## Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

Giovanni Rizzi<sup>†</sup>, Jung-Rok Lee<sup>\*,§</sup>, Christina Dahl<sup> $\perp$ </sup>, Per Guldberg<sup> $\perp$ </sup>, Martin Dufva<sup>†</sup>, Shan X. Wang \*<sup>.§, #</sup>, Mikkel F. Hansen<sup>\*,†</sup>

<sup>†</sup>Department of Micro- and Nanotechnology DTU Nanotech, Building 345B, Technical University of Denmark, Kongens Lyngby, DK 2800, Denmark

<sup>‡</sup>Division of Mechanical and Biomedical Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, South Korea

<sup>§</sup>Department of Materials Science and Engineering, Stanford University, Stanford, CA 93405, USA

<sup>⊥</sup>Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark

<sup>*II*</sup> Department of Electrical Engineering, Stanford University, Stanford, CA 93405, USA

AUTHOR INFORMATION Corresponding Authors \* e-mail: <u>sxwang@stanford.edu</u> \*e-mail: <u>Mikkel.Hansen@nanotech.dtu.dk</u>

| a :         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site        | $T_{\rm m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sequence                                                                                                                                                                                                                                                       |
|             | $[^{\circ}C]^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |
| c.1391G>A   | 44.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT)AAATGATCCAGATCCAGATCCATTCTTTGTCC-3'                                                                                                                                                                                                             |
| WT          | 44.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) AATGATCCAGATTCAATTCTTTGTCCC-3'                                                                                                                                                                                                                 |
| c.1799T>A   | 46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) CTCCATCGAGATTTCTCTCTGTAGCTAGAC-3'                                                                                                                                                                                                              |
| c.1798GT>AA | 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) TCCATCGAGATTTC <u>TT</u> TGTAGCTAGACC-3'                                                                                                                                                                                                       |
| WT          | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) TCCATCGAGATTTCACTGTAGCTAGAC-3'                                                                                                                                                                                                                 |
| c.181C>A    | 45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) ACTGTACTCTTCTTTTTCCAGCTGT-3'                                                                                                                                                                                                                   |
| c.182A>T    | 45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) ACTGTACTCTTCT <u>A</u> GTCCAGCTGTA-3'                                                                                                                                                                                                          |
| WT          | 45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) CTGTACTCTTCTTGTCCAGCTGT-3'                                                                                                                                                                                                                     |
| P1 Meth     | 46.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) CCCAAAACC <u>GCG</u> AAC <u>G</u> AC-3'                                                                                                                                                                                                        |
| P1 uMeth    | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT)CCCCCAAAACCACAAACAACAACAA-3'                                                                                                                                                                                                                    |
| P2 Meth     | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) <u>GAACGCGACAAAACCGAACC-3'</u>                                                                                                                                                                                                                 |
| P2 uMeth    | 46.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) ACAAACACAACAAAAACCAAAACCC-3'                                                                                                                                                                                                                   |
| P1 Meth     | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) ATCCTCAAACAACTCGCATAAAAAAATTC-3'                                                                                                                                                                                                               |
| P1 uMeth    | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT)AATCCTCAAACAACTCACATAAAAAAATTCT-3'                                                                                                                                                                                                              |
| P2 Meth     | 45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) GAATCCTACCCCGACGATACC -3'                                                                                                                                                                                                                      |
| P2 uMeth    | 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH2-C6-5'-(9xT) AAATCCTACCCCAACAATACCCA -3'                                                                                                                                                                                                                    |
| Positive    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH2-C6-5'-(9xT) TGC GAG CTT CGT ATT ATG GCG -3' TEG Biotin                                                                                                                                                                                                     |
| Negative    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH2-C6-5'-(9xT) GTGGGGGCTAGGTG -3'                                                                                                                                                                                                                             |
|             | c.1391G>A<br>WT<br>c.1799T>A<br>c.1798GT>AA<br>WT<br>c.181C>A<br>c.182A>T<br>WT<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P1 Meth<br>P2 Meth<br>P3 Meth<br>P3 Meth<br>P3 Meth<br>P3 Meth<br>P3 Meth<br>P4 | $[^{\circ}C]^*$ c.1391G>A   44.7   WT 44.7   c.1799T>A 46.3   c.1798GT>AA 46.6   WT 46.4   c.181C>A 45.3   c.182A>T 45.5   WT 45.5   P1 Meth 46.4   P2 Meth 46.4   P2 Meth 46.5   P1 uMeth 46.5   P1 uMeth 43.8   P2 Meth 45.6   P2 uMeth 45.7   Positive 45.7 |

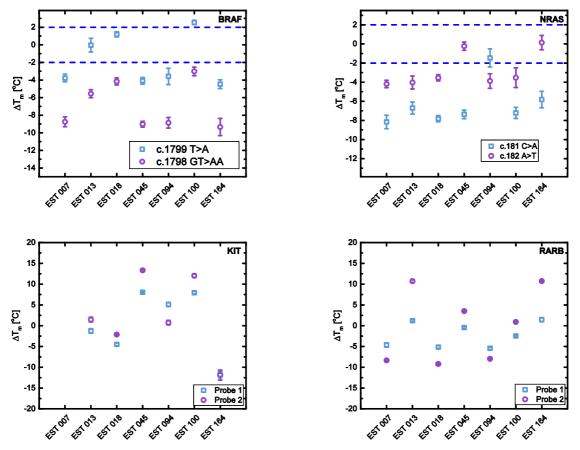
Table S1: List of ssDNA probes used for mutation and methylation profiling.

\*Theoretical melting temperatures ( $T_m$ ) were calculated with nearest neighbour (NN) model for 10 mM Na<sup>+</sup> ionic concentration. Probes were designed to have matched  $T_m$ .

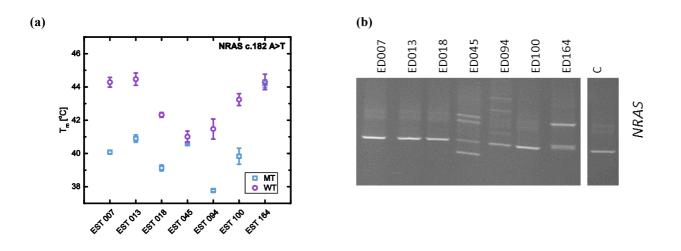
\*\*All probes are amino-labelled to bind to GMR sensor surfaces.

| GENE                              | Sequence                                       | Product length |
|-----------------------------------|------------------------------------------------|----------------|
| BRAF Exon 11                      | fw: biotin-C6-5'-TTGACTTTTTTACTGTTTTTATC-3'    | 167bp          |
| NM_004333.4                       | bw: 5'-ATGTCACCACATTACATACTTAC-3'              |                |
| BRAF Exon 15                      | fw: biotin- C6-5'- TTTTCCTTTACTTACTACACCTC -3' | 167bp          |
| NM_004333.4                       | bw: 5'- GGAAAAATAGCCTCAATTCT -3'               |                |
| NRAS Exon 2                       | fw: biotin- C6-5'- CAAGTGGTTATAGATGGTGA -3'    | 110bp          |
| NM_002524.4                       | bw: 5'- AGGAAGCCTTCGCCTGTCCT -3'               |                |
| <i>KIT</i> Promoter <sup>*</sup>  | fw: biotin- C6-5'- GGGAGGAGGGGGTTGTTGTT -3'    | 82bp           |
|                                   | bw: 5'- TTCCAACTCTCCCCCAAATACAAC -3'           |                |
| <i>RARB</i> Promoter <sup>*</sup> | fw: biotin- C6-5'- GGTTTATTTTTTGTTAAAGGGG -3'  | 179bp          |
|                                   | bw: 5'- AAAAATCCCAAATTCTCCTTC -3'              |                |

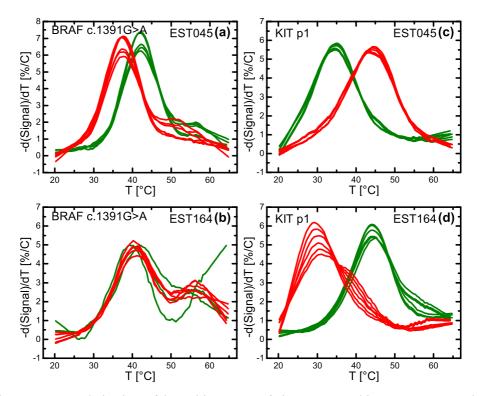
Table S2: PCR primers for amplification of EST cell line genomic DNA.


\* *KIT* and *RARB* primers were designed to amplify bisulphite converted promoter region.

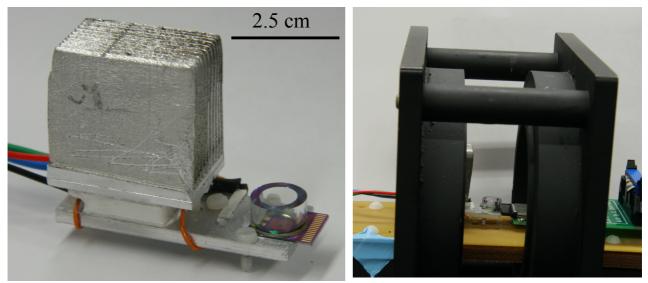
**Table S3:** Primers for pyrosequencing *KIT* and *RARB* promoter regions of bisulphite converted DNA from EST cell lines.


| Gene          | Sequence                                      |
|---------------|-----------------------------------------------|
| KIT Promoter  | fw: 5'- GTGGAAAGGTGGAGAGAGAAA -3'             |
|               | bw: biotin-5'- TTCCAACTCTCCCCCAAATACAAC -3'   |
|               | S1: 5'- GAGGAGGGGTTGTTG -3'                   |
| RARB promoter | fw: biotin- C6-5'- GGTTTATTTTTTGTTAAAGGGG -3' |
|               | bw: 5'- AAAAATCCCAAATTCTCCTTC -3'             |
|               | S1: 5'- ACATCCCAATCCTCA -3'                   |
|               | S2: 5'- ATACTTACAAAAAACCTTCC -3'              |

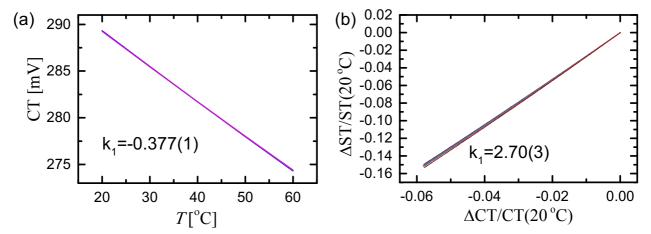
**Table S4:** Parameters from linear fitting of  $\Delta T_{\rm m}$  vs. methylation density by pyrosequencing (Figure 5). Numbers in parenthesis are standard errors on the last digits from the fitting routine.


| Location      | Slope [°C/%] | Intercept [°C] | $R^2$ |
|---------------|--------------|----------------|-------|
| <i>KIT</i> p1 | 0.22(1)      | -9(1)          | 0.97  |
| <i>KIT</i> p2 | 0.25(1)      | -8.8(7)        | 0.98  |
| RARB p1       | 0.075(5)     | -5.1(2)        | 0.97  |
| RARB p2       | 0.22(2)      | -9.3(7)        | 0.94  |




**Figure S1:**  $\Delta T_m$  measured for all investigated probes for the seven investigated cell lines. Error bars are one standard deviation (n = 4-6).




**Figure S2:** (a) Absolute melting temperatures  $(T_m)$  measured for WT and MT probes targeting *NRAS* c.182 A>T mutation.  $T_m$  (WT) and  $T_m$  (MT) for EST045 showed approximately the same value of about 41°C. For both probes, the melting temperature was significantly lower than the maximum one (about 44°C). This can be explained by the target having a mutation different from the one targeted by the MT probe. (b) Denaturing gradient gel electrophoresis of *NRAS* exon 2 PCR products. EST045 is heterozygous mutant for a different mutation than the one present in EST164.



**Figure S3:** First temperature derivatives of the melting curves of Figures 2-3. Melting curves measured for (**a**,**b**) *BRAF* c.1391G>A mutation and (**c**,**d**) *KIT* p1 methylation sites. The curve were measured for (**a**,**c**) EST045 and (**b**,**d**) EST164 cell lines respectively. The curves show reproducible single peaks in most cases. In panel (**b**) two peaks are clearly visible for both WT (green) and MT (red) probes. This is compatible with the expectation for a heterozygous mutant cell line.



**Figure S4: (Left)** GMR biosensor array mounted in the temperature controlled holder. The temperature of the aluminium holder is controlled by a Peltier element and a Pt1000 thermometer. **(Right)** Chip and temperature control system mounted in the Helmholtz coils for magnetic measurements.



**Figure S5: (a)** Measured temperature dependence of sensor center tone (CT). The signal was measured at 20,40,50,60°C. All sensors showed a linear temperature dependence and a similar first order polynomial coefficient  $k_1$ . **(b)** Temperature dependence of the side tone (ST) signal. Due to the results of panel (a), the dependence is plotted against CT. The curve was measured during a downward temperature ramp from 65 °C to 20 °C. In only one chip (data not shown) the temperature dependence was found to be non-linear at high temperature (T>45 °C) and a 5<sup>th</sup> order polynomial fitting was used to correct the data.