agency of the DHS—and the University of Kinshasa IRB 
(Comité d’Ethique de l’Ecole de Santé Publique de l’Université de Kinshasa). 
This study was also approved by the IRB at the University of North Carolina 
at Chapel Hill. 

 

The authors acknowledge support from the National Institutes of Health 
(grant 5R01AI107949 to Steven R. Meshnick), the National Science 
Foundation (grant BCS-1339949 to Michael Emch), the Gates Foundation 
(grant OPP1161913 to Brian J. Reich). Mark Janko received support from the 
Royster Society of Fellows at UNC-CH. Mark Janko and Marc Peterson were 
supported by the Population Research Infrastructure Program awarded to 
the Carolina Population Center (P2C HD050924) by the Eunice Kennedy 
Shriver National Institute of Child Health and Development. Seth Irish is 
funded by the US President’s Malaria Initiative. 

 

 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background 

and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article 

(freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine 

at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 

available at www.strobe-statement.org. 
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Model Specifications for Models on Probability of Malaria Infection: 

 
Our outcome of interest is each individual's PCR-diagnosed malaria status, a binary indicator taking the value 1 if an 

individual is infected with malaria, and 0 otherwise. Typically, binary data are handled using logistic regression. 

However, spatial models for point-referenced data become computationally intensive very quickly as the number of 

spatial locations increases. This computational burden is further increased due to the lack of conjugacy between the 

prior distributions for model parameters and the data likelihood in logistic regression. As such, we adopt a probit 

specification in which we introduce latent variables that are assumed to follow a normal distribution with unit 

variance. Such a specification also has a scientific rationale. For example, we can think of these latent variables as a 

propensity to become infected with malaria, with values above 0 indicating increased propensity to become infected 

with malaria, and vice versa. To see this connection, observe that we can represent the probability of malaria 

infection, given covariates, as coming from a linear model. For example, let 𝑦𝑖
∗ be the binary indicator for whether 

or not individual 𝑖 (𝑖 in 1 … 𝑛) has malaria. Then the probability of malaria infection is given by: 

 

Pr(𝑦𝑖
∗ = 1|𝑋) = Pr(𝑥𝑖

𝑇𝛽 + 𝜖𝑖 > 0) 

= Pr(𝑥𝑖
𝑇𝛽 > −𝜖𝑖) 

= Pr(𝜖𝑖 < 𝑥𝑖
𝑇𝛽) 

=  Φ(𝑥𝑖
𝑇𝛽) 

 

Where Φ(⋅) is the CDF of a standard normal distribution. 

Analysis of DHS data consisted of fitting three hierarchical probit regression models, differing only in the 

correlation structures specified for the random effects. Below, we outline the MCMC procedure for drawing 

posterior samples from the full conditional distributions for all model parameters for each model. We begin with the 

hierarchical probit model in which the random effects are assumed to be independent across space, and we then 

introduce spatial correlation in these random effects, beginning with the intercept, and then extending this to model a 

spatially-varying slope as well via a separable model. 

The basic setup for all these models is as follows. Let: 

𝑌 = 𝑋𝛽 + 𝑍𝜃 + 𝜖 

Where 𝑌 is an 𝑛 × 1 vector latent normal responses, 𝑋 is an n× 𝑝 row vector of covariates (including an intercept) 

for individual, 𝛽 is  a 𝑝 × 1 column vector regression coefficients linking the covariates to the response, 𝑍 is an 𝑛 ×

𝑞 random effects design matrix, where 𝑞 is the number of DHS clusters in the dataset, 331 in this analysis. 𝜃 is a 𝑞 ×

1 random intercept that varies across DHS clusters. Finally, 𝜖 is a white noise error assumed to follow a standard 

normal distribution. 

The hierarchical model can be written as follows: 

𝑌|𝛽, 𝜃, 𝜎2 ∼ 𝑁(𝑋𝛽 + 𝑍𝜃, 𝐼𝑛) 

𝛽|𝜎𝛽
2 ∼ 𝑁(0, 𝜎𝛽

2𝐼𝑝) 

𝜃|𝜎2 ∼ 𝑁(0, 𝜎2𝐼𝑞) 

𝜎2 ∼ 𝐼𝐺(𝑎, 𝑏) 

 

MCMC procedure for multilevel probit with independently varying intercept: 

for 𝑗 in 1:n.posterior.samples{ 

Step 1: Draw from full conditional distribution of latent normal random variable 𝑌, as follows: 
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Let 𝑦𝑖
∗ denote the binary indicator observed, taking the value 1 if the respondent has malaria, and 0 otherwise. 

Updating the latent variable 𝑦𝑖  proceeds from sampling from a truncated normal distribution: 

𝑓(𝑦𝑖|𝑟𝑒𝑠𝑡) ∼ {
𝑁(𝑥𝑖

𝑇𝛽 + 𝑧𝑖
𝑇𝜃, 1, 𝑢𝑝𝑝𝑒𝑟 = 0),  𝑖𝑓 𝑦𝑖

∗ = 0

𝑁(𝑥𝑖
𝑇𝛽 + 𝑧𝑖

𝑇𝜃, 1, 𝑙𝑜𝑤𝑒𝑟 = 0), 𝑖𝑓 𝑦𝑖
∗ = 1

 

Where 𝑢𝑝𝑝𝑒𝑟 = 0 indicates sampling from a truncated standard normal distribution truncated above by 0, while 

𝑙𝑜𝑤𝑒𝑟 = 0 indicates sampling from a standard normal truncated below by 0. 

Step 2: Draw from full conditional distribution of 𝛽: 

Define 𝛾 = 𝑌 − 𝑍𝜃 

𝛽|𝑟𝑒𝑠𝑡 ∼ 𝑁 (((𝑋𝑇𝑋 +
𝐼𝑝

𝜎𝛽
2)−1) 𝑋𝑇𝛾, (𝑋𝑇𝑋 +

𝐼𝑝

𝜎𝛽
2)

−1

) 

 

Step 3: Draw from full conditional distribution of 𝜃: 

Define 𝜇 = 𝑌 − 𝑋𝛽 

𝜃|𝑟𝑒𝑠𝑡 ∼ 𝑁 ((𝑍𝑇𝑍 +
𝐼𝑞

𝜎2
)

−1

𝑍𝑇𝜇, (𝑍𝑇𝑍 +
𝐼𝑞

𝜎2
)

−1

)  

 

Step 4: Draw from full conditional distribution of 𝜎2: 

𝜎2|𝑟𝑒𝑠𝑡 ∼ 𝐼𝐺(𝑎∗, 𝑏∗) 

Where 𝑎∗ =  𝑎 +
𝑞

2
 and 𝑏∗ =

𝜃𝑇𝜃

2
+ 𝑏.   

} 

MCMC procedure for hierarchical spatial probit with spatially varying intercept: 

The spatial model has the same general form as the probit specification above, but with additional parameters 

introduced into incorporate spatial structure. The hierarchical model thus has the following form: 

𝑌|𝛽, 𝜃, 𝜎2 ∼ 𝑁(𝑋𝛽 + 𝑍𝜃, 𝐼𝑛) 

𝛽|𝜎𝛽
2 ∼ 𝑁(0, 𝜎𝛽

2𝐼𝑝) 

𝜃|𝜎2, 𝜙 ∼ 𝑁(0, 𝜎2Σ(𝜙)) 

𝜎2 ∼ 𝐼𝐺(𝑎, 𝑏) 

𝜙 ∼ 𝑈(𝜙𝑎, 𝜙𝑏) 

Where everything is as before, except the variance for the random effects 𝜃, where we introduce spatial structure 

through Σ(𝜙), which is a 𝑞 × 𝑞 matrix of pairwise distances between DHS clusters whose correlation decays 

according to an exponential correlation function with parameter 𝜙. The prior for 𝜙 is chosen such that unmeasured 

confounding is spatially correlated from between 100 meters and 225 kilometers, roughly 10% of the breadth of 

DRC. Samples from the posterior distributions for all model parameters can be obtained by using the following 

MCMC steps: 
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for 1 in j:n.posterior.samples{ 

Step 1: Draw from full conditional distribution of latent normal random variable 𝑌. Same as before. 

Step 2: Draw from full conditional distribution of latent normal random variable 𝛽. Same as before. 

Step 3: Sample from full conditional distribution of 𝜃 

Define 𝜇 = 𝑌 − 𝑋𝛽 

𝜃|𝑟𝑒𝑠𝑡 ∼ 𝑁((𝑍𝑇𝑍 + 𝜎2Σ(𝜙)−1)−1𝑍𝑇𝜇, (𝑍𝑇𝑍 + 𝜎2Σ(𝜙)−1)−1 ) 

Step 4: Sample from full conditional distribution of 𝜎2 

𝜎2|𝑟𝑒𝑠𝑡 ∼ 𝐼𝐺(𝑎∗, 𝑏∗) 

Where 𝑎∗ =  𝑎 +
𝑞

2
 and 𝑏∗ =

𝜃𝑇Σ(𝜙)−1𝜃

2
+ 𝑏.   

Step 5: Sample from full conditional distribution of 𝜙: 

First transform 𝜙 to have support on the real line using: 

𝜙∗ = log((𝜙 −  𝜙𝑎) /(𝜙𝑏 − 𝜙)) 

Then draw a proposal 𝜙𝑝
∗ from: 

𝑁(𝜙∗, 𝑣(𝜙∗)), 

where 𝑣(𝜙∗) is a tuning variance. Then, back transform to obtain proposal draw, 𝜙𝑝, using: 

𝜙𝑝 =  (𝜙𝑏 exp(𝜙𝑝
∗) + 𝜙𝑎)/(1 + exp(𝜙𝑝

∗)) 

Calculate log acceptance ratio: 

𝐿𝐴𝑅 =
1

2
(log(det(𝛴(𝜙)) − log(det(𝛴(𝜙))) + 

1

2𝜎2
𝜃𝑇 (Σ(𝜙)−1 − Σ(𝜙𝑝)

−1
) 𝜃 + 

𝜙𝑝
∗ − 𝜙∗ + 

2log ((1 + exp (𝜙∗)/(1 + exp (𝜙𝑝
∗)) 

Update 𝜙 according to the following: 

if (log(U(0,1) < LAR) 

𝜙 =  𝜙𝑝, 

else 𝜙 = 𝜙 

} 

 

MCMC procedure for multilevel spatial probit with spatially varying intercept and slope: 

As with the model for the spatial intercept, the model for the spatial intercept and slope process differs only in how 

the random effects are specified. The hierarchical model can be written as follows: 
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𝑌|𝛽, 𝜃, 𝜎2 ∼ 𝑁(𝑋𝛽 + 𝑍𝜃, 𝐼𝑛) 

𝛽|𝜎𝛽
2 ∼ 𝑁(0, 𝜎𝛽

2𝐼𝑝) 

𝜃|𝐻, 𝜙 ∼ 𝑁(0, Σ(𝜙) ⊗ 𝐻) 

𝐻 ∼ 𝐼𝑊(𝑑 + 1, 𝐼𝑑) 

Where instead of a single spatial variance parameter, we represent the spatial variance-covariance matrix for the 

intercept and slope processes using the 2 × 2 matrix 𝐻 (i.e. d=2 in the above specification). Note here too that the 

random effects design matrix 𝑍 is now 𝑛 × 2𝑞, with the additional 𝑞 columns containing the agricultural exposure 

around each DHS cluster. We specify an Inverse Wishart distribution with 3 degrees of freedom and a 2 × 2 identity 

scale matrix as the prior. Samples from the posterior distributions for all model parameters can be obtained by using 

the following MCMC steps: 

for j in 1:n.posterior.samples{ 

Step 1: Draw from full conditional distribution of latent normal random variable 𝑌. Same as before. 

Step 2: Draw from full conditional distribution of latent normal random variable 𝛽. Same as before. 

Step 3: Draw from full conditional distribution of 𝜃: 

𝑓(𝜃|𝑟𝑒𝑠𝑡) ∼ 𝑁((𝑍𝑇𝑍 + Σ(𝜙)−1 ⊗ 𝐻−1)−1𝑍𝑇𝜇, (𝑍𝑇𝑍 + Σ(𝜙)−1 ⊗ 𝐻−1)−1) 

Step 4: Draw from full conditional distribution of 𝜙: 

First transform 𝜙 to have support on the real line using: 

𝜙∗ = log((𝜙 −  𝜙𝑎) /(𝜙𝑏 − 𝜙)) 

Then draw a proposal 𝜙𝑝
∗ from: 

𝑁(𝜙∗, 𝑣(𝜙∗)), 

where 𝑣(𝜙∗) is a tuning variance. Then, back transform to obtain proposal draw, 𝜙𝑝, using: 

𝜙𝑝 =  (𝜙𝑏 exp(𝜙𝑝
∗) + 𝜙𝑎)/(1 + exp(𝜙𝑝

∗)) 

Calculate log acceptance ratio: 

𝐿𝐴𝑅 =
1

2
(log(det(𝛴(𝜙) ⊗ 𝐻) − log(det(𝛴(𝜙) ⊗ 𝐻)) + 

1

2𝜎2
𝜃𝑇 (Σ(𝜙)−1 ⊗ 𝐻−1 − Σ(𝜙𝑝)

−1
⊗ 𝐻−1) 𝜃 + 

𝜙𝑝
∗ − 𝜙∗ + 

2log ((1 + exp (𝜙∗)/(1 + exp (𝜙𝑝
∗)) 

Update 𝜙 according to the following: 

if (log(U(0,1) < LAR) 

𝜙 =  𝜙𝑝, 

else 𝜙 = 𝜙 

Step 5: Draw from full conditional distribution of 𝐻: 
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𝐻|𝑟𝑒𝑠𝑡 ∼ 𝐼𝑊(𝑞 + 3, 𝜃𝑇Σ(𝜙)−1𝜃 + 𝐼2) 

} 

 

All models were run for 120,000 iterations, with the first 20,000 discarded as burn-in and the Markov 

chain thinned such that inference about model parameters is based on 10,000 posterior samples. Model 

convergence was assessed by inspecting traceplots of model parameters, and final inferences are based on 

the best fitting model. 

Model fitting results 

Fit statistic Random Intercept Spatial Random Intercept Spatial Random Intercept 

and slope 

Brier score 0.160 0.161 0.159 

ROC curve 0.839 0.836 0.838 

DIC 4687 4695 4715 

Supplementary Table 1. Fit statistics for hierarchical probit regression models on agriculture and malaria risk 

 

Spatial models were initially compared by randomly withholding a third of the spatial locations and predicting those 

data out-of-sample. Performance was identical across both models, as can be seen above, and all models were re-fit 

to the full data, with final inferences presented in the manuscript being based off of the model incorporating a 

random intercept, as it had the lowest DIC. 

While the non-spatial model exhibited the best fit to the data, we show results for the spatial processes from both 

models here, as these can be suggestive of potential areas of future concern. Supplementary Figure 1 below shows 

the spatial intercept surface, together with corresponding uncertainty. 

 
Supplementary Figure 1: Maps of the mean spatial random intercept (left) and its corresponding 

uncertainty (right), represented as standard deviation from the mean. 
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Considerable variability in the spatial random intercept process persists after accounting for other risk factors, with 

areas of the DRC exhibiting both strong increased and decreased risk of infection, particularly in northern regions. 

Notably, however, these estimates are accompanied by considerable imprecision, preventing definitive conclusions 

about areas of increased or decreased residual risk. 

Supplementary Figure 2 below shows the spatial intercept and slope surfaces for the model incorporating both a 

spatially varying intercept and a spatially varying slope for the effect of agriculture on malaria risk. 

 
Supplementary Figure 2: Maps of the mean spatial random intercept (top) and slope processes (bottom), 

together with their corresponding uncertainty (top and bottom right, respectively), represented as 

standard deviation from the mean. 

 

Incorporating the spatial random slope leads to slight attenuation in the intercept process, although the spatial pattern 

broadly remains. Further, there is slight evidence of possible attenuation of the effect of agriculture in two places in 
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DRC, one in the central-northern region, which is largely forest, and the other in central DRC in what is largely 

Savannah. This latter area also shows pockets of increased risk. In both cases, however, inferences on the intercept 

and slope processes are accompanied by considerable imprecision 


