Supporting Information

Mechanistic Studies on Dynamic Multi-Component Covalent Assemblies of Metal-Mediated Hemi-Aminal Ethers†

Hyun Hwa Jo,^a Ramakrishna Edupuganti, ^{a,c} Lei You, ^b Kevin N. Dalby ^c and

Eric V. Anslyn*^{*a*}

^a Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712, USA.

^b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R.China.

^c Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, 78712, USA.

Content

General Information	S1
Experimental Procedures	S2
General Procedures for Multi-component Assembly	
Synthesis of Pyridinium Salt (5)	
Hammett Plot using σ^+	
NMR and Mass Spectra	

General Information:

NMR spectra were recorded on Agilent MR 400 at The University of Texas at Austin NMR facility. ESI-mass spectra were obtained on Agilent 6100 at The University of Texas at Austin mass spectrometry facility. Circular dichroism (CD) spectra were recorded on a Jasco J-815 spectropolarimeter at The University of Texas facility.

Experimental Procedures:

General Procedures for Multi-component Assembly

All assembly reactions for kinetics and LEFR studies were performed *in situ* in acetonitrile without isolation and purification. Pyridine-2-carboxyaldehyde (**2-PA**, 35 mM, 1 equiv.), zinc triflate (Zn(OTf)₂, 35 mM, 1 equiv.), di-(2-picolyl)amine (**DPA**, 42mM, 1.2 equiv.), 4-penten-2-ol (ROH, 175 mM, 5 equiv. except for the alcohol dependence studies), and 4-(2-chloroethyl)morpholine hydrochloride (CEM-HCl, 35 mM, 1 equiv.) were stirred together in acetonitrile in the presence of 3Å activated molecular sieves. The mixture was stirred at room temperature.

Synthesis of Pyridinium Salt (5)

To pyridine-2-carboxaldehyde (**2-PA**, 3.21 mg, 0.03 mmol) in dry CD₃CN solution (60 mM), dipicolylamine (**DPA**, 7.17 mg, 0.036 mmol) was added. Then, BF₃-OEt₂ (5.11 μ L, 0.036 mmol) was added dropwise. The reaction mixture was shaken for 3–5 min and then ¹H NMR, ¹³C NMR, and mass spectrum were recorded.

Х	K _{eq}	σ^+	$\log (k_X/k_H)$
ОН	16.9	-0.92	-0.21
Me	23.6	-0.31	-0.062
Н	27.2	0	0
F	38.0	-0.07	0.14
alkyne	36.3	-	0.13
Cl	40.1	0.11	0.17
Br	39.7	0.15	0.16

Hammett Plot using σ^+ :

Table S2. σ^+ values and corresponding log (k_X/k_H) values for encountered substituents.

Figure S2. Hammett plot (σ^+) for four-component assembly with para substituted **2-PA**.

NMR and Mass Spectra:

5.58 5.56 5.54 5.46 5.40 5.34 5.18 5.52 5.50 5.48 5.44 5.36 5.32 5.30 5.28 5.26 5.24 5.22 5.20 5.42 5.38 f1 (ppm)

Figure S4. ¹H NMR of multi-component assembly varying the concentration of alcohol from 17.5 mM (0.5 equiv.) to 210 mM (6 equiv.). For alcohol, 4-penten-2-ol was chosen for all kinetic studies.

Figure S5. ¹H NMR of pyridinium salt (5) formed from **2-PA**(1.0 equiv.), **DPA** (1.2 equiv.), and BF₃-OEt₂ (1.2 equiv.) (top), ¹H NMR of **DPA** (middle) and ¹H NMR of **2-PA** (bottom). All nmrs recorded in CD₃CN.

Figure S6. ¹H NMR of pyridinium salt (**5**) formed from **2-PA**(1.0 equiv.), **DPA** (1.2 equiv.), and BF₃-OEt₂ (1.2 equiv.) in CD₃CN.

Peaks corresponding to pyridinium salt (5): ¹H NMR (400 MHz, CD₃CN) δ 8.72–8.66 (m, 2H), 8.62–8.50 (m, 3H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.00–7.91 (m, 4H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.48 (m, 1H), 6.97 (s, 1H), 4.93 (d, *J* = 16.8 Hz, 1H), 4.69 (d, *J* = 16.8 Hz, 1H), 4.58 (d, *J* = 16.8 Hz, 1H), 4.50 (d, *J* = 16.8 Hz, 1H).

Figure S7. ¹³C NMR of pyridinium salt (5) formed from **2-PA**(1.0 equiv.), **DPA** (1.2 equiv.), and BF_3 -OEt₂ (1.2 equiv.) in CD₃CN.

Peaks corresponding to pyridinium salt (5): ¹³C NMR (100 MHz, CD₃CN) δ 154.9, 153.6, 152.7, 151.3, 148.4, 148.2, 142.3, 141.1, 139.4, 127.8, 127.7, 127.6, 126.9, 125.2, 124.5, 91.3, 58.2, 54.5.

Figure S8. ¹H NMR of pyridinium salt (5) formed from **2-PA** (1.0 equiv.), **DPA** (1.2 equiv.) and TMS-OTf (1.2 equiv.) in CD₃CN.

Figure S9. ¹H NMR of pyridinium salt (5) formed from 2-PA (1.0 equiv.), DPA (1.0 equiv.) and BF₃-OEt₂ (1.0 equiv.) in CD₃CN.

Figure S10. Mass spectrum of pyridinium salt (5) generated from 2-PA, DPA and BF₃-OEt₂. HRMS calcd for $C_{18}H_{17}N_4^+$ (M ⁺) 289.1448. Found 289.1450.

Figure S11. Mass spectrum of pyridinium salt generated from **2-PA**, **DPA** and TMS-OTf. HRMS calcd for $C_{18}H_{17}N_4^+$ (M ⁺) 289.1448. Found 289.1445.