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Supplementary figure 1: Methods overview. Schematic overview of the methods representing input 

data, analyses, intermediate outputs and final outputs. Yellow fever = YF. 

 
 

Assembly of the geo-referenced YFV human infection occurrence dataset 

We assembled a database of locations where at least one symptomatic human infection of YFV has 

been reported in any given year. This information was extracted from a variety of sources including 

online sources, peer-reviewed literature and WHO reports. The data from online sources were collated 

by the automated HealthMap system (http://www.healthmap.org), as described elsewhere.1, 2 

HealthMap alerts for YF were obtained for the years from 2006 to 2015, and then checked manually 

for validity. To collate the data from published literature, ISI Web of Science and PubMed were 

searched using the term “yellow fever” for all articles up until April 1st 2016. This returned 5,387 

records. The article abstracts were reviewed and for those containing possible geographical information 

on YFV infection, the full text was obtained (725 articles). 

 

Location information regarding laboratory confirmed YFV infections in humans was extracted from 

each peer-reviewed article or report (n=602) according to previously established protocols.3, 4 

Serological evidence of infection in healthy individuals was not included in the database due to 

uncertainty regarding time and site of infection and the patient’s YF vaccination history. If an article 

reported multiple cases in the same location (same 5×5 km grid square) within the same calendar year, 

this was recorded as a single YF occurrence record. Spatial coordinates were assigned to each reported 

site of infection using a combination of information from the article or report and online gazetteers 

such as Google Maps, OpenStreetMap and Geonames. For locations smaller than 5×5 km in area 

(termed ‘points’), only the latitude and longitude in decimal degrees were recorded. The remaining 

sites, referred to as ‘polygons’, were assigned an administrative area code (eg, for a province or 

district) which were linked to shapefiles from the Food and Agricultural Organization 

(www.fao.org/geonetwork/), for first and second order administrative units, or Global Administrative 

Areas (http://www.gadm.org/), for third and fourth order administrative units. 

 

http://www.healthmap.org/
http://www.fao.org/geonetwork/
http://www.gadm.org/
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Of the 1154 records in the final dataset: 402 were diagnosed via PCR-based or other genetic detection 

techniques; 444 were diagnosed via serological evidence; and the remaining 308 were reported as 

confirmed cases without specifying the diagnostic test used. The effectiveness of serological diagnostic 

techniques is limited, so in order to check whether the predicted distribution of YF risk was sensitive to 

the inclusion/exclusion of occurrence data diagnosed via PCR-based or other genetic detection 

techniques, we also fitted a model without these data. We found that the predicted distribution was not 

sensitive to the inclusion/exclusion of the PCR-based /genetic detection occurrence data 

(Supplementary figure 2).    

 

Supplementary figure 2: Model sensitivity to inclusion/exclusion of PCR diagnosed occurrence 

data. A. Model fitted with the full occurrence dataset (copied from manuscript figure 2A). B. Fitted 

model excluding occurrence data diagnosed by PCR-based or other genetic detection techniques.  
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Summarising YF vaccination coverage and population density data  
Accounting for the effects of YF vaccination in our temporally static model of YF infection risk 

required estimates of average vaccination coverage across the study time period. To calculate this 

temporal average, we used estimates for every five years from 1970 to 2016 of the proportion of the 

population across all age cohorts who had ever received a YF vaccine for each district within every at-

risk country. Details on how these vaccination coverage estimates were calculated can be found 

elsewhere.5 Since rates of YF reporting varied over the study time period, we calculated the weighted 

average, with weights representing the proportion of YF occurrences reported in each five year time 

period.  

 

Shearer and colleagues5 generated three alternative vaccination coverage estimates, each corresponding 

to one of three targeting scenarios for historical campaigns. 1) Untargeted, unbiased: assuming 

vaccination history was not taken into account and all individuals had an equal chance of receiving a 

vaccine regardless of their previous vaccination status. 2) Targeted: assuming that vaccination history 

was taken into account and only non-vaccinated individuals were targeted by immunisation campaigns. 

3) Untargeted, biased: assuming that vaccination history was not taken into account and that 

previously vaccinated individuals were more likely to be targeted inadvertently ie, due to demographic 

biases in vaccination uptake. In the untargeted, biased scenario, for each vaccination campaign it was 

assumed that all previously vaccinated individuals received vaccines before any unvaccinated 

individuals. This scenario produced maximally conservative estimates of vaccination coverage, while 

estimates from the targeted scenario were maximally optimistic. 

 

For model fitting, we used average vaccination coverage estimates based on the untargeted, unbiased 

vaccination-targeting scenario. Maps of YF vaccination coverage, averaged across the 47-year study 

time period (1970-2016), and for 2016, are provided in Supplementary figure 3. We also calculated 

average human population density over the study time period using a combination of human population 

datasets. Human population density surfaces at 5×5 km resolution from 2000 to 2015 were generated 

using a combination of WorldPop6 and Gridded Population of the World7 data. These two datasets 

were mosaicked together, with WorldPop data used in preference where they overlapped, as it is a 

more spatially dis-aggregated dataset. United Nations World Population Prospects8 data was then used 

to generate projections of human population density for every five years from 1970 to 1995, and for 

2016.  
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Supplementary figure 3: Average and contemporary yellow fever vaccination coverage. A. 
Temporal mean vaccination coverage from 1970 to 2016, calculated using time series estimates by 

Shearer and colleagues.5 B. Estimated vaccination coverage for 2016. Both maps are based on the 

untargeted, unbiased vaccination-targeting scenario. 
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Model explanatory covariates 
The environmental covariates included measures of the mean values for each pixel for tasseled cap 

wetness (TCW) and enhanced vegetation index (EVI), both related to surface moisture. These were 

derived from NASA’s moderate resolution imaging spectrometer (MODIS) satellite imagery9, 10. They 

were computed from the original 1×1 km dataset and gap-filled using the Weiss algorithm to model 

missing data caused by cloud cover.11  

 

We also included a data surface of temperature suitability for persistent established Aedes aegypti 

populations.12 It has been shown that an index of temperature suitability that incorporates the 

relationships between adult mosquito longevity and temperature can be a better predictor of mosquito-

borne disease risk than temperature alone.13  

 

Land cover covariates were derived from the International Geosphere-Biosphere land cover 

classification available within the MODIS MCD12Q1 dataset at a 500×500 m spatial resolution.14 The 

500×500 m categorical datasets were summarized to produce a value for proportional land cover of 

either ‘urban and built up’, ‘evergreen broadleaf forests’, or ‘cropland and natural vegetation mosaics’ 

within the larger 5×5 km grid cells. Annual data surfaces were calculated using data for each year from 

2001 to 2012. Additional information on covariates derived from satellite imagery and their subsequent 

processing, is provided elsewhere.13 The elevation covariate was derived from the Shuttle Radar 

Topography Mission (SRTM) dataset,15 with the original 90 m spatial resolution data summarized to 

produce a 5×5 km surface.13   

 

Finally we included a fine-scale predictive species distribution map for the suspected non-human 

primate reservoirs of YFV. Details on the construction of this covariate are provided below. Since the 

original data for our covariates came from a variety of sources, all covariate grids were standardized to 

ensure identical spatial resolution, extent and boundaries.  
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Supplementary figure 4: Covariates used to predict the distribution of yellow fever infection in 

humans. A. Relative habitat suitability for vector Aedes aegypti. B. Index of temperature suitability for 

Ae. aegypti. Grey = unsuitable. C. Enhanced vegetation index. D. Tasselled cap wetness - a measure of 

surface moisture. 
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Supplementary figure 5: Land cover and elevation covariates used to predict the distribution of 

yellow fever infection in humans. A. Elevation. B-D. Proportional cover for 2012 of urban and built-up 

landscapes, evergreen broadleaf forest, and croplands and natural vegetation mosaics, respectively. 

 

 
 



 9 

Mapping the distribution of suspected non-human primate reservoirs 
We predicted the distribution of suspected reservoir species of non-human primates using a Bernoulli 

niche modeling approach previously applied to the mapping of disease reservoir and vector species.16 

The Poisson point process niche modeling approach described below allows for the incorporation of 

other factors (such as vaccination coverage), and clearer interpretation of the model output in certain 

circumstances, but at the cost of greater computational intensity, especially in model validation. Since 

there were no such factors to account for here, and the output was only being used as a covariate (thus 

the absolute value was not important), the Bernoulli approach was preferable.   

 

In Africa, and Central and South America, various species of non-human primate have been implicated 

as natural hosts and reservoirs of YFV.17 The role of a particular host species in the epidemiology of 

YF is dependent on their ability to circulate YFV at sufficiently high titers and to provide subsequent 

transmission of virus to vectors above minimum threshold levels.18 When infected with YFV, non-

human primates on the African continent develop viremias sufficient to infect mosquitoes, but they are 

relatively resistant to the pathogenic effects of the virus. Conversely, non-human primates in Central 

and South America are highly susceptible to YFV infection and develop severe and often fatal disease. 

Epizootics involving the deaths of these non-human primate species can serve as a warning to nearby 

human populations of YF risk. The virus moves slowly from monkey group to neighboring monkey 

group in large epizootic waves that leave behind a few surviving, immune individuals.17, 19      

 

To determine which non-human primate species should be included in our analysis, we searched 

PubMed on February 11th 2017, using the search terms (yellow[All Fields] AND (“fever” [MeSH 

Terms] OR “fever”[All Fields])) AND (reservoir[All Fields] OR (“primates”[MeSH Terms] OR 

“primates”[All Fields] OR “primate”[All Fields]) OR host[All Fields]) without any language or date 

restrictions. This search returned 3,830 records. Article abstracts were reviewed, and the full text was 

obtained for those articles containing possible evidence implicating a non-human primate species as a 

reservoir host for YFV (99 articles). Information was extracted from 61 of 99 full text articles. 

Due to the short duration of viremia (2-5 days) and lack of clinical disease, most studies of African 

sylvatic YF transmission, involved either serological prevalence studies of wild monkeys,20-27 or 

laboratory experiments testing for sufficient levels of viremia following inoculation with the virus.28-30 

Virus isolation (or positive antibody tests) from sera or tissue samples of diseased or deceased wild 

monkeys during active searches for epizootics were frequently reported in studies conducted in Central 

and South America.31-40 In some cases, transmission from monkey-to-monkey via a mosquito vector 

was demonstrated, under laboratory conditions.41, 42 

 

We included all non-human primate species where naturally acquired infection with YFV had been 

confirmed by serological or PCR-based techniques, and/or they had demonstrated sufficient levels of 

viremia post-inoculation with YFV under laboratory conditions. The following non-human primate 

species of Africa and South and Central America met this criteria: Callicebus ornatus,42 Cercocebus 

albigena,25, 26, 43 Chlorocebus aethiops,44 Colobus guereza/abyssinicus,26, 30, 43, 45, 46 C. polykomos,20, 25 

Cercopithecus mitis,25, 26, 47 C. mona,25, 27, 43 C. nictitans,23, 27 C. neglectus,27 C. ihoesti,48 C. ascanius,22, 

24, 26, 27, 43 C. diana,20 Erythrocebus patas,21, 27, 49, 50 Galago senegalensis,45, 51, 52 G. crassicaudatus 

(Otolemur crassicaudatus),47, 52 Papio hamadryas/cynocephalus,27, 46 P. papio,21 P. doguera,25, 26 and 

Piliocolobus badius,20, 26, 53 of Africa, and Alouatta guariba,32, 33, 54 A. palliata,55-58 A. caraya,32, 33, 36, 54, 

59, 60 A. seniculus,39, 40, 61, 62 A. belzebul,34 Ateles paniscus,63 A. fusciceps,64 A. geoffroyi,56, 64 Aotus 

trivirgatus,44 A. zonalis,64 Cebus apella,65-67 C. capucinus,56, 66 Marikina geoffroyi,57, 64 Pithecia 

pithecia,61, 62 Saguinus midas,61, 62 S. oedipus,44 and Saimiri scieureus42, 68 of Central and South 

America. Occurrence data were not available for Marikina geoffroyi, Cercopithecus ihoesti, or Papio 

doguera, so these species were subsequently not included in our analysis.  

 

Since one of our aims was to predict the receptivity for YF transmission in regions outside its current 

risk zones, we also mapped the distribution of non-human primate species of Asia that have 

demonstrated susceptibility to YFV infection under laboratory conditions. These included Macaca 

fascicularis, M. sinica and M. mulatta.68-70 In particular, Macaca mulatta (rhesus macaques) infected 

with YFV exhibit severe disease that generally models the course of the disease in humans and serve as 

a highly suitable animal model for YFV research.71  

 

Separate species distribution models were carried out to predict the distribution of potential reservoir 
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species on each continent. Occurrence data for each species were retrieved from the Global 

Biodiversity Information Facility (GBIF) (www.gbif.org) totaling 931, 1193, and 820 records for 

African, Latin American, and Asian species, respectively. Records falling outside the International 

Union for Conservation of Nature (IUCN) (www.iucn.org) range maps for each species were excluded 

from the analysis. Standard practice in the species distribution mapping field is to supplement 

occurrence records with background or pseudo-absence points to represent areas where the species has 

not been reported, and then model the presence/background label for each point as a draw from a 

Bernoulli likelihood. It has been demonstrated that predictive accuracy of presence/background species 

distribution models can be improved by selecting background data with similar spatial bias to the 

occurrence records. The aim is to achieve the same environmental bias in both datasets, so the resulting 

model should identify suitable environments for the species within the sampled space, rather than just 

areas that experience more sampling, such as easily accessible locations. The spatial distribution of 

survey effort can be estimated by collecting occurrence records for a broad biological group, where the 

sampling methods are similar to those used for the target species.72 For this study, we used the location 

of all other mammal surveys held by GBIF as background data. This resulted in 5661, 14,274, and 743, 

background points for the African, Latin American and Asian reservoir models, respectively.     

 

Ten explanatory covariates were included in each model, including elevation, enhanced vegetation 

index (mean), land surface temperature (daytime mean), and tasseled cap wetness (mean) as well as six 

proportional land cover classes: cropland and natural vegetation mosaic, woody savannas, savannas, 

urban and built-up, evergreen broadleaf forest and deciduous broadleaf forest. Further details on the 

source and construction of each covariate data surface are provided in the ‘Model explanatory 

covariates’ section. Since the collection date was not available for the vast majority of occurrence 

records, land cover data surfaces for 2012 were linked to all occurrence records.   

 

We fitted an ensemble of 100 Bernoulli boosted regression tree models (sub-models) to each continent 

dataset using the gbm3_2.2 R package.73 Each sub-model was trained to a separate bootstrap dataset 

randomly sampled with replacement from the complete occurrence/background dataset for that 

continent. The model algorithm hyper-parameters were set to the following values: cross-validation 

folds=10, tree complexity=3, learning rate=0.0005, and bag fraction=0.5. We followed the procedure 

used in Moyes and colleagues16 for mapping the distribution of macaque reservoir species of 

Plasmodium knowlesi malaria, and further details on model fitting can be found there.  

 

To generate the final prediction maps, a mean predicted value of environmental suitability was 

calculated across the model ensemble. Prior to inclusion in the YF disease model, each prediction was 

clipped to the joint species IUCN range maps for that continent. Finally, the predictions for each 

continent were joined to produce a single reservoir covariate data surface (Supplementary figure 6). 

Standard deviation values were also calculated for each pixel across the model ensembles. These 

outputs were then clipped and joined to produce a map of reservoir model uncertainty (Supplementary 

figure 8).     

 

To evaluate the predictive performance of each continent model, we calculated the area under the 

receiver operator curve (AUC) statistic, ie, the area under a plot of the true positive rate versus false 

positive rate, reflecting the ability to discriminate between occurrence and background records.74 The 

overall statistic for each model was calculated as the mean of the AUCs for each sub-model in the 

model ensemble. The models demonstrated moderate to high predictive performance, with overall 

AUC statistics of 0.754 (± 0.008), 0.806 (± 0.006), and 0.771 (± 0.012) for the African, Latin American 

and Asian species distribution models, respectively. The ROC curves are also plotted in Supplementary 

figure 7.  

 

http://www.gbif.org/
http://www.iucn.org/


 11 

Supplementary figure 6: Non-human primate reservoir distribution map. Composite habitat 

suitability maps for suspected and potential non-human primate reservoir species for Latin America, 

Africa and Asia (A), the locations of occurrence data (B) and background data (C) used to generate 

each continent map.  
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Supplementary figure 7: ROC curves. Plots of the ROC curves for suspected and potential non-

human primate reservoir distribution models generated for each continent.    

 
 

Supplementary figure 8: Map of reservoir distribution model uncertainty. Composite map of 

estimate pixel-wise uncertainty in predictions of habitat suitability for suspected and potential non-

human primate reservoirs of YF. Uncertainty estimates are based on standard deviation values 

calculated for each pixel across the model ensemble for each continent.  
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Modelling YF occurrences as an inhomogeneous Poisson point process 

Species distribution modelling (SDM) has been widely applied in epidemiology to produce predictive 

maps of reservoir, vector and disease distributions from reports of disease occurrence.75 Previous 

applications of SDM for disease mapping have typically used background or pseudo-absence points to 

represent areas where the disease has not been reported, and then used a binomial likelihood, even 

though the data does not meet the assumptions of this model.76 Recently point process models have 

been proposed in the ecological SDM literature as a more appropriate tool for SDM of occurrence-only 

data. These models directly consider the data as a set of point locations where a species has been 

recorded as occurring.76-78 The point process framework therefore resolves a number of important 

issues for occurrence-only SDM including interpretation, selection of pseudo-absence points, 

accounting for biases and checking of model assumptions.76, 78  

Inhomogeneous Poisson point process models 

The inhomogeneous Poisson point process (hereafter PPM) is among the simplest and most well 

studied point processes that can be used to analyse occurrence-only data. Given a set of locations at 

which a species (or disease) has been observed in geographic region A, we can characterise the point 

process from which the locations are drawn via an intensity function over space λ(s) – the expected 

number of observations per unit area. Conditional on this intensity function, the locations of the points 

are assumed to be independent of each other, and the total number of points in A is thus a Poisson 

random variable with mean:  

 

(1)      ΛΑ = ∫ 𝜆(𝑠)𝑑𝑠 
Α

 

 

We may also assume that the intensity surface of the point process λ(s) varies spatially and via some 

relationship with spatially varying environmental conditions x(s). The expected number of points per 

unit area can then be modelled as a function of covariates measured throughout the study region A.78 

The most common approach to fitting a PPM is to maximise its likelihood function. Evaluating this 

likelihood requires calculation of the integral of the intensity function over A – the expected number of 

occurrence points. In general the likelihood cannot be calculated directly, but can be approximated 

efficiently by evaluating a weighted Poisson likelihood at a set of quadrature points in space. These 

quadrature points are superficially similar to background points in a presence-background SDM 

analysis, but have clear mathematical interpretation under the PPM framework. Hence prior to model 

fitting, we need to decide how quadrature points will be chosen, and how to calculate the quadrature 

weights at each quadrature and presence point. Frameworks for selecting quadrature points, along with 

examples, are provided in a number of recent publications.76-78 

A useful implication of the PPM approach is that if it is assumed that the observed locations represent 

all disease events in the area, then the intensity λ(s) represents the expected abundance of events. Most 

of the time this is not the case as not all occurrences of disease are reported, and the fraction reported is 

rarely known. However in these cases the intensity can instead be interpreted as being directly 

proportional to abundance, provided any spatial variation in sampling effort has been taken into 

account (eg, via offsets or covariates included in the model). This explicit link with abundance enables 

integration of distribution modelling with fundamental epidemiological models that consider immunity 

and metrics of disease dynamics. 

Model description 

We fitted a PPM to a dataset of YF disease reports using a boosted regression tree model to 

characterise the intensity function. By explicitly accounting for human population density, vaccination 

rate, and variable reporting effort this model estimated the number of apparent YFV infections per 

person to within a constant of proportionality at each 5×5 km grid square in the study region.  

 

We assumed that the number of YF disease reports in the any given area A within the study region 

follows a Poisson distribution: 

(2)        𝑁𝐴
+~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (ΛΑ ) 
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We further assumed that the set of locations (points) arose from an intensity function 𝜆(𝑠) comprising 

the product of three independent processes: the number of apparent infections per person, the number 

of individuals susceptible to infection and the proportion of infections reported: 

(3)       ΛΑ  =  ∫ 𝜆(𝑠) 𝑑𝑠
Α

= ∫ 𝐼(𝑠)𝑃(𝑠)𝑅(𝑠)𝑑𝑠
Α

 

Where I(s) gives the expected number of reported apparent infections over the study period at location 

s, P(s) gives the susceptible population density at point location s, and R(s) gives the number of reports 

per infection (reporting rate) at location s. Our aim was to infer the spatial process I(s) governing 

incidence, so we sought to specify P(s) and R(s) a priori. 

We directly estimate the population density of susceptible individuals 𝑃(𝑠) as the product of the 

overall population density and the fraction of the total population who had not received a vaccine 

against YFV averaged over the study period. The model does not take into account the proportion of 

the population with immunity from natural infections. We also assumed that the YF vaccine provides 

lifelong 100% protection, which is supported by recent WHO recommendations.79   

Whilst the absolute reporting rate process R(s) could not be estimated reliably, spatial variation in 

reporting rates can be inferred from the distribution of reports generally.72, 80 We therefore 

factorised 𝑅(𝑠) = 𝑘 𝑟(𝑠) where r(s) is a probability distribution giving the relative reporting rate (and 

integrating to one over the study area), and 𝑘 is a constant of proportionality which we cannot estimate 

a priori. Rather than inferring 𝑟(𝑠) directly, we followed Philips and colleagues72 in collating a set 𝑧 of 

𝑛 coordinates giving the locations of reports of human infectious diseases and treated these as random 

samples from 𝑟(𝑠). Specifically 𝑧 were drawn from a database of locations within the study area where 

at least one case of human infectious disease has been reported. This approach assumes that YF and all 

the diseases in this database are subject to a common spatial variation in reporting rate. Further details 

on the assembly of the database of disease reports are provided in the ‘Selection of model integration 

points’ section below.  

This sample from 𝑟(𝑠) enables us to represent Eq. (3) via a Monte-Carlo approximation during model 

fitting. Writing the Monte Carlo approximation to a function over a probability distribution as: 

(4)      ∫ 𝑓(𝑠)𝜋(𝑠) 𝑑𝑠
Α

≈  
1

𝑛
∑ 𝑓(𝑧𝑖)𝑛

𝑖 ;    𝑧𝑖 ∼ 𝜋(𝑠) 

and substituting  𝑓(𝑠) = 𝑘 𝐼(𝑠)𝑃(𝑠) and 𝜋(𝑠) =  𝑟(𝑠), we have: 

(5)       ΛΑ  =  ∫ 𝑘 𝐼(𝑠)𝑃(𝑠) 𝑟(𝑠)𝑑𝑠
Α

≈
1

𝑛
∑ 𝑘 𝐼(𝑧𝑖)𝑃(𝑧𝑖)

𝑛

𝑖

 

We fitted a PPM to the point pattern of YF reports, with a BRT model for the intensity function 𝜆(𝑠). 

We approximated the PPM likelihood via the Monte Carlo sum above, using the Poisson likelihood and 

the set of locations 𝑧 as integration points, following the approach previously proposed for modelling 

PPMs in GLM software using numerical quadrature.78, 81, 82 The value of the susceptible population 

density process 𝑃(𝑧𝑖) was provided for each quadrature point as an offset value, leaving the BRT to 

estimate only the function 𝑘 𝐼(𝑠). Equation (3) assumes a linear relationship between the number of 

YFV infections and the number of susceptible individuals, thus the values of  𝐼(𝑠) predicted by the 

BRT model represent the incidence of apparent infections in susceptible individuals over the study time 

period, to within an unknown constant of proportionality 𝑘. 

Model fitting 

We fitted an ensemble of Poisson point process boosted regression tree (BRT) models using the 

‘gbm3’ R package.73 The BRT approach has the ability to fit complex nonlinear responses including 

high-dimensional interactions between explanatory variables, has been shown to have high predictive 

accuracy and has been previously applied to disease distribution mapping. Boosted regression trees 

combine two algorithms, regression trees (which repeatedly split the data into two groups using a 

randomly selected predictor variable for each split) and boosting (which additively fits trees to the data, 

gradually prioritizing poorly modelled data to produce a set of trees that maximally reduce the loss 
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function), to examine and quantify the relationship between explanatory variables and the response 

data. 

 

Rather than exclusively using synoptic (averaged across time) covariate values for each of the 

occurrence locations irrespective of the occurrence date, we incorporated annual land cover data 

surfaces from 2001 to 2012 (data were not available for years outside this time period). Occurrence 

data collected between 2001 and 2012 were matched with covariate values for the relevant year; 66% 

of data points fell within this time period. Covariate values for 2001 were used for occurrence data 

prior to this date and covariate values for 2012 were used for post-2012 data. Final predictions were 

made to the most contemporary covariate values available. Land cover data were not available to match 

with occurrence data reported prior to 2001, and we were therefore unable to account for changes to the 

landscape (such as from urbanization, agriculture and deforestation) that occurred from 1970 to 2000.  

To increase the robustness of model predictions and quantify model uncertainty, we fitted an ensemble 

of 100 BRT models (sub-models), each trained to a separate bootstrap dataset. We applied a spatial 

block bootstrapping procedure where the study space was stratified into 160 regular grid squares 

(spatial blocks) and each bootstrap dataset consisted of all occurrence data and model integration points 

falling within a set of blocks randomly sampled with replacement from the complete set. Each cross-

validation fold consisted of data and integration points falling within a non-contiguous sample of 

spatial blocks, generated for the bootstrapping procedure. We used a Poisson likelihood to approximate 

the PPM likelihood (specifying the Poisson density as a loss function) and integration weights were 

applied to each model integration point, equaling the estimated number of individuals susceptible to 

YF infection at that location, and these were incorporated in the model as a logarithmic offset (passed 

via the offset argument). The algorithm hyper-parameters were set to the following values: cross-

validation folds=10, tree complexity=3, learning rate=0.005, and bag fraction=0.75. The model was 

restricted so that YF transmission had a monotonic positive relationship with both habitat suitability 

and temperature suitability for Ae. aegypti. To incorporate uncertainty in the precise location of 

infection for polygon occurrence records, each bootstrap dataset randomly selected a 5×5 km pixel 

within each polygon, biased towards human population density, since more populous areas have a 

greater probability of reporting at least one case.   

To generate the final prediction surface, a mean predicted value was calculated across the 100 sub-

models for each 5×5 km pixel across the risk zones. Standard deviation values for each pixel were also 

calculated across the model ensemble to provide an estimate model uncertainty (figure 3). 

Selection of model integration points 

Eight thousand model integration points were drawn from a database of reports of human infectious 

diseases. The aim of this dataset was to reflect the spatial bias in reporting rates of YFV infections. A 

number of approaches for estimating spatial bias in occurrence data are described in the ecological 

literature, where datasets are similarly subject to spatial bias in survey effort. One approach is to use 

occurrence records for a broad biological group (such as birds or mosquitoes) to represent overall 

survey effort. Multiple factors are likely to impact disease reporting, including the strength of 

surveillance systems, treatment seeking behaviour, availability of accurate diagnostics, accessibility to 

healthcare facilities, and disease prevalence, etc. We felt that the best way of encompassing these 

multiple issues in the integration dataset was to include reports from a broad range of human infectious 

diseases.   

 

One drawback of this approach is that certain locations will overall experience higher rates of disease 

in general than others. In other words, the distribution of the integration points will actually represent a 

combination of spatial variation in reporting rates (what we want to incorporate in the model) and 

spatial variation in the number of diseases that could be reported (what we do not want to incorporate 

in the model). However, since no global-scale, spatially-resolved maps of disease reporting rates are 

available, we believe this approach is the best practical solution to accounting for these biases. 

 

Reports of human infectious diseases were collated from four publicly available datasets: 1) for 

falciparum and vivax malaria,83 2) the leishmaniases,4 3) dengue,3 and 4) for numerous diseases (full 

list below) via the web-based system HealthMap, which automatically collates infectious disease 

reports from informal online data sources.1, 2 The HealthMap records were collected from 2006 to 

2014. This yielded 13387 geo-referenced reports from within the study region, after removing any 

reports falling within the same 5×5 km pixel. To avoid generating a set of model integration points 
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biased towards any one disease, sampling was biased towards diseases with lower counts and diseases 

with less than 20 reports were grouped before sampling.  

 

Reports of the following diseases were collated via HealthMap: aeromonas and marine vibrio infection, 

anthrax, ascariasis, aspergillosis, avian influenza virus subtype H5N1, Bolivian haemorrhagic fever, 

botulism, brucellosis, campylobacteriosis, chikungunya, chlamydia infections, cholera, clostridium 

difficile colitis, common cold, Crimean-Congo haemorrhagic fever, cryptosporidiosis, cysticercosis, 

dengue, diphtheria, dracunculiasis (Guinea worm), Eastern equine encephalitis, Ebola virus disease, 

enterovirus infection, Escherichia coli diarrhoea, filariasis – bancroftian, giardiasis, glanders, hepatitis 

A, hepatitis B, hepatitis C, hepatitis E, histoplasmosis, HIV/AIDS, hookworm, infectious 

mononucleosis or EBV infection, influenza, Lassa fever, legionellosis, leishmaniasis – cutaneous, 

leishmaniasis – visceral, leprosy, leptospirosis, listeriosis, Marburg virus disease,  measles, melioidosis, 

meningitis (viral), monkey pox, mumps, onchocerciasis, ornithosis, P. falciparum malaria, P. malariae 

malaria, P. ovale malaria, P. vivax malaria, parvovirus B19 infection, pediculosis, pertussis, plague, 

poliomyelitis, Q fever, rabies, respiratory syncytial virus infection, Rift Valley fever, Rocky Mountain 

spotted fever, rotavirus infection, rubella, salmonellosis, SARS, scabies, scarlet fever, schistosomiasis 

– haematobium, schistosomiasis – mansoni, shigellosis, St Louis encephalitis, syphilis, taeniasis, 

toxocariasis, toxoplasmosis, trachoma, trichinosis, trichuriasis, trypanosomiasis – African, 

trypanosomiasis – American, tuberculosis, typhoid and enteric fever, varicella, Venezuelan equine 

encephalitis, West Nile fever, and zika.            

 

Supplementary figure 9: Model integration points. Location of integration points for yellow fever 

disease model fitting, representing intensity of disease case reporting.  

 
 

Model validation 

The model’s predictive performance was evaluated using spatially stratified ten-fold cross-validation 

and calculating the predictive deviance of the model; the mismatch between the predicted number of 

occurrence records and the number observed. We calculated McFadden’s pseudo-R squared which is 

the ratio of the log likelihood of the full model (with covariates) and the log likelihood of the null 

model (without covariates). The ratio of the likelihoods indicates the level of improvement offered by 

the full model over the null (or intercept) model.84 This ratio was calculated for each cross-validation 

fold model of each bootstrap sub-model and averaged across folds and sub-models, resulting in a 

bootstrapped estimate of the model’s predictive capacity.   

 

Validation statistics for the model ensemble indicated that model performance was high, with 92% of 

out-of-sample deviance explained by the model. 

 

Most influential model covariates 

The main predictors for YFV infection risk were the following: proportional cover of land classified as 

urban and built-up, temperature suitability for Ae. aegypti, habitat suitability for suspected non-human 

primate reservoir species, and enhanced vegetation index. Marginal effect plots for each of these 

covariates are included as Supplementary Figure 10. 
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Supplementary figure 10: Model marginal effort plots for the most influential covariates.  The 

black line represents the mean marginal effect and grey envelopes the associated 95% quantiles. The 

mean relative contribution is displayed in the top left corner of each plot. The most influential 

predictors were defined as those whose relative influence was greater than 100/total number of 

covariates (since the sum of the relative influence values is 100). Marginal effect plots visualise the 

effect of each variable on the response after averaging the effects of all other variables. 

 

 
 

Model calibration 

We calibrated our estimate of the relative number of YF cases using the average annual number of 

cases estimated by the Global Burden of Disease Study (GBD)85 to obtain an estimate of the annual 

number of YF cases per grid cell, ie, we used a continental-scale estimate of incidence to estimate the 

average case detection rate, which is not identifiable from presence-only data alone. The GBD mean 

estimates (as well as lower and upper bounds) of national incidence were available for every five years 

from 1990 to 2015. We calculated the average annual number of YF cases predicted by GBD for each 

country over this time period. Using our map of relative annual YF cases (based on the average number 

of individuals susceptible to YFV infection over the study time period), we summed the total number 

of cases estimated by the model for each country. Three separate generalized linear models were then 

fitted to each of the three GBD estimated case numbers (mean, lower and upper), with our model 

estimated case numbers included as a logarithmic offset, and continent included as a fixed effect. Using 

the fitted model, we predicted calibration factors for each continent, 155.15 (lower bound=44.27, upper 

bound=405.99) for Africa, and 38.95 for South America (lower bound=10.32, upper bound=108.20). 

The mean calibration factors were then applied to the model output.      
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Whilst spatial variation in disease reporting rates was accounted for in model fitting through the 

selection of model integration points, case detection rates were assumed to be constant over space and 

time when calculating continental calibration factors to apply to the raw model output (figure 2A). 

However, we might expect that reporting rates have improved over time, and were therefore lower in 

the 1970s and 1980s. Since the calibration factors were calculated using GBD estimates from 1990 to 

2015, and the relative average rate of apparent YF infections was calculated using data from 1970 to 

2016, absolute incidence (figures 2B and C) may be underestimated due to inadequate correction.  

 

Supplementary figure 11: For each country, the average number of cases estimated by GBD (from 

1990 to 2015) plotted against the number of estimated cases after applying continental calibration 

factors. Upper and lower bounds are represented by black horizontal and vertical lines around the mean 

(blue dots). The line y=x is plotted in red.   
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