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Supplemental Methods and Results 

S1. METHODS FOR SIMULATIONS 

We performed simulations to test our theoretical conclusions and further analyze more 

complex population demographic scenarios. We employed simuPOP (Peng & Kimmel, 2005), a 

forward-time population genetics simulation program. It provides a Python interface for 

developing more advanced simulations, including evolutionary processes such as migration. An 

overview of the simulation design is shown in Supplemental Figure 8.  

S1.1 Initial Reference Populations  

We downloaded genotype data of CEU and YRI individuals from HapMap3 (International 

HapMap Consortium et al., 2007).  Due to memory capacity and time constraints, we selected 

20,000 SNPs from the first ~41Mb of chromosome 2 to represent our simulated “chromosome” 

(resulting in ~2kb intermarker distance between adjacent pairs). To mimic the founder effect in 

evolving admixed populations, we randomly selected 10 individuals among unrelated CEU and 

YRI individuals to represent founders of our simulated European and African ancestral 

populations. 

S1.2 Generating Admixed Subpopulations  

Starting with the CEU and YRI founder populations, we expanded two ancestral populations for 

100 generations (assuming linear growth with random mating) until each of them reached a 

population size of 20,000. We assumed a mutation rate of 10−8 per nucleotide, recombination 

intensity 10−8 (rate=intensity × physical distance), and random mating within each population. 

As a measure of diversity between simulated CEU and YRI populations, we found that Fst was 

0.15 in the founder generation, then increased to 0.21 in the first generation, leveling off and 
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ending at 0.249 in the final (100th) generation. To simulate admixture, we mixed the ancestral 

populations by setting different migration scenarios. For the first admixed subpopulation, we 

set the migration rate to 𝑞𝑞0 = 0.1 from CEU to YRI and 𝑞𝑞1 = 0.1 from YRI to CEU for 

subpopulation 0 and 1, respectively. Admixture occurred for the first 5 generations, followed by 

20 generations of random mating within the admixed subpopulations. Finally, we randomly 

chose 24,000 individuals from each of the admixed subpopulations to form admixed 

subpopulation 0 and 1.  

S1.3 Generating Quantitative Trait  

In order to assign quantitative trait values, we chose a SNP (rs11897611) near the center of the 

simulated chromosome to represent the QTL. This SNP was chosen because of its different 

allele frequencies in the ancestral populations (𝑝𝑝0=0.932 for YRI and 𝑝𝑝1 =0.125 for CEU). We 

simulated quantitative trait values for all individuals depending on QTL genotype based on the 

mixture distributions described in the main text (equations 9 and 13). For the single-admixed 

population model, we assessed two genetic models: one with the trait mean to 𝑎𝑎 = 0 to 

simulate the null hypothesis of no genetic effect and another with 𝑎𝑎 = 1 to simulate a genetic 

effect. We used a trait variance 𝜎𝜎2 = 2 for both models. For the stratified population model, 

we added a constant 𝑐𝑐=0, 1 or 2 to the trait mean of the second admixed population. 

S.1.4 Statistical Analyses in Simulated Data  

The regression models described in the main text were fit in samples from the simulated 

populations. We used the known local ancestry for any locus; that is by tracking the ancestral 

population of origin for each locus in simulations. Global ancestry was computed as the average 

of local ancestries across a haplotype, and then averaged over haplotypes within an individual. 
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For the examples in a single admixed population, we analyzed 500 individuals chosen randomly 

from subpopulation 0 for each realization. For the examples in a stratified admixed population, 

each realization used 250 individuals from both subpopulation 0 and 1 were randomly chosen 

and combined for joint analysis. We averaged the statistics over 1000 realizations. We used in-

house scripts written in Python and R to perform linear regression analysis. The genotype 

variable (1, 0 or -1) was extracted for the individuals using simuPOP’s provided functions.  

 

S2. RESULTS FROM SIMULATIONS 

We conducted simulations to examine type I error and power (i.e., rejection rate) of tests based 

on adjusted and unadjusted regression models in the single admixed population model and the 

stratified admixed population model discussed above. All estimates are based on tests in 1000 

replicate random samples of 500 individuals each. Each test uses a significance level of 0.05. We 

considered tests at the QTL and 10 other test markers across the simulated chromosome to 

illustrate our theoretical results (Supplemental Table 1).  

S2.1 Single admixed population 

We first examine results in the simulated single admixed population. Supplemental Table 1 

shows the values of allele frequencies and LD in the ancestral and admixed populations. The 

SNPs were selected to show a range of LD values and ancestral allele frequency differences. 

Supplemental Figure 9 shows estimates of the rejection rates for tests of the genotype term 

from regression analyses using the unadjusted model (UN), the local-ancestry adjusted model 

(LA), the global-ancestry adjusted model (GA), and a model that adjusts for both global and 
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local ancestry (GLA). As predicted by theory, when 𝑎𝑎 = 0 (Supp. Figure 9A) the QTL and all test 

markers have rejection rates near the nominal level of 0.05.  

 When 𝑎𝑎 = 1 (Supp. Figure 9B), rejection rates vary dependent on LD. Our theoretical 

derivations showed that when 𝑊𝑊 ≈ 0, the regression parameter for the models adjusted by 

local ancestry, but not necessarily the unadjusted or global adjusted models, should be close to 

0 and hence the rejection rate should be close to the nominal level. We further showed that 

when the LD values in the admixed population (𝐷𝐷∗ ) are close to 0, we expect the UN model to 

have close to the nominal rejection rate. SNP 1 provides an example for which both 𝑊𝑊  and 

𝐷𝐷∗  are close to 0, and indeed the rejection rates are close to the nominal level for the 

unadjusted model (UN) and the models adjusted for local ancestry (LA and GLA). SNPs 2, 3, 5 

and 10 have 𝑊𝑊 ≈ 0 but 𝐷𝐷∗  is moderate or large due to the differences in ancestral allele 

frequencies. As predicted by theory, the UN and GA models have higher rejection rates than 

the LA and GLA adjusted models, which are close to the nominal level since this represents the 

null hypothesis for the local-ancestry adjusted model. For SNP 9 𝐷𝐷∗  ≈ 0 giving UN and GA 

tests that are close to the nominal level but 𝑊𝑊  is slightly larger (in absolute value) than 𝐷𝐷∗ , 

resulting in LA and GLA tests that are somewhat higher than the nominal level.  

 For SNPs 4, 6, 7, and 8 both |𝑊𝑊 | and |𝐷𝐷∗  | are greater than 0 and rejection rates can 

be interpreted as power. For SNPs 6 and 7 the UN and GA models outperform the LA and GLA 

models. These are SNPs for which 𝑊𝑊 is larger than 0 but 𝐷𝐷∗ > 𝑊𝑊 . For SNPs 4 and 8, the LA 

and GLA models have higher rejection rates than the GA and UN models. These are SNPs with 

𝑊𝑊  is large relative to 𝐷𝐷∗ .  
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 In general, we found that the GA model performs similarly to the UN model or between 

the UN and LA models. This is consistent with our theory that showed that the regression 

parameter for the GA model should be close to the UN model if there has been sufficient 

recombination and close to the LA model if there has been little recombination. Our simulations 

used 20 generations of random mating after initial admixture and simulated a single 

chromosome. We observed on average 8 recombination events in any random chromosome 

from the final generation, which is what we expected after 20 generations of random mating 

with 20,000 variants with adjacent intermarker distance ~2kb. This is large enough to give 

similar parameter estimates for the GA model similar to the UN model but not so large as to 

make the estimates equivalent. We did not derive the regression parameters for the model 

adjusted for both local and global ancestry (GLA), but for the examples considered here, the 

GLA model always performed similarly to the LA model. 

 For the QTL itself, all models have rejection rates (power) of 1 for the sample size of 

500, with the given QTL model. To better distinguish relative power at the QTL, we also 

simulated samples of size 100. We found relative power for UN, GA, LA and GLA models of 

0.883, 0.843, 0.57 and 0.569, respectively. These results are consistent with our ARP 

calculations showing that at the QTL power should be ordered UN>GA>LA. 

S2.2 Stratified admixed populations 

We next examine results in simulated stratified admixed populations using the same QTL and 

set of test markers as above. Supplemental Table 2 summarizes the values for the LD 

parameters for the two simulated admixed subpopulations and the stratified population as a 

whole. As a side note, subpopulation 0 is the same as the admixed population used in the single 
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admixed population examples above. In addition to the regression models considered above, 

we also include a model adjusted for subpopulation membership (MA). Supplemental Figure 10 

shows rejection rates for the test of the genotype term for the different models when 𝑎𝑎 = 0 for 

𝑐𝑐 = 0 and 𝑐𝑐 = 2. For 𝑐𝑐 = 0, there is no trait difference between the two strata, but there is 

random mating only within strata making this different from the single admixed population 

model. As shown by our theoretical calculations in this case when there is no genetic effect 

(𝑎𝑎 = 0), we expect all regression models (unadjusted and adjusted) to give rejection rates close 

to the nominal rate, and our simulations bear this out (Supp. Figure 10A). When 𝑐𝑐 ≠ 0, such 

that there is a difference in trait mean between strata but still no genetic effect (𝑎𝑎 = 0), we 

showed that only the regression models adjusting by local ancestry and population membership 

should be generally valid tests of no genetic effect (since they do not depend on 𝑐𝑐). As 

expected, Supplemental Figure 10B shows that these models (LA, GLA and MA) give 

consistently correct rejection rates. Results from the UN model show inflated rejection rates at 

markers with large differences in ancestral allele frequencies (SNPs 1, 2, 3, 6, 7 and 10). 

Interestingly, the GA model, has correct rejection rates, suggesting that the specification bias 

discussed in the methods section is small for these examples.  

 When 𝑎𝑎 > 0 (Supplemental Figure 11), rejection rates depend on LD (as well as other 

parameters). We showed theoretically that when 𝑊𝑊∗ ≈ 0 (or 𝑟𝑟𝑔𝑔𝑔𝑔 = 0), the regression 

parameter for the models adjusted by local ancestry should be close to 0. SNPs 1, 2, 3, 5 and 10 

provide examples for which 𝑊𝑊∗ ≈ 0 and show LA and GLA models with nominal rejection rates. 

We also showed that when there was no LD in both subpopulations, the regression parameter 

for the model adjusted for subpopulation membership should be close to 0. SNP 1 provides 
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such an example and shows the nominal rejection rate for the MA model. SNP 8 is particularly 

interesting because it has moderate LD in both of the subpopulations, and in fact showed 

power in the single admixed population examples above, but because the LD in the 

subpopulations is in the opposite directions, the test in the MA model loses power in the 

stratified population compared to the single admixed population (Figure 9B).  

 Only SNPs 4 and 9 show higher rejection rates for the local-ancestry adjusted models (LA 

and GLA) than the other models. These are SNPs that have relatively high values of LD in the 

ancestral populations compared to LD in the admixed populations or stratified population at 

large. In general, the GA models have rejection rates similar to the MA models or between the 

LA and MA models. 

 Rejection rates for the UN are greater than the nominal rate for all markers except SNPs 

4, 8 and 9. These exceptions all have relatively small values of LD in the stratified population 

(𝐷𝐷∗∗) and small differences between marker allele frequencies in the ancestral populations 

(small ∆𝐿𝐿); consequently, as theory showed, the regression parameter for the genotype term 

will be close to 0. Interestingly SNP 1 also has a small value of 𝐷𝐷∗∗ but has a severely inflated 

rejection rate, particularly for 𝑐𝑐 = 2 (Figure 11B). This is because the marker allele frequency 

difference in the ancestral populations is large which leads to a non-zero regression parameter 

regardless of the value of 𝐷𝐷∗∗.  
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Supplemental Table 1. Properties of the QTL and 10 test markers: distance, allele frequencies 
(𝑝𝑝0, 𝑝𝑝1) and LD measures between the QTL and test markers (𝐷𝐷0 and 𝐷𝐷1 are computed in the 
simulated ancestral populations; 𝑊𝑊 is computed as 𝑊𝑊 = 0.7𝐷𝐷0 + 0.3𝐷𝐷1; 𝐷𝐷∗ is computed in the 
simulated single admixed population). 

 

 

 

 

 

 

 

 

 

 

 

  

SNP 

Distance 
from QTL 

(bp) p0 (CEU) p1 (YRI) D0 (CEU) D1 (YRI) W D* 
1 20451825 0.149 0.693 -0.0005 -0.0003 -0.0004 0.0041 
2 9638088 0.195 0.885 -0.0004 0.0006 -0.0001 0.0228 
3 5754699 0.342 0.934 0.0012 -0.0011 0.0005 0.0395 
4 89846 0.277 0.155 0.0882 0.0062 0.0636 0.0456 
5 59661 0.273 0.395 0.0012 0.0024 0.0015 0.0186 
6 19418 0.063 0.817 -0.0079 0.0554 0.0111 0.1391 

QTL 0 0.125 0.932 1.0000 1.0000 1.0000 1.0000 
7 21771 0.092 0.754 0.0796 0.0505 0.0709 0.1838 
8 63686 0.404 0.363 0.0687 -0.0410 0.0358 0.0375 
9 303562 0.043 0.073 -0.0053 -0.0298 -0.0127 -0.0077 

10 1088150 0.017 0.66 -0.0001 -0.0015 -0.0005 0.0857 
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Supplemental Table 2. LD between the QTL and 10 test markers in the two admixed 
subpopulations and stratified population as a whole: 𝑊𝑊0 and 𝑊𝑊1 are computed as 𝑊𝑊0 =
0.7𝐷𝐷0 + 0.3𝐷𝐷1 and 𝑊𝑊1 = 0.3𝐷𝐷0 + 0.7𝐷𝐷1 (where 𝐷𝐷0 and 𝐷𝐷1 are computed in the simulated 
ancestral populations); 𝑊𝑊∗ is computed as 𝑊𝑊∗ = 0.5𝑊𝑊0 + 0.5𝑊𝑊1; 𝐷𝐷0∗ and 𝐷𝐷1∗ are computed in 
the simulated admixed subpopulations; 𝐷𝐷∗∗ is computed in the simulated stratified population. 

 

SNP W0 W1 W* D*0 D*1 D** 
1 -0.0004 -0.0004 -0.0004 0.0041 0.0020 0.0226 
2 -0.0001 0.0003 0.0001 0.0228 0.0226 0.0464 
3 0.0005 -0.0004 0.0000 0.0395 0.0351 0.0567 
4 0.0636 0.0308 0.0472 0.0456 0.0071 0.0214 
5 0.0015 0.0020 0.0018 0.0186 0.0210 0.0237 
6 0.0111 0.0365 0.0238 0.1391 0.1607 0.1761 

QTL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
7 0.0709 0.0592 0.0650 0.1838 0.1642 0.1960 
8 0.0358 -0.0081 0.0139 0.0375 -0.0187 0.0083 
9 -0.0127 -0.0225 -0.0176 -0.0077 -0.0190 -0.0120 

10 -0.0005 -0.0011 -0.0008 0.0857 0.0877 0.1111 
 



SUPPLEMENTAL FIGURE LEGEND 

Supplemental Figure 1. Plots of 𝜑𝜑 and 𝜑𝜑𝑙𝑙 as a function of 𝑠𝑠, the expected number of 

recombination events along a chromosome since initial admixture. 𝜑𝜑𝑙𝑙 is shown for 𝑙𝑙 at the end 

of the end (𝑓𝑓 = 0) and middle (𝑓𝑓 = 1/2) of the chromosome maps. We considered 𝐾𝐾 =1 or 22 

chromosomes and varied the recombination probability between chromosomes: 𝑟𝑟𝑢𝑢: A. 𝐾𝐾 = 1; 

B. 𝐾𝐾 = 22, 𝑟𝑟𝑢𝑢 = 1 ; C. 𝐾𝐾 = 22, 𝑟𝑟𝑢𝑢 = 0.5; and D. 𝐾𝐾 = 22, 𝑟𝑟𝑢𝑢 = 0. 

Supplemental Figure 2. Plots of ratios of 𝜑𝜑, 𝜑𝜑𝑙𝑙and 𝜑𝜑𝑔𝑔 as a function of 𝑠𝑠, the expected number 

of recombination events along a chromosome since initial admixture. The function 𝜑𝜑𝑙𝑙
2

𝜑𝜑
 is shown 

for 𝑙𝑙 at the end of the end (𝑓𝑓 = 0) and middle (𝑓𝑓 = 1
2
) of the chromosome maps. The function 

 𝜑𝜑𝑔𝑔𝜑𝜑𝑙𝑙/𝜑𝜑 is shown for one locus at the end of the chromosome (𝑓𝑓 = 0) and the other locus in 

the middle (𝑓𝑓 = 1
2
) of the chromosome. We considered 𝐾𝐾 =1 or 22 chromosomes and varied the 

recombination probability between chromosomes: 𝑟𝑟𝑢𝑢: A. 𝐾𝐾 = 1; B. 𝐾𝐾 = 22, 𝑟𝑟𝑢𝑢 = 1 ; C. 𝐾𝐾 =

22, 𝑟𝑟𝑢𝑢 = 0.5; and D. 𝐾𝐾 = 22, 𝑟𝑟𝑢𝑢 = 0. 

Supplemental Figure 3. ARPs for adjusted (local ancestry) model relative to unadjusted model,  

ARP(�̂�𝛽𝐺𝐺∗ , �̂�𝛽𝐺𝐺), for the single admixed population with a range of values for 𝑝𝑝1 and 𝑞𝑞,  for A)𝑝𝑝0 =

0.5 and B) 𝑝𝑝0 = 0.9. The test is conducted at a QTL with 𝜎𝜎2 = 1. 

Supplemental Figure 4. ARPs for global-ancestry adjusted model relative to the unadjusted 

model, ARP(�̂�𝛽𝐺𝐺′ , �̂�𝛽𝐺𝐺 ), for the single admixed population with a range of values for 𝑝𝑝1 and 𝑞𝑞,  for 



𝑝𝑝0 = 0.5 with A)𝑟𝑟𝑢𝑢 = 0.5 and 𝑠𝑠 = 2 and B)𝑟𝑟𝑢𝑢 = 1 and 𝑠𝑠 = 10 . The test is conducted at a QTL 

with 𝜎𝜎2 = 1. 

Supplemental Figure 5. ARPs for local-ancestry adjusted model (LA) relative to the model 

adjusted for population membership (MA),  ARP(�̂�𝛽𝐺𝐺∗ , �̂�𝛽𝐺𝐺′′), for a stratified admixed population 

with  𝑄𝑄 = 0.5, 𝑞𝑞0 = 0.65, and a range of values for 𝑝𝑝1 and 𝑞𝑞1. Panels show A)𝑝𝑝0 = 0.5, 𝑐𝑐 = 1; 

B) 𝑝𝑝0 = 0.9, 𝑐𝑐 = 1, C)𝑝𝑝0 = 0.5, 𝑐𝑐 = 2; D) 𝑝𝑝0 = 0.9, 𝑐𝑐 = 2. The test is conducted at a QTL with

𝜎𝜎2 = 1. 

Supplemental Figure 6. Violin plots for absolute value of estimates of disequilibrium 

coefficients (𝐷𝐷 and 𝐷𝐷∗) from seven admixed datasets and three non-admixed (“ancestral”) 

datasets. Results are binned by intermarker distance, with the final bin being pairs of unlinked 

markers. 

Supplemental Figure 7. Violin plots for absolute value of estimates of disequilibrium 

coefficients three admixed datasets. 𝐷𝐷∗ is the estimate in the admixed dataset and 𝑊𝑊 is the 

average of disequilibrium coefficients in the ancestral populations, weighted by estimates of 

mixing proportions: Honduran (0.62 European, 0.09 African, 0.29 Native American), Puerto 

Rican (0.80 European, 0.13 African, 0.07 Native American) and Mexican (0.50 European, 0.05 

African, 0.45 Native American). Results are binned by intermarker distance, with the final bin 

being pairs of unlinked markers.  



Supplemental Figure 8.  Diagram of population models. Two ancestral populations migrate to 

form initial admixed populations (Admixed  Pop 𝑖𝑖 has mixing proportions 𝑞𝑞𝑖𝑖 from Ancestral Pop 

0 and 1 − 𝑞𝑞𝑖𝑖  from Ancestral Pop 1). Followed by generations of random mating within each 

admixed subpopulation. For the single admixed population model only Admixed Pop 0 is 

considered. The stratified admixed population model considers the two admixed 

subpopulations as a whole with proportions 𝑄𝑄 for Admixed Pop 0 and 1 − 𝑄𝑄 for Admixed Pop 1. 

Supplemental Figure 9. Rejection rates from regression analyses using the unadjusted model 

(UN), the local-ancestry adjusted model (LA), the global-ancestry adjusted model (GA), and a 

model adjusted by both global and local ancestry (GLA) from simulations of a single admixed 

population with a sample size of N=500. A. significance level of 0.05 (dashed, red line) was used 

for each test: A. No genetic effect (𝑎𝑎 = 0), B. Genetic effect (𝑎𝑎 = 1). 

Supplemental Figure 10. Rejection rates from regression analyses using the unadjusted model 

(UN), the local-ancestry adjusted model (LA), the global-ancestry adjusted model (GA), a model 

adjusted by both global and local ancestry (GLA), and a model adjusted by subpopulation 

membership (MA) from simulations of stratified admixed populations with a sample size of 

N=500 and no genetic effect (𝑎𝑎 = 0): A. significance level of 0.05 (dashed, red line) was used for 

each test: A. No trait mean difference between strata (𝑐𝑐 = 0), B. Trait mean difference between 

strata (𝑐𝑐 = 2). 



Supplemental Figure 11. Rejection rates from regression analyses using the unadjusted model 

(UN), the local-ancestry adjusted model (LA), the global-ancestry adjusted model (GA), a model 

adjusted by both global and local ancestry (GLA), and a model adjusted by subpopulation 

membership (MA) from simulations of stratified admixed populations with a sample size of 

N=500 and genetic effect (𝑎𝑎 = 1): A. significance level of 0.05 (dashed, red line) was used for 

each test: A. No trait mean difference between strata (𝑐𝑐 = 0), B. Trait mean difference between 

strata (𝑐𝑐 = 2). 
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Appendices (Online Supplemental Material) 

Appendix A.1. Variances, covariances, correlations and regression parameters for 

testing at the QTL in a single admixed population model. 

A.1.1 Definitions 

Consider a single admixed population generated by migration between two ancestral 

populations. We assume that following the initial migration, there has been random 

mating within the admixed population and no further migration (see main text for 

details). Let  

𝑞𝑞 =  probability a locus on a randomly sampled haplotype is from ancestral 

population 1. 

Suppose there is a QTL with alleles T1 and T2, and let 

𝑝𝑝𝑖𝑖=the frequency of allele T1 from ancestral population 𝑖𝑖, for 𝑖𝑖 = 0,1. 

We define the following functions of parameters: 

∆= 𝑝𝑝1 − 𝑝𝑝0 is the ancestral allele frequency difference 

𝑝𝑝∗ = 𝑞𝑞𝑝𝑝1 + (1 − 𝑞𝑞)𝑝𝑝0 is the frequency T1 of in the admixed population,  

and the following random variables for any individual: 

For QTL genotype 𝐺𝐺 = �
1      if 𝑇𝑇1𝑇𝑇1
0     if 𝑇𝑇1𝑇𝑇2
−1 if 𝑇𝑇2𝑇𝑇2

 ;  

and for the quantitative trait 𝑌𝑌~�
𝑁𝑁(𝑎𝑎,𝜎𝜎2)      if 𝑇𝑇1𝑇𝑇1
𝑁𝑁(0,𝜎𝜎2)     if 𝑇𝑇1𝑇𝑇2
𝑁𝑁(−𝑎𝑎,𝜎𝜎2) if 𝑇𝑇2𝑇𝑇2

 . 
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For the 𝑗𝑗th locus, the average ancestry over the two haplotypes, 𝐴𝐴.𝑗𝑗 = (𝐴𝐴1𝑗𝑗+𝐴𝐴2𝑗𝑗)/2, 

where for the ℎth haplotype, 

𝐴𝐴ℎ𝑗𝑗= 1 if the 𝑗𝑗th locus comes from ancestral population 1 

                0 if the 𝑗𝑗th locus comes from ancestral population 0 . 

As described in the main text, we consider both local measures of ancestry, 𝐴𝐴 = 𝐴𝐴.𝑗𝑗, and 

global measures of ancestry averaged over 𝑀𝑀 loci in the genome, 

�̅�𝐴 =
∑ 𝐴𝐴.𝑗𝑗
𝑀𝑀
𝑗𝑗=1

𝑀𝑀
 . 

 We can then derive the means, (𝜇𝜇), variances (𝑉𝑉) and covariances (𝐶𝐶) for the above 

random variables as follows. 

A.1.2 Means and Variances 

We let 𝐺𝐺 = 𝑋𝑋1 + 𝑋𝑋2 − 1, where 𝑋𝑋1 and 𝑋𝑋2 are indicator variables for the presence of 

the T1 allele on haplotype 1 and 2, respectively. Under the assumption of HWE 𝑋𝑋1 and 

𝑋𝑋2 are independent Bernoulli random variables with probability 𝑝𝑝∗ gives: 

𝜇𝜇𝐺𝐺 = 2𝑝𝑝∗ − 1              and                    𝑉𝑉𝐺𝐺 = 2𝑝𝑝∗(1 − 𝑝𝑝∗). 

The phenotypic variable,𝑌𝑌, follows a mixture distribution dependent on 𝐺𝐺, where  𝑌𝑌 =

𝑎𝑎𝐺𝐺 + 𝑁𝑁(0,𝜎𝜎2). This gives: 

𝜇𝜇𝑌𝑌 = 𝑎𝑎𝜇𝜇𝐺𝐺                   and                   𝑉𝑉𝑌𝑌 = 𝑎𝑎2𝑉𝑉𝐺𝐺 + 𝜎𝜎2 

                                         = 𝑎𝑎(2𝑝𝑝∗ − 1)                                   = 2𝑎𝑎2𝑝𝑝∗(1 − 𝑝𝑝∗) + 𝜎𝜎2. 

Local ancestry at any locus is the average of two independent Bernoulli random 

variables (one for each haplotype) with probabilities q, which gives: 

𝜇𝜇𝐴𝐴 = 𝑞𝑞                          and                          𝑉𝑉𝐴𝐴 = 𝑞𝑞(1 − 𝑞𝑞)/2. 
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The distribution of global ancestry depends on the probability of recombination events 

along the chromosomes. Let 𝑟𝑟𝑗𝑗𝑗𝑗 be the probability that there has been a recombination 

event between the 𝑗𝑗th and 𝑘𝑘th locus on the same chromosome at some point since the 

initial admixture. The variable 𝑟𝑟𝑗𝑗𝑗𝑗 is a function of the recombination fraction between 

the loci and the number of generations of random mating since initial admixture. For 

unlinked loci on different chromosomes, let this recombination probability be denoted 

𝑟𝑟𝑈𝑈. This is the probability refers to the exchange of non-gametic alleles (and for example 

would be ½ in a single generation). We can write global ancestry as an average over the 

two independent haplotypes: 

�̅�𝐴 = 1/2 �
∑ 𝐴𝐴1𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
+

∑ 𝐴𝐴2𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
� . 

Since the measures on the two haplotypes are iid, we can focus on the distribution of 

ancestry along a single haplotype, e.g., 𝐴𝐴1𝑗𝑗. We can easily see that for each locus,  

𝜇𝜇𝐴𝐴1 = 𝑞𝑞                  and                             𝑉𝑉𝐴𝐴1 = 𝑞𝑞(1 − 𝑞𝑞). 

For two loci 𝑗𝑗 and 𝑘𝑘 on the same chromosome, we can derive 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗 ,𝐴𝐴1𝑗𝑗� = 𝑞𝑞(1 − 𝑞𝑞)(1 − 𝑟𝑟𝑗𝑗𝑗𝑗). 

For two loci 𝑗𝑗 and 𝑗𝑗′ on different chromosomes, we can derive 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗 ,𝐴𝐴1𝑗𝑗′� = 𝑞𝑞(1 − 𝑞𝑞)(1 − 𝑟𝑟𝑈𝑈). 

Suppose that there are 𝐾𝐾 chromosomes and for simplicity, we assume the same number 

of loci (𝑚𝑚) have been observed for each chromosome, so that the total number of loci is 

𝑀𝑀 = 𝐾𝐾𝑚𝑚. Then 
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𝑉𝑉𝑎𝑎𝑟𝑟 ��𝐴𝐴1𝑗𝑗

𝑀𝑀

𝑗𝑗=1

� = �𝑉𝑉𝑎𝑎𝑟𝑟(𝐴𝐴1𝑗𝑗

𝑀𝑀

𝑗𝑗=1

) 

+𝐾𝐾��𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴1𝑗𝑗,𝐴𝐴1𝑗𝑗)
𝑚𝑚

𝑗𝑗≠𝑗𝑗

+ 𝐾𝐾(𝐾𝐾 − 1)��𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴1𝑗𝑗,𝐴𝐴1𝑗𝑗′)
𝑚𝑚

𝑗𝑗′=1

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑗𝑗=1

 , 

where the first term sums all variances, the second term is the sum of all pairwise 

covariances along a single chromosomes and the third term is the sum of pairwise 

covariances between pairs of loci on different chromosomes. Plugging in the derivations 

above, we have 

𝑉𝑉𝑎𝑎𝑟𝑟 ��𝐴𝐴1𝑗𝑗

𝑀𝑀

𝑗𝑗=1

� = 𝑀𝑀2𝑞𝑞(1 − 𝑞𝑞)[1 − �
𝐾𝐾 − 1
𝐾𝐾

� 𝑟𝑟𝑈𝑈 −
1
𝑀𝑀𝑚𝑚

��𝑟𝑟𝑗𝑗𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑗𝑗

]
𝑚𝑚

𝑗𝑗=1

 . 

Letting 𝜑𝜑 = 1 − �𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈 −

1
𝑀𝑀𝑚𝑚

∑ ∑ 𝑟𝑟𝑗𝑗𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑗𝑗

𝑚𝑚
𝑗𝑗=1 , it follows that 

𝜇𝜇�̅�𝐴 = 𝑞𝑞              and                𝑉𝑉�̅�𝐴 =
𝑞𝑞(1 − 𝑞𝑞)𝜑𝜑

2
 . 

A.1.3 Covariances 

Next, we derive the covariances between the random variables. The covariance 

between the trait and QTL genotype is 

𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺 

    = 2𝑎𝑎𝑝𝑝∗(1 − 𝑝𝑝∗). 

The covariance between the QTL genotype and the local ancestry at the QTL can be 

derived easily by recognizing that we can write 𝐺𝐺 and 𝐴𝐴 in terms of the two haplotypes: 

𝐺𝐺 = (𝑋𝑋1 − 1/2) + (𝑋𝑋2 − 1/2) and 𝐴𝐴 = 𝐴𝐴1/2+𝐴𝐴2/2. It follows that  
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𝐶𝐶𝐺𝐺𝐴𝐴 = 2𝐶𝐶𝐶𝐶𝐶𝐶 ��𝑋𝑋1 −
1
2
� ,
𝐴𝐴1
2
� 

= 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴1) 

       = 𝑞𝑞(1 − 𝑞𝑞)∆ 

and 

𝐶𝐶𝑌𝑌𝐴𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺𝐴𝐴 

        = 𝑎𝑎𝑞𝑞(1 − 𝑞𝑞)∆ . 

For covariances with global ancestry, we assume, without loss of generality, that the 

QTL is at the 𝑔𝑔th locus on the first chromosome. Then  

𝐶𝐶𝐺𝐺�̅�𝐴 =
1
𝑀𝑀
�𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺,𝐴𝐴.𝑗𝑗

𝑀𝑀

𝑗𝑗=1

) 

=
1
𝑀𝑀

[𝐶𝐶𝐺𝐺𝐴𝐴 + �𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺,𝐴𝐴.𝑗𝑗

𝑀𝑀

𝑗𝑗≠𝑔𝑔

)] . 

The second term sums over loci on the same chromosome as the QTL and different 

chromosomes from the QTL. For locus j on the same chromosome with the QTL,  

𝐶𝐶𝐶𝐶𝐶𝐶�𝐺𝐺,𝐴𝐴.𝑗𝑗� = 𝑞𝑞(1 − 𝑞𝑞)∆�1− 𝑟𝑟𝑔𝑔𝑗𝑗�. 

For locus 𝑗𝑗 on a different chromosome from the QTL, 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐺𝐺,𝐴𝐴.𝑗𝑗� = 𝑞𝑞(1 − 𝑞𝑞)∆(1 − 𝑟𝑟𝑈𝑈). 

This gives 

𝐶𝐶𝐺𝐺�̅�𝐴 = 𝑞𝑞(1 − 𝑞𝑞)∆𝜑𝜑𝑔𝑔. 

where 𝜑𝜑𝑔𝑔 = 1 − �𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈 −

1
𝑀𝑀
∑ 𝑟𝑟𝑔𝑔𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑔𝑔  (the final term is summed over all markers on 

the same chromosome with the QTL). 
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The covariance between the trait and global ancestry is a function of the covariance 

between the QTL genotype and global ancestry: 

𝐶𝐶𝑌𝑌�̅�𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺�̅�𝐴 

        = 𝑎𝑎𝑞𝑞(1 − 𝑞𝑞)∆𝜑𝜑𝑔𝑔. 

A.1.4 Correlations 

 With variances and covariances derived, we are now in a position to derive relevant 

correlations to assess confounding and validity of regression tests. First, we consider 

local ancestry. As noted in the main text, we need to examine two correlations to assess 

confounding: 𝜌𝜌𝐺𝐺𝐴𝐴 
2 and 𝜌𝜌𝑌𝑌𝐴𝐴,𝐺𝐺 

2 . It is straightforward to show  

𝜌𝜌𝐺𝐺𝐴𝐴 
2 =

𝑞𝑞(1 − 𝑞𝑞)∆2

𝑝𝑝∗(1 − 𝑝𝑝∗)
 . 

It is convenient to define a new parameter  

𝛾𝛾 = 𝑞𝑞𝑝𝑝1(1 − 𝑝𝑝1) + (1 − 𝑞𝑞)𝑝𝑝0(1− 𝑝𝑝0) , 

which allows us to write 

𝜌𝜌𝐺𝐺𝐴𝐴 
2 =

𝑞𝑞(1 − 𝑞𝑞)∆2

𝑞𝑞(1 − 𝑞𝑞)∆2 + 𝛾𝛾
 . 
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The partial correlation is 

 𝜌𝜌𝑌𝑌𝐴𝐴,𝐺𝐺 
2 =

(𝜌𝜌𝑌𝑌𝐴𝐴 − 𝜌𝜌𝑌𝑌𝐺𝐺𝜌𝜌𝐺𝐺𝐴𝐴)2

(1 − 𝜌𝜌𝑌𝑌𝐺𝐺2 )(1 − 𝜌𝜌𝐺𝐺𝐴𝐴2 ) 

=
(𝐶𝐶𝑌𝑌𝐴𝐴𝑉𝑉𝐺𝐺 − 𝐶𝐶𝑌𝑌𝐺𝐺𝐶𝐶𝐺𝐺𝐴𝐴)2

(𝑉𝑉𝑌𝑌𝑉𝑉𝐺𝐺 − 𝐶𝐶𝑌𝑌𝐺𝐺2 )(𝑉𝑉𝐴𝐴𝑉𝑉𝐺𝐺 − 𝐶𝐶𝐺𝐺𝐴𝐴2 ) 

= 0 . 

Noticing that 𝐶𝐶𝑌𝑌𝐴𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺𝐴𝐴 and 𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺 shows immediately that this partial 

correlation is 0.  

For global ancestry, the correlations are the following: 

𝜌𝜌𝐺𝐺�̅�𝐴 
2 = �

𝑞𝑞(1 − 𝑞𝑞)∆2

𝑞𝑞(1 − 𝑞𝑞)∆2 + 𝛾𝛾
��

𝜑𝜑𝑔𝑔2

𝜑𝜑
� 

and 

 𝜌𝜌𝑌𝑌�̅�𝐴,𝐺𝐺 
2 = 0 . 

The partial correlation is 0 because of the same relationships shown above for local 

ancestry. 

A.1.5 Regression Parameters 

Given the calculations in the previous sections, it is trivial to show that for the 

unadjusted model:  𝐸𝐸(𝑌𝑌|𝐺𝐺) = 𝛽𝛽0 + 𝛽𝛽𝐺𝐺 𝐺𝐺 , we have 

𝛽𝛽𝐺𝐺 =
𝐶𝐶𝑌𝑌𝐺𝐺
𝑉𝑉𝐺𝐺

= 𝑎𝑎 . 

For the model adjusted by local ancestry: 𝐸𝐸(𝑌𝑌|𝐺𝐺,𝐴𝐴𝑙𝑙) = 𝛽𝛽0∗ + 𝛽𝛽𝐺𝐺∗𝐺𝐺 + 𝛽𝛽𝐴𝐴∗𝐴𝐴𝑙𝑙 , the 

unstandardized multiple regression coefficient for genotype is 
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𝛽𝛽𝐺𝐺∗ = �
𝑉𝑉𝑌𝑌
𝑉𝑉𝐺𝐺
�
𝜌𝜌𝑌𝑌𝐺𝐺 − 𝜌𝜌𝑌𝑌𝐴𝐴𝜌𝜌𝐺𝐺𝐴𝐴

1 − 𝜌𝜌𝐺𝐺𝐴𝐴2
� 

=
𝐶𝐶𝑌𝑌𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝑌𝑌𝐴𝐴𝐶𝐶𝐺𝐺𝐴𝐴

(𝑉𝑉𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐺𝐺𝐴𝐴2 )  

= 𝑎𝑎 , 

which can be seen easily by noting that that 𝐶𝐶𝑌𝑌𝐴𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺𝐴𝐴 and 𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺. 

Similarly for the model adjusted by global ancestry:  𝐸𝐸(𝑌𝑌|𝐺𝐺, �̅�𝐴) = 𝛽𝛽0′ + 𝛽𝛽𝐺𝐺′ 𝐺𝐺 +

𝛽𝛽�̅�𝐴
′ �̅�𝐴 , noting 𝐶𝐶𝑌𝑌�̅�𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺�̅�𝐴 and 𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺 shows 

𝛽𝛽𝐺𝐺′ = 𝑎𝑎 . 

These calculations demonstrate validity of all three models for a test of the null 

hypothesis of no genetic effect (𝑎𝑎 = 0). 
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Appendix A.2. Variances, covariances, correlations and regression parameters for 

testing a marker locus in a single admixed population model. 

A.2.1 Definitions 

Consider a single admixed population generated by migration between two ancestral 

populations. Let 𝑞𝑞, 𝑝𝑝𝑖𝑖 and𝑝𝑝∗ be defined as in Appendix A.1 as the mixing proportion, the 

QTL ancestral allele frequency and QTL allele frequency in the admixed population, 

respectively. However, suppose that instead of testing the QTL itself, we test a marker 

locus. Let the marker locus have two alleles, L1, L2, with 

𝑝𝑝𝐿𝐿𝑖𝑖 =the frequency of allele L1 from ancestral population 𝑖𝑖, for 𝑖𝑖 = 0,1.  

We do not require that the alleles at the marker and QTL be independent, and define 

the linkage disequilibrium (LD) coefficient in ancestral population 𝑖𝑖:  

𝐷𝐷𝑖𝑖 = 𝑃𝑃𝑇𝑇𝐿𝐿𝑖𝑖 −  𝑝𝑝𝐿𝐿𝑖𝑖𝑝𝑝𝑖𝑖, 

where 𝑃𝑃𝑇𝑇𝐿𝐿𝑖𝑖 is the haplotype frequency of the haplotype carrying T1 and L1 from 

ancestral population 𝑖𝑖. 

We define the following functions of parameters: 

 ∆𝐿𝐿= 𝑝𝑝𝐿𝐿1 − 𝑝𝑝𝐿𝐿0  

𝑝𝑝𝐿𝐿∗ = 𝑞𝑞𝑝𝑝𝐿𝐿1 + (1 − 𝑞𝑞)𝑝𝑝𝐿𝐿0 

𝑊𝑊 = 𝑞𝑞𝐷𝐷1 + (1 − 𝑞𝑞)𝐷𝐷0.  

We assume the same distributions for trait (𝑌𝑌) and QTL genotype (𝐺𝐺) defined in 

Appendix A.1.1, and introduce a genotypic random variable based on the marker locus: 
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𝐿𝐿 = �
1      if 𝐿𝐿1𝐿𝐿1
0     if 𝐿𝐿1𝐿𝐿2
−1 if 𝐿𝐿2𝐿𝐿2

 . 

We measure local and global ancestry as in Appendix A1, but local ancestry (𝐴𝐴.𝑙𝑙) is 

measured at marker locus l which is being tested. 

A.2.2 Mean and Variance The mean and variance of L are analogous to those of 𝐺𝐺: 

𝜇𝜇𝐿𝐿 = 2𝑝𝑝𝐿𝐿∗ − 1            and                    𝑉𝑉𝐿𝐿 = 2𝑝𝑝𝐿𝐿∗(1 − 𝑝𝑝𝐿𝐿∗). 

The means and variances of the other random variables given in A.1.2 still hold. 

A.2.3 Covariances 

To derive the covariance between the QTL and the marker genotype random variables, 

we write G and L as a function of Bernoulli random variables, 

𝐺𝐺 = 𝑋𝑋1 + 𝑋𝑋2 − 1 and  𝐿𝐿 = 𝑋𝑋𝐿𝐿1 + 𝑋𝑋𝐿𝐿2 − 1, 

where 𝑋𝑋1 and 𝑋𝑋𝐿𝐿1 and Bernoulli random variables with probabilities 𝑝𝑝∗ and 𝑝𝑝𝐿𝐿∗, 

respectively. The covariance between 𝑋𝑋1 and 𝑋𝑋𝐿𝐿1 can be written as follows and 

represents the disequilibrium coefficient in the admixed population, which we denote 

𝐷𝐷∗, where 

𝐷𝐷∗ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋𝐿𝐿1) = �1 − 𝑟𝑟𝑔𝑔𝑙𝑙�(𝑊𝑊 + 𝑞𝑞(1 − 𝑞𝑞)∆∆𝐿𝐿) . 

It follows that  

𝐶𝐶𝐺𝐺𝐿𝐿 = 2𝐷𝐷∗.  

Recognizing that 𝐶𝐶𝑌𝑌𝐿𝐿 = 𝑎𝑎𝐶𝐶𝐺𝐺𝐿𝐿 gives 

𝐶𝐶𝑌𝑌𝐿𝐿 = 2𝑎𝑎𝐷𝐷∗ . 



11 
 

The covariance between the marker genotype and local ancestry at the marker is the 

same as for the QTL, replacing QTL parameters with marker parameters: 

𝐶𝐶𝐿𝐿𝐴𝐴𝑙𝑙 = 𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿 . 

The same is true for global ancestry: 

𝐶𝐶𝐿𝐿�̅�𝐴 = 𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿𝜑𝜑𝑙𝑙 . 

𝜑𝜑𝑙𝑙 = 1 − �𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈 −

1
𝑀𝑀
∑ 𝑟𝑟𝑙𝑙𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑙𝑙  (the final term is summed over all markers on the same 

chromosome with the marker being tested). 

Finally, we can show that the covariance between the QTL genotype and the local 

ancestry at the marker is  

𝐶𝐶𝐺𝐺𝐴𝐴𝑙𝑙 = 𝑞𝑞(1 − 𝑞𝑞)∆�1 − 𝑟𝑟𝑔𝑔𝑙𝑙� . 

It then follows that  

𝐶𝐶𝑌𝑌𝐴𝐴𝑙𝑙 = 𝑎𝑎𝑞𝑞(1 − 𝑞𝑞)∆�1 − 𝑟𝑟𝑔𝑔𝑙𝑙� . 

A.2.4 Correlations  

We now derive the correlations necessary to assess confounding and validity. For local 

ancestry, we have the following two to assess confounding: 

𝜌𝜌𝐿𝐿𝐴𝐴 
2 =

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2

𝑝𝑝𝐿𝐿∗(1 − 𝑝𝑝𝐿𝐿∗)
 

=
𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿
 , 

where 𝛾𝛾𝐿𝐿 = 𝑞𝑞𝑝𝑝𝐿𝐿1(1 − 𝑝𝑝𝐿𝐿1) + (1 − 𝑞𝑞)𝑝𝑝𝐿𝐿0(1 − 𝑝𝑝𝐿𝐿0). 

The partial correlation is more complicated. After some algebra, we can show 
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 𝜌𝜌𝑌𝑌𝐴𝐴,𝐿𝐿 
2

=
Ψ2

Ψ2 + �𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿� �2𝑎𝑎2 �𝛾𝛾𝛾𝛾𝐿𝐿 − (1 − 𝑟𝑟𝑔𝑔𝑙𝑙)2𝑊𝑊2 + (1 − �1 − 𝑟𝑟𝑔𝑔𝑙𝑙�
2

)𝑞𝑞(1 − 𝑞𝑞)∆2𝛾𝛾𝐿𝐿�+ 𝛾𝛾𝐿𝐿𝜎𝜎2�
 

where Ψ = �2𝑞𝑞(1 − 𝑞𝑞)𝑎𝑎(1 − 𝑟𝑟𝑔𝑔𝑙𝑙)(∆𝛾𝛾𝐿𝐿 − ∆𝐿𝐿𝑊𝑊) . 

For global ancestry, we can show  

𝜌𝜌𝐿𝐿�̅�𝐴 
2 = �

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿
��

𝜑𝜑𝑙𝑙2

𝜑𝜑
� 

= 𝜌𝜌𝐿𝐿𝐴𝐴 
2 �

𝜑𝜑𝑙𝑙2

𝜑𝜑
� . 

The partial correlation is complex. The numerator of  𝜌𝜌𝑌𝑌�̅�𝐴,𝐿𝐿 
2 becomes (Ψ + 𝜓𝜓)2, where 

𝜓𝜓 = 2𝑎𝑎𝑞𝑞(1 − 𝑞𝑞)�𝐷𝐷∗Δ𝐿𝐿(1− 𝜑𝜑𝑙𝑙) − 𝑝𝑝𝐿𝐿∗(1− 𝑝𝑝𝐿𝐿∗)Δ�1− 𝜑𝜑𝑔𝑔�� . 

The denominator is more complex and is not necessary to evaluate confounding, since 

we need only evaluate whether the numerator is 0, so we do not derive the 

denominator here.  

A.2.5 Regression Parameters 

Regression parameters for adjusted and unadjusted models can be derived as a function 

of the correlation coefficients. First consider the unadjusted model: 𝐸𝐸(𝑌𝑌|𝐿𝐿) = 𝛽𝛽𝐿𝐿0 +

𝛽𝛽𝐿𝐿 𝐿𝐿 . We can show that 

𝛽𝛽𝐿𝐿 =
𝐶𝐶𝑌𝑌𝐿𝐿
𝑉𝑉𝐿𝐿

 

=
𝑎𝑎𝐷𝐷∗

𝑝𝑝𝐿𝐿∗(1 − 𝑝𝑝𝐿𝐿∗) 

=
𝑎𝑎𝐷𝐷∗

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿
 . 
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Next, we consider the model adjusted for local ancestry: 𝐸𝐸(𝑌𝑌|𝐿𝐿,𝐴𝐴𝑙𝑙) = 𝛽𝛽𝐿𝐿0∗ + 𝛽𝛽𝐿𝐿∗𝐿𝐿 +

𝛽𝛽𝐿𝐿𝐴𝐴∗ 𝐴𝐴𝑙𝑙 . We can show 

𝛽𝛽𝐿𝐿∗ =
𝐶𝐶𝑌𝑌𝐿𝐿𝑉𝑉𝐴𝐴 − 𝐶𝐶𝑌𝑌𝐴𝐴𝐶𝐶𝐿𝐿𝐴𝐴

(𝑉𝑉𝐿𝐿𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐿𝐿𝐴𝐴2 )  

=
𝑎𝑎(1 − 𝑟𝑟𝑔𝑔𝑙𝑙)𝑊𝑊

𝛾𝛾𝐿𝐿
 . 

Finally, we consider the model adjusted for global ancestry: 𝐸𝐸(𝑌𝑌|𝐿𝐿, �̅�𝐴) = 𝛽𝛽𝐿𝐿0′ + 𝛽𝛽𝐿𝐿′𝐿𝐿 +

𝛽𝛽𝐿𝐿�̅�𝐴
′ �̅�𝐴 . The genotype coefficient for this adjusted model is 

𝛽𝛽𝐿𝐿′ =
𝐶𝐶𝑌𝑌𝐿𝐿𝑉𝑉�̅�𝐴 − 𝐶𝐶𝑌𝑌�̅�𝐴𝐶𝐶𝐿𝐿�̅�𝐴
�𝑉𝑉𝐿𝐿𝑉𝑉�̅�𝐴 − 𝐶𝐶𝐿𝐿�̅�𝐴

2 �
 

=
𝑎𝑎�𝐷𝐷∗𝜑𝜑 − 𝑞𝑞(1 − 𝑞𝑞)∆∆𝐿𝐿𝜑𝜑𝑔𝑔𝜑𝜑𝑙𝑙�

�𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿�𝜑𝜑 − 𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2𝜑𝜑𝑙𝑙2
 

=
𝑎𝑎 �𝐷𝐷∗ − 𝑞𝑞(1 − 𝑞𝑞)∆∆𝐿𝐿

𝜑𝜑𝑔𝑔𝜑𝜑𝑙𝑙
𝜑𝜑 �

𝑞𝑞(1 − 𝑞𝑞)∆𝐿𝐿2 �1 − 𝜑𝜑𝑙𝑙2
𝜑𝜑 � + 𝛾𝛾𝐿𝐿

 . 
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Appendix B.1. Variances, covariances, correlations and regression parameters for 

testing at the QTL in a stratified admixed population model (2 strata). 

B.1.1 Definitions  

Consider a stratified population that is composed of two admixed subpopulations 

(subpopulation 0 and 1), where each admixed subpopulation is derived from two 

ancestral populations (ancestry 0 and 1). There is random mating within admixed 

subpopulations but not between (see main text for details). We define the following 

probabilities: 

𝑄𝑄 =the probability that a random individual from the whole population is from 

subpopulation 1.  

𝑞𝑞𝑠𝑠 = probability a locus is from ancestral population 1, for subpopulation 𝑠𝑠 = 0,1. 

Consider the QTL defined in Appendix A with alleles T1, T2 and with 

𝑝𝑝𝑖𝑖=the frequency of allele T1 from ancestral population 𝑖𝑖, for 𝑖𝑖 = 0,1. It follows that the 

allele frequency in subpopulation 𝑠𝑠 is  

𝑝𝑝𝑠𝑠∗ = 𝑞𝑞𝑠𝑠𝑝𝑝1 + (1 − 𝑞𝑞𝑠𝑠)𝑝𝑝0; 

and the allele frequency in the stratified population as a whole is  

𝑝𝑝′ = 𝑄𝑄𝑝𝑝1∗ + (1 − 𝑄𝑄)𝑝𝑝0∗ 

= 𝛼𝛼𝑝𝑝1 + (1 − 𝛼𝛼)𝑝𝑝0 , 

where 𝛼𝛼 = 𝑄𝑄𝑞𝑞1 + (1 − 𝑄𝑄)𝑞𝑞0is the probability that a haplotype (at any specific position) 

sampled from the stratified population is from ancestral population 1. 

We define the following functions of parameters: 
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 ∆= 𝑝𝑝1 − 𝑝𝑝0  

𝛾𝛾′ = 𝛼𝛼𝑝𝑝1(1 − 𝑝𝑝1) + (1 − 𝛼𝛼)𝑝𝑝0(1 − 𝑝𝑝0)  

𝛿𝛿 = 𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)2 

𝜔𝜔 = 𝛼𝛼(1 − 𝛼𝛼) − 𝛿𝛿 = 𝑄𝑄𝑞𝑞1(1 − 𝑞𝑞1) + (1 −𝑄𝑄)𝑞𝑞0(1 − 𝑞𝑞0) .  

The random variables for genotypic values (𝐺𝐺), local ancestry (𝐴𝐴) and global ancestry (�̅�𝐴) 

are defined as in Appendix A. For the stratified population model, we assume that the 

trait value depends on both the QTL genotype and which subpopulation the individual is 

from. Specifically, we assume that for subpopulation 0, the trait follows this distribution: 

𝑌𝑌~�
𝑁𝑁(𝑎𝑎,𝜎𝜎2)      if 𝑇𝑇1𝑇𝑇1
𝑁𝑁(0,𝜎𝜎2)     if 𝑇𝑇1𝑇𝑇2
𝑁𝑁(−𝑎𝑎,𝜎𝜎2) if 𝑇𝑇2𝑇𝑇2

. 

For subpopulation 1, we assume that the mean values of the trait are shifted by a 

constant 𝑐𝑐, such that the trait distribution is the following: 

𝑌𝑌~�
𝑁𝑁(𝑎𝑎 + 𝑐𝑐,𝜎𝜎2)      if 𝑇𝑇1𝑇𝑇1
𝑁𝑁(𝑐𝑐,𝜎𝜎2)               if 𝑇𝑇1𝑇𝑇2
𝑁𝑁(−𝑎𝑎 + 𝑐𝑐,𝜎𝜎2)   if 𝑇𝑇2𝑇𝑇2

 . 

B.1.2 Means and Variances 

As before, we write 𝐺𝐺 = 𝑋𝑋1 + 𝑋𝑋2 − 1, where 𝑋𝑋1 and 𝑋𝑋2 are Bernoulli random variables 

(scoring the presence of the T1 allele on each haplotype) with probability 𝑝𝑝′. However, 

because there is random mating within subpopulations, but not between 

subpopulations, the haplotypes are not independent. It is straightforward to show that 

𝜇𝜇𝑋𝑋1 = 𝜇𝜇𝑋𝑋2 = 𝑝𝑝′,   𝑉𝑉𝑋𝑋1 = 𝑉𝑉𝑋𝑋2 = 𝑝𝑝′(1 − 𝑝𝑝′) and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋2) = 𝛿𝛿∆2. This gives: 

𝜇𝜇𝐺𝐺 = 2𝑝𝑝′ − 1                and                   𝑉𝑉𝐺𝐺 = 2𝑝𝑝′(1 − 𝑝𝑝′) + 2𝛿𝛿∆2 
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                   = 2(𝑝𝑝0 + ∆𝛼𝛼) − 1                               = 2[𝛾𝛾′ + (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆2] . 

Y follows a mixture distribution, dependent on 𝐺𝐺 and subpopulation membership. If we 

let 𝑆𝑆 = 1 if a random individual is from subpopulation 1, then 𝑆𝑆 is Bernoulli with 

probability parameter 𝑄𝑄. Then 𝑌𝑌 = 𝑎𝑎𝐺𝐺 + 𝑐𝑐𝑆𝑆 + 𝑁𝑁(0,𝜎𝜎2). This gives: 

𝜇𝜇𝑌𝑌 = 𝑎𝑎𝜇𝜇𝐺𝐺 + 𝑐𝑐𝑄𝑄  

      = 𝑎𝑎(2𝑝𝑝′ − 1) + 𝑐𝑐𝑄𝑄   

and 

 𝑉𝑉𝑌𝑌 = 𝑎𝑎2𝑉𝑉𝐺𝐺 + 𝑐𝑐2𝑉𝑉𝑆𝑆 + 2𝑎𝑎𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑆𝑆) + 𝜎𝜎2 

= 2𝑎𝑎2[𝑝𝑝′(1 − 𝑝𝑝′) + 𝛿𝛿∆2] + 𝑐𝑐2𝑄𝑄(1 −𝑄𝑄) + 4𝑎𝑎𝑐𝑐(𝑞𝑞1 − 𝑞𝑞0)𝑄𝑄(1 −𝑄𝑄)∆ + 𝜎𝜎2. 

Local ancestry at any locus is the average of two correlated random Bernoulli random 

variables (A1 and A2, for haplotypes 1 and 2) with  𝜇𝜇𝐴𝐴1 = 𝜇𝜇𝐴𝐴2 = 𝛼𝛼,   𝑉𝑉𝐴𝐴1 = 𝑉𝑉𝐴𝐴2 = 𝛼𝛼(1 −

𝛼𝛼) and 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴1,𝐴𝐴2) = 𝛿𝛿. This gives 

𝜇𝜇𝐴𝐴 = 𝛼𝛼                     and                          𝑉𝑉𝐴𝐴 =
[𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿]

2
. 

For global ancestry, we assume as before that there are 𝑚𝑚 loci on each of 𝐾𝐾 

chromosomes, and that 𝑟𝑟𝑗𝑗𝑗𝑗 and 𝑟𝑟𝑈𝑈 are the recombination probabilities between the 𝑗𝑗th 

and 𝑘𝑘th locus on the same chromosome and unlinked loci on different chromosomes, 

respectively. We write global ancestry as an average over the two haplotypes: 

�̅�𝐴 = 1/2�
∑ 𝐴𝐴1𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
+
∑ 𝐴𝐴2𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑀𝑀
� . 

Unlike the single admixed population model (Appendix A), 𝐴𝐴1 and 𝐴𝐴2 are correlated due 

to the population structure. For each locus we have:  

𝜇𝜇𝐴𝐴1 = 𝜇𝜇𝐴𝐴2 = 𝛼𝛼 ,              𝑉𝑉𝐴𝐴1 = 𝑉𝑉𝐴𝐴2 = 𝛼𝛼(1 − 𝛼𝛼),     𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗 ,𝐴𝐴2𝑗𝑗� = 𝛿𝛿 . 
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For two loci 𝑗𝑗 and 𝑘𝑘 on the same chromosome: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗,𝐴𝐴1𝑗𝑗� = 𝛼𝛼(1 − 𝛼𝛼)�1 − 𝑟𝑟𝑖𝑖𝑗𝑗� + 𝛿𝛿𝑟𝑟𝑗𝑗𝑗𝑗 . 

For two loci 𝑗𝑗 and 𝑗𝑗’ on different chromosomes (but the same haplotype): 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗 ,𝐴𝐴1𝑗𝑗′� = 𝛼𝛼(1 − 𝛼𝛼)(1 − 𝑟𝑟𝑈𝑈) + 𝛿𝛿𝑟𝑟𝑈𝑈 . 

For loci on different haplotypes: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗,𝐴𝐴2𝑗𝑗� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴1𝑗𝑗 ,𝐴𝐴2𝑗𝑗′� = 𝛿𝛿 . 

The mean of global ancestry is unaffected by the correlation and is the same as for local 

ancestry: 

𝜇𝜇�̅�𝐴 = 𝛼𝛼 . 

The variance is more complicated: 

𝑉𝑉�̅�𝐴 = 𝑉𝑉𝑎𝑎𝑟𝑟 �
∑ 𝐴𝐴1𝑗𝑗𝑀𝑀
𝑗𝑗=1 + ∑ 𝐴𝐴2𝑗𝑗𝑀𝑀

𝑗𝑗=1

2𝑀𝑀
� 

= 𝑉𝑉𝑎𝑎𝑟𝑟 �
∑ 𝐴𝐴1𝑗𝑗𝑀𝑀
𝑗𝑗=1

2𝑀𝑀
� + 𝑉𝑉𝑎𝑎𝑟𝑟 �

∑ 𝐴𝐴2𝑗𝑗𝑀𝑀
𝑗𝑗=1

2𝑀𝑀
� +

1
2𝑀𝑀2��𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴1𝑖𝑖,𝐴𝐴2𝑗𝑗) .

𝑀𝑀

𝑗𝑗=1

𝑀𝑀

𝑗𝑗=1

 

Following the same expansion from Appendix A, we can show  

𝑉𝑉𝑎𝑎𝑟𝑟 �
∑ 𝐴𝐴1𝑗𝑗𝑀𝑀
𝑗𝑗=1

2𝑀𝑀
� = 𝑉𝑉𝑎𝑎𝑟𝑟 �

∑ 𝐴𝐴2𝑗𝑗𝑀𝑀
𝑗𝑗=1

2𝑀𝑀
� =

1
4

[(𝛼𝛼(1 − 𝛼𝛼) − 𝛿𝛿)𝜑𝜑 + 𝛿𝛿] , 

where 𝜑𝜑 = 1 − �𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈 −

1
𝑀𝑀𝑚𝑚

∑ ∑ 𝑟𝑟𝑗𝑗𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑗𝑗

𝑚𝑚
𝑗𝑗=1  as previously defined. We also easily see 

because of equality of ancestry covariances between different haplotypes that  

1
2𝑀𝑀2��𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴1𝑖𝑖,𝐴𝐴2𝑗𝑗)

𝑀𝑀

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

=
𝛿𝛿
2

 . 

It follows that 



18 
 

𝑉𝑉�̅�𝐴 =
1
2

[(𝛼𝛼(1 − 𝛼𝛼) − 𝛿𝛿)𝜑𝜑 + 2𝛿𝛿] . 

The population membership variable, 𝑆𝑆, is binomial with 

𝜇𝜇𝑆𝑆 = 𝑄𝑄                     and                        𝑉𝑉𝑆𝑆 = 𝑄𝑄(1 − 𝑄𝑄) . 

B.1.3 Covariances 

Next, we derive the covariances between the random variables. The covariance 

between the trait and QTL genotype is 

𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺 + 𝑐𝑐𝐶𝐶𝐺𝐺𝑆𝑆 . 

With some algebra we can show that  

𝐶𝐶𝐺𝐺𝑆𝑆 = 2𝑄𝑄(1 −𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆ , 

which gives 

𝐶𝐶𝑌𝑌𝐺𝐺 = 2[𝑎𝑎(𝑝𝑝′(1 − 𝑝𝑝′) + 𝛿𝛿∆2) + 2𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆] . 

To derive the covariance between the QTL genotype and the local ancestry at the QTL 

write 𝐺𝐺 and 𝐴𝐴 in terms of the two haplotypes as in Appendix A. It follows that  

𝐶𝐶𝐺𝐺𝐴𝐴 = 𝐶𝐶𝐶𝐶𝐶𝐶 �(𝑋𝑋1 + 𝑋𝑋2 − 1),
𝐴𝐴1 + 𝐴𝐴2

2
� 

=
1
2
�𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴1) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝐴𝐴2) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴2) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝐴𝐴1)� . 

It is not hard to show that  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴1) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝐴𝐴2) = 𝛼𝛼(1 − 𝛼𝛼)∆ 

and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴2) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝐴𝐴2) = 𝛿𝛿∆ , 

which gives 
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𝐶𝐶𝐺𝐺𝐴𝐴 = (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆ 

and 

𝐶𝐶𝑌𝑌𝐴𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺𝐴𝐴 + 𝑐𝑐𝐶𝐶𝑆𝑆𝐴𝐴 

        = 𝑎𝑎(𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆ + 𝑐𝑐𝑄𝑄(1 −𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0) . 

For covariances with global ancestry, we assume, without loss of generality, that the 

QTL is at the 𝑔𝑔th locus on the first chromosome. Then  

𝐶𝐶𝐺𝐺�̅�𝐴 =
1
𝑀𝑀
�𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺,𝐴𝐴.𝑗𝑗

𝑀𝑀

𝑗𝑗=1

) 

=
1
𝑀𝑀

[𝐶𝐶𝐺𝐺𝐴𝐴 + �𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺,𝐴𝐴.𝑗𝑗

𝑀𝑀

𝑗𝑗≠𝑔𝑔

)] . 

The second term sums over loci on the same chromosome as the QTL and different 

chromosomes from the QTL. For locus j on the same chromosome with the QTL,  

𝐶𝐶𝐶𝐶𝐶𝐶�𝐺𝐺,𝐴𝐴.𝑗𝑗� = (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆�1 − 𝑟𝑟𝑔𝑔𝑗𝑗� + 2𝛿𝛿∆𝑟𝑟𝑔𝑔𝑗𝑗. 

For locus j on a different chromosome from the QTL, 

𝐶𝐶𝐶𝐶𝐶𝐶�𝐺𝐺,𝐴𝐴.𝑗𝑗� = (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆(1 − 𝑟𝑟𝑢𝑢) + 2𝛿𝛿∆𝑟𝑟𝑢𝑢. 

This gives 

𝐶𝐶𝐺𝐺�̅�𝐴 = (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆𝜑𝜑𝑔𝑔 + 2𝛿𝛿∆�1 − 𝜑𝜑𝑔𝑔� 

= (𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿)∆ . 

The covariance between the trait and global ancestry is a function of the covariance 

between the QTL genotype and global ancestry: 

𝐶𝐶𝑌𝑌�̅�𝐴 = 𝑎𝑎𝐶𝐶𝐺𝐺�̅�𝐴 + 𝑐𝑐𝐶𝐶𝑆𝑆�̅�𝐴 . 

It is not hard to show that 𝐶𝐶𝑆𝑆�̅�𝐴  = 𝑄𝑄(1 − 𝑄𝑄) (𝑞𝑞1 − 𝑞𝑞0), which gives: 
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𝐶𝐶𝑌𝑌�̅�𝐴 = 𝑎𝑎�(𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆𝜑𝜑𝑔𝑔 + 2𝛿𝛿∆�1 − 𝜑𝜑𝑔𝑔�� + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0) 

= 𝑎𝑎(𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿)∆ + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0) . 

B.1.4 Correlations 

With variances and covariances derived, we now derive relevant correlations to assess 

confounding. First, we consider local ancestry. From the main text, we saw that we need 

to examine two correlations to assess confounding, 𝜌𝜌𝐺𝐺𝐴𝐴 
2 and 𝜌𝜌𝑌𝑌𝐴𝐴,𝐺𝐺

2 . It is straightforward 

to show  

𝜌𝜌𝐺𝐺𝐴𝐴 
2 =

(𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆2

(𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆2 + 𝛾𝛾′
 

=
(𝜔𝜔 + 2𝛿𝛿)∆2

(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′
 . 

The partial correlation is 

 𝜌𝜌𝑌𝑌𝐴𝐴,𝐺𝐺 
2 =

(𝐶𝐶𝑌𝑌𝐴𝐴𝑉𝑉𝐺𝐺 − 𝐶𝐶𝑌𝑌𝐺𝐺𝐶𝐶𝐺𝐺𝐴𝐴)2

(𝑉𝑉𝑌𝑌𝑉𝑉𝐺𝐺 − 𝐶𝐶𝑌𝑌𝐺𝐺2 )(𝑉𝑉𝐴𝐴𝑉𝑉𝐺𝐺 − 𝐶𝐶𝐺𝐺𝐴𝐴2 ) 

=
2𝑐𝑐2𝑄𝑄(1 −𝑄𝑄)𝛿𝛿𝛾𝛾′

2𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)𝛿𝛿𝛾𝛾′ + �(𝜔𝜔 + 2𝛿𝛿)∆2+𝛾𝛾′�(𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)𝜔𝜔 + (𝜔𝜔 + 2𝛿𝛿)𝜎𝜎2)
 . 

For global ancestry, the correlations are the following: 

𝜌𝜌𝐺𝐺�̅�𝐴 
2 =

�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�
2
∆2

[(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′](𝜔𝜔𝜑𝜑 + 2𝛿𝛿) 

 𝜌𝜌𝑌𝑌�̅�𝐴,𝐺𝐺 
2

=
2𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)𝛿𝛿[𝜔𝜔∆2(1 − 𝜑𝜑𝑔𝑔)+𝛾𝛾′]2

�(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)[(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′] − ∆2�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�
2
� �𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)(𝜔𝜔∆2 + 𝛾𝛾′) + 𝜎𝜎2[(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′]�

 . 

For population membership, we have 
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𝜌𝜌𝐺𝐺𝑆𝑆 
2 =

2∆2𝛿𝛿
2∆2𝛿𝛿 + (𝜔𝜔∆2 + 𝛾𝛾′)

 

 𝜌𝜌𝑌𝑌𝑆𝑆,𝐺𝐺 
2 =

𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)(𝜔𝜔∆2+𝛾𝛾′)
𝑐𝑐2𝑄𝑄(1 − 𝑄𝑄)(𝜔𝜔∆2+𝛾𝛾′) + [(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′]𝜎𝜎2

 . 

 

B.1.5 Regression Parameters 

We first consider the unadjusted from Appendix A.1.5. Given the calculations in B.1.3, 

we have 

𝛽𝛽𝐺𝐺 =
𝐶𝐶𝑌𝑌𝐺𝐺
𝑉𝑉𝐺𝐺

 

= 𝑎𝑎 +
𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆

(𝜔𝜔 + 2𝛿𝛿)∆2+𝛾𝛾′
 . 

For the model adjusted by local ancestry, we have the unstandardized multiple 

regression coefficient for genotype: 

𝛽𝛽𝐺𝐺∗ =
𝐶𝐶𝑌𝑌𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝑌𝑌𝐴𝐴𝐶𝐶𝐺𝐺𝐴𝐴

(𝑉𝑉𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐺𝐺𝐴𝐴2 )  

=
(𝑎𝑎𝑉𝑉𝐺𝐺 + 𝑐𝑐𝐶𝐶𝐺𝐺𝑆𝑆)𝑉𝑉𝐴𝐴 − (𝑎𝑎𝐶𝐶𝐺𝐺𝐴𝐴+𝑐𝑐𝐶𝐶𝑆𝑆𝐴𝐴)𝐶𝐶𝐺𝐺𝐴𝐴

(𝑉𝑉𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐺𝐺𝐴𝐴2 )  

= 𝑎𝑎 +
𝑐𝑐(𝐶𝐶𝐺𝐺𝑆𝑆𝑉𝑉𝐴𝐴 − 𝐶𝐶𝑆𝑆𝐴𝐴𝐶𝐶𝐺𝐺𝐴𝐴)

(𝑉𝑉𝐺𝐺𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐺𝐺𝐴𝐴2 )  . 

Recognizing that 𝐶𝐶𝐺𝐺𝑆𝑆 = 2∆𝐶𝐶𝑆𝑆𝐴𝐴 and 𝐶𝐶𝐺𝐺𝐴𝐴 = 2∆𝑉𝑉𝐴𝐴, shows that the second term is 0, and 

thus 𝛽𝛽𝐺𝐺∗ = 𝑎𝑎. 

For the model adjusted by global ancestry,  
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𝛽𝛽𝐺𝐺′ = 𝑎𝑎 + 𝑐𝑐
𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)𝜔𝜔∆�𝜑𝜑 − 𝜑𝜑𝑔𝑔�

�(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)(𝜔𝜔 + 2𝛿𝛿) − �𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�
2
� ∆2 + 𝛾𝛾′(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)

 

= 𝑎𝑎 + 𝑐𝑐
𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)𝜔𝜔∆

(𝜑𝜑 − 𝜑𝜑𝑔𝑔)
(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)

�(𝜔𝜔 + 2𝛿𝛿) −
�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�

2

(𝜔𝜔𝜑𝜑 + 2𝛿𝛿) � ∆2 + 𝛾𝛾′
  . 

 

For the model adjusted for membership: 𝐸𝐸(𝑌𝑌|𝐺𝐺, 𝑆𝑆) = 𝛽𝛽0′′ + 𝛽𝛽𝐺𝐺′′𝐺𝐺 + 𝛽𝛽𝑆𝑆′′𝑆𝑆 , it is not hard 

to show that  

𝛽𝛽𝐺𝐺′′ =
𝐶𝐶𝑌𝑌𝐺𝐺𝑉𝑉𝑆𝑆 − 𝐶𝐶𝑌𝑌𝑆𝑆𝐶𝐶𝐺𝐺𝑆𝑆

(𝑉𝑉𝐺𝐺𝑉𝑉𝑆𝑆 − 𝐶𝐶𝐺𝐺𝑆𝑆2 )  

=
(𝑎𝑎𝑉𝑉𝐺𝐺 + 𝑐𝑐𝐶𝐶𝐺𝐺𝑆𝑆)𝑉𝑉𝑆𝑆 − (𝑎𝑎𝐶𝐶𝐺𝐺𝑆𝑆+𝑐𝑐𝑉𝑉𝑆𝑆)𝐶𝐶𝐺𝐺𝑆𝑆

(𝑉𝑉𝐺𝐺𝑉𝑉𝑆𝑆 − 𝐶𝐶𝐺𝐺𝑆𝑆2 )  

= 𝑎𝑎 . 
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Appendix B.2. Variances, covariances, correlations and regression parameters for 

testing at a marker in a stratified admixed population model (2 strata). 

B.2.1 Definitions  

Consider the stratified population defined in Appendix B.1 but now suppose that we are 

testing a marker locus that is not the QTL. Parameters for the QTL are defined in 

Appendix B.1. As in Appendix A.2, we let the marker locus have two alleles, L1, L2, with 

𝑝𝑝𝐿𝐿𝑖𝑖=the frequency of allele L1 in ancestral population 𝑖𝑖, for 𝑖𝑖 = 0,1.  

and let ∆𝐿𝐿= 𝑝𝑝𝐿𝐿1 − 𝑝𝑝𝐿𝐿0. 

The allele frequency at the marker in subpopulation 𝑘𝑘 is  

𝑝𝑝𝐿𝐿𝑗𝑗∗ = 𝑞𝑞𝑗𝑗𝑝𝑝𝐿𝐿1 + (1 − 𝑞𝑞𝑗𝑗)𝑝𝑝𝐿𝐿0 

and the allele frequency in the stratified population as a whole is  

𝑝𝑝𝐿𝐿∗∗ = 𝑄𝑄𝑝𝑝𝐿𝐿1∗ + (1 − 𝑄𝑄)𝑝𝑝𝐿𝐿0∗  

= 𝛼𝛼𝑝𝑝𝐿𝐿1 + (1 − 𝛼𝛼)𝑝𝑝𝐿𝐿0 , 

where 𝛼𝛼 = 𝑄𝑄𝑞𝑞1 + (1 − 𝑄𝑄)𝑞𝑞0 as before. 

The disequilibrium coefficient in ancestral population 𝑖𝑖,𝐷𝐷𝑖𝑖, is defined in Appendix 

A.2.Following the derivations in Appendix A.2, we can write the disequilibrium 

coefficient in the 𝑘𝑘th admixed subpopulation (𝑗𝑗 = 0,1) as: 

𝐷𝐷𝑗𝑗∗ = (1 − 𝑟𝑟𝑔𝑔𝑙𝑙)(𝑊𝑊𝑗𝑗 + 𝑞𝑞𝑗𝑗(1 − 𝑞𝑞𝑗𝑗)∆∆𝐿𝐿) , 

where 𝑊𝑊𝑗𝑗 = 𝑞𝑞𝑗𝑗𝐷𝐷1 + (1 − 𝑞𝑞𝑗𝑗)𝐷𝐷0. Finally considering the stratified population as a 

whole, we can write the disequilibrium coefficient as: 

𝐷𝐷∗∗ = 𝑄𝑄𝐷𝐷1∗ + (1 −𝑄𝑄)𝐷𝐷0∗ + 𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)2∆∆𝐿𝐿 
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= �1 − 𝑟𝑟𝑔𝑔𝑙𝑙�(𝑊𝑊∗ + 𝜔𝜔∆∆𝐿𝐿) + 𝛿𝛿∆∆𝐿𝐿 , 

where 𝑊𝑊∗ = 𝑄𝑄𝑊𝑊1 + (1 − 𝑄𝑄)𝑊𝑊0 and other parameters are defined in previous 

appendices. 

Finally, we assume that the trait follows the same conditional normal distribution 

defined in Appendix B.1.1 dependent on the QTL genotype and the subpopulation 

membership. 

B.2.2 Means and Variances  

The mean and variance for the genotype random variable at the marker, 𝐿𝐿, are 

analogous to those derived for the QTL in B.1.2: 

𝜇𝜇𝐿𝐿 = 2𝑝𝑝𝐿𝐿′ − 1                 and                  𝑉𝑉𝐿𝐿 = 2𝑝𝑝𝐿𝐿′ (1− 𝑝𝑝𝐿𝐿′ ) + 2∆𝐿𝐿2𝛿𝛿 

                 = 2(𝑝𝑝𝐿𝐿0 + ∆𝐿𝐿𝛼𝛼) − 1                           = 2[𝛾𝛾𝐿𝐿′ + (𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆𝐿𝐿2] , 

where 𝛾𝛾𝐿𝐿′ = 𝛼𝛼𝑝𝑝𝐿𝐿1(1 − 𝑝𝑝𝐿𝐿1) + (1 − 𝛼𝛼)𝑝𝑝𝐿𝐿0(1 − 𝑝𝑝𝐿𝐿0). 

The means and variances for the trait, 𝑌𝑌, and global ancestry, �̅�𝐴, are the same as derived 

in Appendix B.1.2.  

The mean and variance for the measure of local ancestry at the marker, 𝐴𝐴.𝑙𝑙, are the 

same as for the QTL: 

𝜇𝜇𝐴𝐴𝑙𝑙 = 𝛼𝛼                          and                       𝑉𝑉𝐴𝐴𝑙𝑙 =
[𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿]

2
. 

B.2.3 Covariances 

To derive the covariance between the QTL and the marker genotype random variables, 

we write G and L as a sum of Bernoulli random variables as in A.2.3: 

𝐺𝐺 = 𝑋𝑋1 + 𝑋𝑋2 − 1 and  𝐿𝐿 = 𝑋𝑋𝐿𝐿1 + 𝑋𝑋𝐿𝐿2 − 1, 
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where 𝑋𝑋1 and 𝑋𝑋𝐿𝐿1 and Bernoulli random variables with probabilities 𝑝𝑝∗ and 𝑝𝑝𝐿𝐿∗, 

respectively. It follows that  

𝐶𝐶𝐺𝐺𝐿𝐿 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋𝐿𝐿1) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝑋𝑋𝐿𝐿2) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋𝐿𝐿2) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝑋𝑋𝐿𝐿1) . 

The first two terms represent the covariance between alleles on the same haplotype 

and is equivalent to the disequilibrium coefficient defined in B.2.1. 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋𝐿𝐿1) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝑋𝑋𝐿𝐿2) = 𝐷𝐷∗∗ . 

The second two terms represent the covariance between two alleles on different 

haplotypes in the same individual. We can show that  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋𝐿𝐿2) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋2,𝑋𝑋𝐿𝐿1) = 𝛿𝛿∆∆𝐿𝐿 , 

which gives 

𝐶𝐶𝐺𝐺𝐿𝐿 = 2(𝐷𝐷∗∗ + 𝛿𝛿∆∆𝐿𝐿) . 

To derive the covariance between the trait and marker genotype, we write 𝑌𝑌 = 𝑎𝑎𝐺𝐺 +

𝑐𝑐𝑆𝑆 + 𝑁𝑁(0,𝜎𝜎2), which implies that 𝐶𝐶𝑌𝑌𝐿𝐿 = 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝐿𝐿) + 𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆, 𝐿𝐿). It is not difficult to 

show that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆, 𝐿𝐿) = 2𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿 so that 

𝐶𝐶𝑌𝑌𝐿𝐿 = 2𝑎𝑎(𝐷𝐷∗∗ + 𝛿𝛿∆∆𝐿𝐿) + 2𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿 . 

The covariance between the marker genotype and local ancestry at the marker is the 

same as for the QTL, replacing QTL parameters with marker parameters: 

𝐶𝐶𝐿𝐿𝐴𝐴𝑙𝑙 = (𝜔𝜔 + 2𝛿𝛿)∆𝐿𝐿 . 

The same is true for global ancestry: 

𝐶𝐶𝐿𝐿�̅�𝐴 = (𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)∆𝐿𝐿 , 
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where 𝜑𝜑𝑙𝑙 = 1 − �𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈 −

1
𝑀𝑀
∑ 𝑟𝑟𝑙𝑙𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑙𝑙  (the final term is summed over all markers on the 

same chromosome with the marker being tested). 

Finally, we can show that the covariance between the QTL genotype and the local 

ancestry at the marker is  

𝐶𝐶𝐺𝐺𝐴𝐴𝑙𝑙 = �𝜔𝜔(1 − 𝑟𝑟𝑔𝑔𝑙𝑙) + 2𝛿𝛿�∆ . 

Writing 𝑌𝑌 = 𝑎𝑎𝐺𝐺 + 𝑐𝑐𝑆𝑆 + 𝑁𝑁(0,𝜎𝜎2) as before, it then follows that 𝐶𝐶𝑌𝑌𝐴𝐴𝑙𝑙 = 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺,𝐴𝐴𝑙𝑙) +

𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆,𝐴𝐴𝑙𝑙). The first term is defined immediately above and the second term is the 

same as 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆,𝐴𝐴) derived in B.1.3. 

𝐶𝐶𝑌𝑌𝐴𝐴𝑙𝑙 = 𝑎𝑎�𝜔𝜔(1 − 𝑟𝑟𝑔𝑔𝑙𝑙) + 2𝛿𝛿�∆ + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0) . 

B.2.4 Correlations  

We now derive the correlations necessary to assess confounding and validity. For local 

ancestry, we examine the following two correlations to assess confounding: 

𝜌𝜌𝐿𝐿𝐴𝐴 
2 =

(𝜔𝜔 + 2𝛿𝛿)∆𝐿𝐿2

(𝜔𝜔 + 2𝛿𝛿)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′
   . 

The partial correlation is more complicated. After some algebra, we can show that the 

numerator of the partial correlation is 

 𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝑟𝑟�𝜌𝜌𝑌𝑌𝐴𝐴,𝐿𝐿 
2 � ∝ Φ2 , 

where  

Φ = 𝑎𝑎��1 − 𝑟𝑟𝑔𝑔𝑙𝑙�(𝜔𝜔 + 2𝛿𝛿)(∆𝛾𝛾𝐿𝐿′ − 𝑊𝑊∗∆𝐿𝐿) + 2𝛿𝛿∆𝑟𝑟𝑔𝑔𝑔𝑔𝛾𝛾𝐿𝐿′� + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)𝛾𝛾𝐿𝐿′  . 

For global ancestry, we can show  
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𝜌𝜌𝐿𝐿�̅�𝐴 
2 =

�(𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)∆𝐿𝐿�
2

2[(𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′]
1
2 [(𝛼𝛼(1 − 𝛼𝛼) − 𝛿𝛿)𝜑𝜑 + 2𝛿𝛿]

 

=
�(𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)∆𝐿𝐿�

2

�(𝜔𝜔 + 2𝛿𝛿)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′�[𝜔𝜔𝜑𝜑 + 2𝛿𝛿]
  . 

The numerator of  𝜌𝜌𝑌𝑌�̅�𝐴,𝐿𝐿 
2 becomes 

𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝑟𝑟(𝜌𝜌𝑌𝑌�̅�𝐴,𝐿𝐿 
2 ) ∝ (Φ + Υ)2 , 

where  

Υ = 2𝜔𝜔 �𝑎𝑎 ��1 − 𝑟𝑟𝑔𝑔𝑔𝑔�(𝑊𝑊∗∆𝐿𝐿(1− 𝜑𝜑𝑙𝑙) − ∆𝛾𝛾𝐿𝐿′) + ∆𝛾𝛾𝐿𝐿′𝜑𝜑𝑔𝑔

+ ∆∆𝐿𝐿2�𝑟𝑟𝑔𝑔𝑔𝑔(𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)+(𝜑𝜑𝑔𝑔−𝜑𝜑𝑙𝑙)(𝜔𝜔 + 2𝛿𝛿)��

− [𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿2][(𝜑𝜑𝑙𝑙 − 1)]� . 

The denominator is more complex and is not necessary to evaluate confounding, since 

we need only evaluate whether the numerator is 0, so we do not derive the 

denominator here.  

B.2.5 Regression Parameters 

Regression parameters for adjusted and unadjusted models can be derived as a function 

of the correlation coefficients. For the unadjusted model we have 

𝛽𝛽𝐿𝐿 =
𝐶𝐶𝑌𝑌𝐿𝐿
𝑉𝑉𝐿𝐿

 

=
𝑎𝑎(𝐷𝐷∗∗ + 𝛿𝛿∆∆𝐿𝐿) + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿

(𝜔𝜔 + 2𝛿𝛿)∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′
 . 

For the model adjusted for local ancestry we have  
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𝛽𝛽𝐿𝐿∗ =
𝐶𝐶𝑌𝑌𝐿𝐿𝑉𝑉𝐴𝐴 − 𝐶𝐶𝑌𝑌𝐴𝐴𝐶𝐶𝐿𝐿𝐴𝐴

(𝑉𝑉𝐿𝐿𝑉𝑉𝐴𝐴 − 𝐶𝐶𝐿𝐿𝐴𝐴2 )  

=
𝑎𝑎�𝐷𝐷∗∗ + ∆∆𝐿𝐿�𝜔𝜔�1 − 𝑟𝑟𝑔𝑔𝑙𝑙� + 𝛿𝛿��

𝛾𝛾𝐿𝐿′
 

=
𝑎𝑎(1 − 𝑟𝑟𝑔𝑔𝑙𝑙)𝑊𝑊∗

𝛾𝛾𝐿𝐿′
 . 

For the model adjusted for global ancestry the genotype coefficient is 

𝛽𝛽𝐿𝐿′ =
𝐶𝐶𝑌𝑌𝐿𝐿𝑉𝑉�̅�𝐴 − 𝐶𝐶𝑌𝑌�̅�𝐴𝐶𝐶𝐿𝐿�̅�𝐴
�𝑉𝑉𝐿𝐿𝑉𝑉�̅�𝐴 − 𝐶𝐶𝐿𝐿�̅�𝐴

2 �
 

=
𝑎𝑎�(𝐷𝐷∗∗ + 𝛿𝛿∆∆𝐿𝐿)(𝜔𝜔𝜑𝜑 + 2𝛿𝛿) − ∆∆𝐿𝐿�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�(𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)� + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿𝜔𝜔(𝜑𝜑 − 𝜑𝜑𝑙𝑙)

∆𝐿𝐿2[(𝜔𝜔 + 2𝛿𝛿)(𝜑𝜑𝜔𝜔 + 2𝛿𝛿) − (𝜑𝜑𝑙𝑙𝜔𝜔 + 2𝛿𝛿)2] + 𝛾𝛾𝐿𝐿′(𝜑𝜑𝜔𝜔 + 2𝛿𝛿)  

=
𝑎𝑎 �(𝐷𝐷∗∗ + 𝛿𝛿∆∆𝐿𝐿)− ∆∆𝐿𝐿

�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�(𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)
(𝜔𝜔𝜑𝜑 + 2𝛿𝛿) � + 𝑐𝑐𝑄𝑄(1 − 𝑄𝑄)(𝑞𝑞1 − 𝑞𝑞0)∆𝐿𝐿𝜔𝜔

(𝜑𝜑 − 𝜑𝜑𝑙𝑙)
(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)

∆𝐿𝐿2 �(𝜔𝜔 + 2𝛿𝛿) − (𝜔𝜔𝜑𝜑𝑙𝑙 + 2𝛿𝛿)2
(𝜔𝜔𝜑𝜑 + 2𝛿𝛿) � + 𝛾𝛾𝐿𝐿′

  . 

Finally, for the model adjusted for subpopulation membership:  

𝐸𝐸(𝑌𝑌|𝐿𝐿, 𝑆𝑆) = 𝛽𝛽𝐿𝐿0′′ + 𝛽𝛽𝐿𝐿′′𝐿𝐿 + 𝛽𝛽𝐿𝐿𝑆𝑆′′ 𝑆𝑆 ,  

we have   

𝛽𝛽𝐿𝐿′′ =
𝐶𝐶𝑌𝑌𝐿𝐿𝑉𝑉𝑆𝑆 − 𝐶𝐶𝑌𝑌𝑆𝑆𝐶𝐶𝐿𝐿𝑆𝑆

(𝑉𝑉𝐿𝐿𝑉𝑉𝑆𝑆 − 𝐶𝐶𝐿𝐿𝑆𝑆2 )  

=
𝑎𝑎�1 − 𝑟𝑟𝑔𝑔𝑙𝑙�(𝑊𝑊∗ + 𝜔𝜔∆∆𝐿𝐿)

𝜔𝜔∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′
 

=
𝑎𝑎(𝐷𝐷∗∗ − 𝛿𝛿∆∆𝐿𝐿)
𝜔𝜔∆𝐿𝐿2 + 𝛾𝛾𝐿𝐿′

 . 
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Appendix B.3. Generalization of variances, covariances, correlations and regression 

parameters for testing at the QTL in a stratified admixed population model with >2 

strata. 

B.3.1 Definitions  

Here we extend the definitions in Appendix B.1.1 to >2 subpopulations. Consider a 

stratified population that is composed of Π admixed subpopulations, where each 

admixed subpopulation is derived from two ancestral populations (ancestry 0 and 1). As 

before, we assume random mating within admixed subpopulations but not between. 

We define the following probabilities: 

𝑄𝑄𝑠𝑠 =the probability that a random individual from the whole population is from 

subpopulation s.  

𝑞𝑞𝑠𝑠 = probability a locus is from ancestral population 1, for subpopulation 𝑠𝑠 = 0, … ,Π −

1. 

Consider the QTL defined previously with alleles T1, T2 and with 

𝑝𝑝𝑖𝑖=the frequency of allele T1 from ancestral population 𝑖𝑖, for 𝑖𝑖 = 0,1. It follows that the 

allele frequency in subpopulation 𝑠𝑠 is  

𝑝𝑝𝑠𝑠∗ = 𝑞𝑞𝑠𝑠𝑝𝑝1 + (1 − 𝑞𝑞𝑠𝑠)𝑝𝑝0; 

and the allele frequency in the stratified population as a whole is  

𝑝𝑝′ = �𝑄𝑄𝑠𝑠𝑝𝑝𝑠𝑠∗
Π−1

𝑠𝑠=0

 

= 𝛼𝛼𝑝𝑝1 + (1 − 𝛼𝛼)𝑝𝑝0 , 
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where 𝛼𝛼 = ∑ 𝑄𝑄𝑠𝑠Π−1
𝑠𝑠=0 𝑞𝑞𝑠𝑠 is the probability that a haplotype (at any specific position) 

sampled from the stratified population is from ancestral population 1. 

We define  ∆= 𝑝𝑝1 − 𝑝𝑝0 and 𝛾𝛾′ = 𝛼𝛼𝑝𝑝1(1− 𝑝𝑝1) + (1 − 𝛼𝛼)𝑝𝑝0(1 − 𝑝𝑝0) as before, and 

generalize the following definitions: 

𝛿𝛿 = �𝑄𝑄𝑠𝑠

Π−1

𝑠𝑠=0

(𝑞𝑞𝑠𝑠 − 𝛼𝛼)2 

𝜔𝜔 = 𝛼𝛼(1 − 𝛼𝛼) − 𝛿𝛿 = ∑ 𝑄𝑄𝑠𝑠Π−1
𝑠𝑠=0 𝑞𝑞𝑠𝑠(1 − 𝑞𝑞𝑠𝑠) .  

The random variables for genotypic values (𝐺𝐺), local ancestry (𝐴𝐴) and global ancestry (�̅�𝐴) 

are defined as before. We extend the trait distribution as follows for subpopulation s:  

𝑌𝑌~�
𝑁𝑁(𝑎𝑎 + 𝑐𝑐𝑠𝑠,𝜎𝜎2)      if 𝑇𝑇1𝑇𝑇1
𝑁𝑁(𝑐𝑐𝑠𝑠,𝜎𝜎2)               if 𝑇𝑇1𝑇𝑇2
𝑁𝑁(−𝑎𝑎 + 𝑐𝑐𝑠𝑠,𝜎𝜎2)   if 𝑇𝑇2𝑇𝑇2

 , 

where 𝑐𝑐𝑠𝑠 is a constant shift in the trait mean for the sth subpopulation. For our previous 

example (Appendix B.1) with two subpopulations 𝑐𝑐0 = 0 and 𝑐𝑐1 = 𝑐𝑐. 

B.3.2 Means and Variances 

The mean and variance of the genotype variable 𝐺𝐺 take the same form as before:  

𝜇𝜇𝐺𝐺 = 2(𝑝𝑝0 + ∆𝛼𝛼) − 1                and                   𝑉𝑉𝐺𝐺 = 2[𝛾𝛾′ + (𝜔𝜔 + 2𝛿𝛿)∆2] 

If we let 𝑆𝑆𝑠𝑠 = 1 if a random individual is from subpopulation s and 0 otherwise, then we 

can write 𝑌𝑌 = 𝑎𝑎𝐺𝐺 + ∑ 𝑐𝑐𝑠𝑠𝑆𝑆𝑠𝑠Π−1
𝑠𝑠=0 + 𝑁𝑁(0,𝜎𝜎2). This gives 

𝜇𝜇𝑌𝑌 = 𝑎𝑎𝜇𝜇𝐺𝐺 + �𝑐𝑐𝑠𝑠

Π−1

𝑠𝑠=0

𝑄𝑄𝑠𝑠 
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and 

 𝑉𝑉𝑌𝑌 = 𝑎𝑎2𝑉𝑉𝐺𝐺 + �𝑐𝑐𝑠𝑠2𝑄𝑄𝑠𝑠(1 − 𝑄𝑄𝑠𝑠) −
Π−1

𝑠𝑠=0

��𝑐𝑐𝑗𝑗𝑐𝑐𝑠𝑠𝑄𝑄𝑗𝑗𝑄𝑄𝑠𝑠
𝑗𝑗≠𝑠𝑠

Π−1

𝑠𝑠=0

+ 4𝑎𝑎∆� 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠

Π−1

𝑠𝑠−0

(𝑞𝑞𝑠𝑠 − 𝛼𝛼) + 𝜎𝜎2 

The means and variances for local and global ancestry take the same forms as before, 

with the extended parameter definitions above: 

𝜇𝜇𝐴𝐴 = 𝛼𝛼                     and                          𝑉𝑉𝐴𝐴 =
[𝜔𝜔 + 2𝛿𝛿]

2
, 

𝜇𝜇�̅�𝐴 = 𝛼𝛼                     and                          𝑉𝑉�̅�𝐴 =
[𝜔𝜔𝜑𝜑 + 2𝛿𝛿]

2
. 

Note that we use the relationship 𝛼𝛼(1 − 𝛼𝛼) + 𝛿𝛿 = 𝜔𝜔 + 2𝛿𝛿 to make the expressions 

more uniform, but it is not hard to show that these reduce to the same forms in the 

previous appendices. 

Finally, the population membership variable, 𝑺𝑺 = (𝑆𝑆0, … 𝑆𝑆Π−1), is multinomial with 

𝜇𝜇𝑆𝑆 = (𝑄𝑄, …𝑄𝑄Π−1)                 and             𝑉𝑉𝑆𝑆𝑖𝑖 = 𝑄𝑄𝑖𝑖(1 − 𝑄𝑄𝑖𝑖) ,𝐶𝐶𝐶𝐶𝐶𝐶�𝑆𝑆𝑖𝑖, 𝑆𝑆𝐽𝐽� = −𝑄𝑄𝑖𝑖𝑄𝑄𝑗𝑗. 

B.3.3 Covariances 

The covariances involving the trait random variable for this generalized model change 

form as follows: 

𝐶𝐶𝑌𝑌𝐺𝐺 = 𝑎𝑎𝑉𝑉𝐺𝐺 + 2Δ∑ 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)Π−1
𝑠𝑠=0  , 

       𝐶𝐶𝑌𝑌𝐴𝐴  = 𝑎𝑎(𝜔𝜔 + 2𝛿𝛿)∆ + �𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)
Π−1

𝑠𝑠=0

 , 

𝐶𝐶𝑌𝑌�̅�𝐴 = 𝑎𝑎(𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿)∆ + �𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)
Π−1

𝑠𝑠=0

  . 
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The forms of the covariances between genotype and ancestry variables remain the 

same as derived before:  

𝐶𝐶𝐺𝐺𝐴𝐴 = (𝜔𝜔 + 2𝛿𝛿)∆, 

𝐶𝐶𝐺𝐺�̅�𝐴 = (𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿)∆ . 

B.3.4 Correlations 

The correlations necessary to address confounding generalize as follow. For local 

ancestry,  

𝜌𝜌𝐺𝐺𝐴𝐴 
2 =

(𝜔𝜔 + 2𝛿𝛿)∆2

(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′
 . 

𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝑟𝑟(𝜌𝜌𝑌𝑌𝐴𝐴,𝐺𝐺 
2 ) ∝ 2𝛾𝛾′ �� 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)

Π−1

𝑠𝑠=0

�

2

 . 

For global ancestry, the correlations are the following: 

𝜌𝜌𝐺𝐺�̅�𝐴 
2 =

�𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�
2
∆2

[(𝜔𝜔 + 2𝛿𝛿)∆2 + 𝛾𝛾′](𝜔𝜔𝜑𝜑 + 2𝛿𝛿) 

 𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝑟𝑟(𝜌𝜌𝑌𝑌�̅�𝐴,𝐺𝐺 
2 ) ∝ 2 �� 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)

Π−1

𝑠𝑠=0

�

2

[𝜔𝜔∆2(1 − 𝜑𝜑𝑔𝑔)+𝛾𝛾′]2 . 

As in the case of two strata, these equations show that ancestry (global and local) is 

generally a confounder unless ∆= 0, 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 ∀𝑖𝑖, 𝑗𝑗 or 𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑗𝑗  ∀𝑖𝑖, 𝑗𝑗. 

B.3.5 Regression Parameters 
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The regression parameters also generalize as we would expect: For the unadjusted 

model, we have 

𝛽𝛽𝐺𝐺 = 𝑎𝑎 +
∆∑ 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)Π−1

𝑠𝑠=0
(𝜔𝜔 + 2𝛿𝛿)∆2+𝛾𝛾′

 . 

For the model adjusted by local ancestry, we have  

𝛽𝛽𝐺𝐺∗ = 𝑎𝑎 

For the model adjusted by global ancestry,  

𝛽𝛽𝐺𝐺′ = 𝑎𝑎 +
𝜔𝜔∆�𝜑𝜑 − 𝜑𝜑𝑔𝑔�∑ 𝑐𝑐𝑠𝑠𝑄𝑄𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝛼𝛼)Π−1

𝑠𝑠=0

�(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)(𝜔𝜔 + 2𝛿𝛿) − �𝜔𝜔𝜑𝜑𝑔𝑔 + 2𝛿𝛿�
2
� ∆2 + 𝛾𝛾′(𝜔𝜔𝜑𝜑 + 2𝛿𝛿)

 

These formulas lead to the same conclusion as the two-strata case that only the local-

ancestry adjusted model estimates the genetic effect 𝑎𝑎. Notably, though if 𝜑𝜑 ≈ 𝜑𝜑𝑔𝑔, the 

bias in the global-ancestry adjusted model becomes small. 

It is not as simple to derive the regression coefficient for the model adjusted for 

subpopulation membership because this requires partialling out multiple indicator 

variables for each Π − 1 strata. Intuitively however, it makes sense that with full 

adjustment for membership, the genotype term will estimate the true genetic effect 𝑎𝑎 

as it does in the two-stratum case.  
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Appendix C. Derivations for 𝜑𝜑 and 𝜑𝜑𝑙𝑙. 

C.1 We begin with the function 𝜑𝜑U: 

𝜑𝜑 = 1 − �
𝐾𝐾 − 1
𝐾𝐾

�𝑟𝑟𝑈𝑈 −
1
𝑀𝑀𝑚𝑚

��𝑟𝑟𝑗𝑗𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑖𝑖

𝑚𝑚

𝑗𝑗=1

 , 

where 𝑟𝑟𝑗𝑗𝑗𝑗 is the recombination probability between the 𝑗𝑗th and 𝑘𝑘th loci on the same 

chromosome and 𝑟𝑟𝑈𝑈 is the recombination probability between loci on different 

chromosomes. Specifically, in our context the recombination probability is the 

probability that on a random haplotype there has been at least one recombination 

event since the initial migration (admixture). For example, with a single generation of 

random mating following migration, the recombination probability is the same as the 

usual recombination fraction (the per-meiosis probability of recombination); the 

recombination probability that we define captures cumulative recombination over 

generations. We assume the number of chromosomes in 𝐾𝐾 and the number of markers 

is the same for each chromosome, 𝑚𝑚, with 𝑀𝑀 = 𝑚𝑚𝐾𝐾. Let us assume that the expected 

number of recombination events on a chromosome is 

𝑠𝑠 = (𝑚𝑚− 1)𝑅𝑅 , 

where 𝑅𝑅 = 𝑟𝑟𝑗𝑗,𝑗𝑗+1 is the probability that a recombination event has occurred between 

two adjacent loci (assumed to be the same for all adjacent loci). Assuming 

independence of recombination events, we can then write: 

 

𝑟𝑟𝑗𝑗𝑗𝑗 = 1 − (1 − 𝑅𝑅)|𝑗𝑗−𝑗𝑗| 
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= 1 − �1 −
𝑠𝑠

𝑚𝑚 − 1
�

|𝑖𝑖−𝑗𝑗|
. 

 

We note that the term 1
𝑀𝑀𝑚𝑚

∑ ∑ 𝑟𝑟𝑗𝑗𝑗𝑗𝑚𝑚
𝑗𝑗≠𝑗𝑗

𝑚𝑚
𝑗𝑗=1  is 1/𝐾𝐾 times the average of all pairwise 

recombination probabilities. With some algebra and using the properties of a geometric 

series, ∑ 𝑥𝑥𝑖𝑖 = 𝑥𝑥 �1−𝑥𝑥
𝑛𝑛

1−𝑥𝑥
�𝑛𝑛

𝑖𝑖=1 , we can derive the following form: 

 

1
𝑀𝑀𝑚𝑚

��𝑟𝑟𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑗𝑗

𝑚𝑚

𝑗𝑗=1

=
2
𝑀𝑀𝑚𝑚

� �(1 − (1 − 𝑅𝑅)𝑗𝑗)
𝑚𝑚−𝑖𝑖

𝑗𝑗=1

𝑚𝑚−1

𝑗𝑗=1

 

=
𝑚𝑚− 1
𝑀𝑀

−
2
𝑀𝑀𝑚𝑚

� �(1 − 𝑅𝑅)𝑗𝑗
𝑚𝑚−𝑖𝑖

𝑗𝑗=1

𝑚𝑚−1

𝑗𝑗=1

 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
2
𝑀𝑀𝑚𝑚

� �
1 − 𝑅𝑅
𝑅𝑅

�
𝑚𝑚−1

𝑗𝑗=1

�1 − (1 − 𝑅𝑅)𝑚𝑚−𝑗𝑗� 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
2(𝑚𝑚− 1)
𝑀𝑀𝑚𝑚

�
1 − 𝑅𝑅
𝑅𝑅

� +
2
𝑀𝑀𝑚𝑚

�
1 − 𝑅𝑅
𝑅𝑅

� � (1 − 𝑅𝑅)𝑚𝑚−𝑗𝑗
𝑚𝑚−1

𝑗𝑗=1

 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
2(𝑚𝑚− 1)
𝑀𝑀𝑚𝑚

�
1 − 𝑅𝑅
𝑅𝑅

� +
2
𝑀𝑀𝑚𝑚

�
1 − 𝑅𝑅
𝑅𝑅

�
2

(1 − (1 − 𝑅𝑅)𝑚𝑚−1) 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
2(1 − 𝑅𝑅)
𝑀𝑀𝑚𝑚𝑅𝑅2

(𝑚𝑚𝑅𝑅 − 1 + (1 − 𝑅𝑅)𝑚𝑚) 

=
1
𝐾𝐾
�
𝑚𝑚 − 1
𝑚𝑚

− 2 �
𝑚𝑚 − 1
𝑠𝑠𝑚𝑚

�
2

�
𝑚𝑚 − 1 − 𝑠𝑠
𝑚𝑚 − 1

� �
𝑠𝑠𝑚𝑚

𝑚𝑚 − 1
− 1 + �

𝑚𝑚 − 1 − 𝑠𝑠
𝑚𝑚 − 1

�
𝑚𝑚

��. 

We can simplify this by considering the limiting condition 𝑚𝑚 → ∞ and using the 

property lim
𝑛𝑛→∞

(1 + 1
𝑛𝑛

)𝑛𝑛 = 𝑛𝑛, which then gives 
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lim
𝑚𝑚→∞

1
𝑀𝑀𝑚𝑚

��𝑟𝑟𝑗𝑗𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑖𝑖

𝑚𝑚

𝑗𝑗=1

=
1
𝐾𝐾
�1 −

2
𝑠𝑠2

(𝑠𝑠 − 1 + 𝑛𝑛−𝑠𝑠)� . 

Finally, for large 𝑚𝑚, we have 

𝜑𝜑 = 1 − �
𝐾𝐾 − 1
𝐾𝐾

�𝑟𝑟𝑈𝑈 −
1
𝐾𝐾�1−

2
𝑠𝑠2 (𝑠𝑠 − 1 + 𝑛𝑛−𝑠𝑠)� . 

Supplemental Figure 1 shows how this changes as a function of 𝑠𝑠 for different values of 

𝐾𝐾 and 𝑟𝑟𝑢𝑢. We note 𝜑𝜑 decreases as 𝑠𝑠 increases, with bounds 𝜑𝜑 ∈ ��𝐾𝐾−1
𝐾𝐾
� (1 − 𝑟𝑟𝑈𝑈), 1 −

�𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈, �. 

C.2 We next consider the function 𝜑𝜑𝑙𝑙 for a marker at some fixed position 𝑔𝑔: 

𝜑𝜑𝑙𝑙 = 1 − �
𝐾𝐾 − 1
𝐾𝐾

� 𝑟𝑟𝑈𝑈 −
1
𝑀𝑀
�𝑟𝑟𝑙𝑙𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑙𝑙

 , 

where all variables are defined as above. The sum in the final term is the sum of 

recombination probabilities between the marker locus at position 𝑔𝑔 and all loci on the 

same chromosome as the marker. We can write  

1
𝑀𝑀
�𝑟𝑟𝑙𝑙𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑙𝑙

=
1
𝑀𝑀
���1− (1−𝑅𝑅)𝑗𝑗�
𝑙𝑙−1

𝑗𝑗=1

+ ��1− (1−𝑅𝑅)𝑗𝑗�
𝑚𝑚−𝑙𝑙

𝑗𝑗=1

� 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
1
𝑀𝑀
��(1−𝑅𝑅)𝑗𝑗
𝑙𝑙−1

𝑗𝑗=1

+ �(1−𝑅𝑅)𝑗𝑗
𝑚𝑚−𝑙𝑙

𝑗𝑗=1

� 

= �
𝑚𝑚 − 1
𝑀𝑀

� −
1
𝑀𝑀�

1−𝑅𝑅
𝑅𝑅 ���1− (1−𝑅𝑅)𝑔𝑔−1� + �1− (1−𝑅𝑅)𝑚𝑚−𝑔𝑔�� 

=
1
𝐾𝐾 �

�
𝑚𝑚 − 1
𝑚𝑚

� − �
𝑚𝑚− 1− 𝑠𝑠

𝑠𝑠𝑚𝑚 ��2− �
𝑚𝑚− 1− 𝑠𝑠
𝑚𝑚− 1 �

𝑔𝑔−1

−�
𝑚𝑚− 1− 𝑠𝑠
𝑚𝑚− 1 �

𝑚𝑚−𝑔𝑔

�� . 
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To take the limit as 𝑚𝑚 → ∞, we write 𝑔𝑔 = 𝑚𝑚𝑚𝑚 where 𝑚𝑚 ∈ � 1
𝑚𝑚

, 1� and takes on values such 

that 𝑔𝑔 is an integer. Then, we have 

lim
𝑚𝑚→∞

1
𝑀𝑀
�𝑟𝑟𝑙𝑙𝑗𝑗

𝑚𝑚

𝑗𝑗≠𝑙𝑙

=
1
𝐾𝐾
�1 −

1
𝑠𝑠
�2 − 𝑛𝑛−𝑠𝑠𝑠𝑠 − 𝑛𝑛−𝑠𝑠(1−𝑠𝑠)��  . 

Finally, for large 𝑚𝑚, we have: 

𝜑𝜑𝑙𝑙 = 1 − �
𝐾𝐾 − 1
𝐾𝐾

�𝑟𝑟𝑈𝑈 −
1
𝐾𝐾�1−

1
𝑠𝑠 �2− 𝑛𝑛−𝑠𝑠𝑚𝑚 − 𝑛𝑛−𝑠𝑠(1−𝑚𝑚)�� . 

Supplemental Figure 1 shows a plots of as a function of s for 𝑔𝑔 and the end (𝑚𝑚 = 0) and 

middle (𝑚𝑚 = 1/2) of the chromosome. The bounds for 𝜑𝜑𝑙𝑙 are ��𝐾𝐾−1
𝐾𝐾
� (1 − 𝑟𝑟𝑈𝑈), 1 −

�𝐾𝐾−1
𝐾𝐾
� 𝑟𝑟𝑈𝑈, �, the same as for 𝜑𝜑 and independent of 𝑔𝑔 for large 𝑚𝑚. The function is 

maximized when 𝑔𝑔 is in the middle of the chromosome map and minimized when 𝑔𝑔 at 

either end of the map, with 𝜑𝜑 falling between these two functions. 
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