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Condition for a Peak in the General Case with a  𝒏 × 𝒏 Matrix 

By the Putzer algorithm, the solution to 𝐱′ = 𝐀𝐱 can be written as 

𝐱(𝑡) = (𝑝1(𝑡)𝐌1 + 𝑝2(𝑡)𝐌2 + ⋯+𝑝𝑛(𝑡)𝐌𝑛)𝐱0 (A1) 

where 𝑝𝑖 and 𝐌𝑖 are defined as follows. Define 𝑛 × 𝑛 matrices 𝐌1, … ,𝐌𝑛 by the formulae 

𝐌1 = 𝐼       𝐌𝑖 = (𝐀 − 𝑟𝑖−1𝐼)𝐌𝑖−1     𝑖 = 2, … , 𝑛  (A2) 

and let the functions 𝑝1, … , 𝑝𝑛 be given by solutions to the differential system 

𝑝1
′ = 𝑟𝑖𝑝1                           𝑝1(0) = 1 

𝑝2
′ = 𝑟2𝑝2 − 𝑝1                 𝑝2(0) = 0 

⋮ 

𝑝𝑛
′ = 𝑟𝑛𝑝𝑛 − 𝑝𝑛−1             𝑝𝑛(0) = 0 

(A3) 

where 𝑟𝑖 are eigenvalues in any arbitrary order to the matrix 𝐀. We will begin by proving that  

𝑝𝑖(𝑡) = ∑ (∏(𝑟𝑗−𝑟𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

𝑒𝑟𝑗 𝑡 . 

(A4) 

It is straight forward to varify that this is a solution to the equation system above.  

𝑝𝑖
′(𝑡) − 𝑟𝑖𝑝𝑖(𝑡) = ∑ 𝑟𝑗 (∏(𝑟𝑗−𝑟𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

𝑒𝑟𝑗 𝑡 − ∑𝑟𝑖(∏(𝑟𝑗−𝑟𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1

𝑒𝑟𝑗 𝑡

𝑗=𝑖

𝑗=1

 

= ∑(𝑟𝑗 − 𝑟𝑖)(∏(𝑟𝑗−𝑟𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

𝑒𝑟𝑗 𝑡  

= ∑ ( ∏ (𝑟𝑗−𝑟𝑘)

𝑘=𝑖−1

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖−1

𝑗=1

𝑒𝑟𝑗 𝑡  

= 𝑝𝑖−1  

(A5) 
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It is also necessary to verify that 𝑝𝑖(0) = 0 for 𝑖 > 1. We will show this using induction. By 

change of variable, 𝑠𝑗 = 𝑟𝑗 − 𝑟𝑖, we  can show that if 𝑝𝑖−1(0) = 0 then so is 𝑝𝑖(0) 

𝑝𝑖
′(0)− 𝑟𝑖𝑝𝑖(0) = 0 

∑ 𝑟𝑗 (∏(𝑟𝑗−𝑟𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

− 𝑟𝑖𝑝𝑖(0) = 0 

∑(𝑠𝑗 + 𝑟𝑖)(∏(𝑠𝑗−𝑠𝑘)

𝑘=𝑖

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

− 𝑟𝑖𝑝𝑖(0) = 0 

∑(𝑠𝑗 + 𝑟𝑖)(𝑠𝑗 ∏ (𝑠𝑗−𝑠𝑘)

𝑘=𝑖−1

𝑘=1
𝑘≠𝑗

)

−1
𝑗=𝑖

𝑗=1

− 𝑟𝑖𝑝𝑖(0) = 0 

(1 + 𝑟𝑖)𝑝𝑖−1(0) − 𝑟𝑖𝑝𝑖(0) = 0 

𝑝𝑖(0) = 0, 

(A6) 

completing the proof of the analytic expression for  𝑝𝑖(𝑡). Note that for 𝑖 = 2 the third step is 

not permissible, but 𝑝2(0) is trivially zero and can serve as the basis for the induction.  We now 

turn to the matrix differential equation of interest. An n-state scheme with n-2 closed states 

written in matrix form 𝐱′ = 𝐀𝐱 where  

𝐱 =

[
 
 
 
 
 

𝐶1(𝑡)
𝐶2(𝑡)

⋮
𝐶𝑛−2(𝑡)

𝑂(𝑡)
𝐵(𝑡) ]

 
 
 
 
 

  𝐀 =

[
 
 
 
 
 
−(𝑛 − 2)𝛼 𝛽 0 0 ⋯ 0

(𝑛 − 2)𝛼 −(𝑛 − 3)𝛼 − 𝛽 2𝛽 ⋱ ⋱ ⋮

0 (𝑛 − 3)𝛼 ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ ⋱ (𝑛 − 2)𝛽 0

⋮ ⋱ ⋱ 𝛼 −(𝑛 − 2)𝛽 − 𝛾 𝛿
0 ⋯ 0 0 𝛾 −𝛿]

 
 
 
 
 

 

(A7) 

with the general solution 

𝐱(𝑡) = 𝑐1𝐕1𝑒
𝑟1𝑡 + 𝑐2𝐕2𝑒

𝑟1𝑡 … + 𝑐𝑛𝐕𝑛𝑒𝑟𝑛𝑡  (A8) 

where 𝑐𝑖 are constant depending on the initial condition and 𝐕𝑖 are the corresponding 

eigenvectors to A. Let 𝐱(0) = [1 0 ⋯]𝐓 (i.e. the channels have an initial probability of one 

in beeing in the first closed state). Using Putzers algorithm and the result for 𝑝𝑖(𝑡) we can write 

𝑐𝑛𝐕𝑛𝑒𝑟𝑛𝑡 = ( ∏ (𝑟𝑛−𝑟𝑘)

𝑘=𝑛−1

𝑘=1

)

−1

𝐌𝑛𝐱(0)𝑒𝑟𝑛𝑡 

(A9) 

Note that 𝑟𝑛 only exists in 𝑝𝑛(𝑡) and that we can extract the last term in the sum giving the 

analytical expression for 𝑝𝑛(𝑡) .  
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To get the pre-exponential factor 𝑐𝑛𝐕𝑛 we need to solve 𝐌𝑛𝐱(0),  

𝐌𝑛𝐱(0) = (𝐀 − 𝑟1𝐈)(𝐀− 𝑟2𝐈)… (𝐀 − 𝑟𝑛−1𝐈)𝐱(0) 

= 𝐀𝑛−2(𝐀 − 𝑟1𝐈 − 𝑟2𝐈… − 𝑟𝑛−1𝐈)𝐱(0) + 𝐔 

= 𝐀𝑛−2

(

 
 

𝑎1,1 − 𝑟1 − 𝑟2 − ⋯− 𝑟𝑛−1

𝑎2,1

0
⋮
0 )

 
 

+ 𝐔 

(A10) 

where 𝑎𝑖,𝑗 are elements of the matrix 𝐀, 𝐈 the identity matrix, and 𝐔 is some vector with a zero 

on the next last row (due to the tridiagonal nature of the matrix 𝐀, the number of non-zero 

diagnoals increase with two for each multiplication why we can omit terms involving lower 

powers than 𝑛 − 2 ). Given that we are solving for 𝑂(𝑡) we are only interested in the next last 

element of the resulting vector. Moreover, due to the zeros of the column vector containing the 

eigenvalues it suffices to obtain (𝐀𝑛−2)𝑛−1,1 and (𝐀𝑛−2)𝑛−1,2. We begin with the leftmost 

element, viz.   

(𝐀𝑛−2)𝑛−1,1 = (𝐀)𝑛−1,:(𝐀
𝑛−3):,1 

= (𝐀)𝑛−1,:(𝑎2,1(𝐀
𝑛−4):,2) = (𝐀)𝑛−1,:(𝑎2,1𝑎3,2(𝐀

𝑛−5):,3) = ⋯ 

= ∏ 𝑎𝑖+1,𝑖

𝑖=𝑛−2

𝑖=1

 

(A11) 

Again, we can omit terms due to the sparse nature of 𝐀. We are now left with obtaining an 

analytic expression for (𝐀𝑛−2)𝑛−1,2.  

(𝐀𝑛−2)𝑛−1,2 = (𝐀)𝑛−1,:(𝐀
𝑛−3):,2  

= (𝐀)𝑛−1,:(𝑎2,2(𝐀
𝑛−4):,2 + 𝑎3,2(𝐀

𝑛−4):,3) 

= (𝐀)𝑛−1,: (𝑎2,2𝑎3,2(𝐀
𝑛−5):,3 + 𝑎3,2(𝑎3,3(𝐀𝑛−5):,3 + 𝑎4,3(𝐀𝑛−5):,4)) 

= ( ∏ 𝑎𝑖+1,𝑖

𝑖=𝑛−2

𝑖=2

) ( ∑ 𝑘𝑖,𝑖

𝑖=𝑛−1

𝑖=2

) 

(A12) 

Now using the fact that the sum of eigenvalues equals the trace we multiply (𝐀𝑛−2)𝑛−1,1 and 

(𝐀𝑛−2)𝑛−1,2 with the respective value in the column vector in eqn. A10 yielding  

( ∏ 𝑎𝑖+1,𝑖

𝑖=𝑛−2

𝑖=1

) (𝑎1,1 − Tr(𝐀)+ 𝑟𝑛) + ( ∏ 𝑎𝑖+1,𝑖

𝑖=𝑛−2

𝑖 =2

) (Tr(𝐀) − 𝑎1,1 − 𝑎𝑛,𝑛)𝑎2,1 

= ( ∏ 𝑎𝑖+1,𝑖

𝑖=𝑛−2

𝑖=1

)(𝑟𝑛 − 𝑎𝑛,𝑛) 

= (𝑛 − 2)! 𝛼𝑛−2(𝛿 + 𝑟𝑛) 

(A13) 
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Combining with our result for 𝑝𝑛(𝑡) and we obtain 

(𝑛 − 2)! 𝛼𝑛−2(𝛿 + 𝑟𝑛) ( ∏ (𝑟𝑛−𝑟𝑘)

𝑘=𝑛−1

𝑘=1

)

−1

𝑒𝑟𝑛𝑡 

(A14) 

Assume without loss of generality that 𝑟𝑛 is the slowest decaying term. (𝑟𝑛−𝑟𝑘) will be strictly 

positive except for the eigenvalue which is zero. Thus,  

( ∏ (𝑟𝑛−𝑟𝑘)

𝑘=𝑛−1

𝑘=1

)

−1

< 0 

(A15) 

By the fact that the rate constants are positive we have (𝑛 − 2)! 𝛼𝑛−2 > 0. Hence, the pre-

exponetial factor is positive if, and only if, 

𝛿 + 𝑟𝑛 < 0. (A16) 

By elimination of the eigenvalues from Vieta’s formulae it follows that (𝑟𝑛 + 𝛿) < 0 is a root 

to 

∑(−1)𝑛
𝑏𝑖

𝑏𝑛

𝛿 𝑖

𝑖=𝑛

𝑖=1

< 0 

(A17) 

where 𝑏𝑖 are the coefficitens to the charactersitic polynomial to 𝐀. By the Picard–Linde lö f 

theorem, the solution to 𝐱′ = 𝐀𝐱 is unique. Thus, since we are free to chose the eigenvalues in 

any given order, our result for the prexpoenential factor to 𝑒𝑟𝑛𝑡 must be true for any 𝑒𝑟𝑖 𝑡 why 

𝑂(𝑡) can be written on a surprisingly compact form, namely 

𝑂(𝑡) = ∑
(𝑛 − 2)! 𝛼𝑛−2(𝑟𝑖 + 𝛿)

∏ (𝑟𝑖 − 𝑟𝑗)𝑖≠𝑗

𝑖=𝑛

𝑖=1

𝑒𝑟𝑖 𝑡 

(A18) 

It transpires that the associated rate 𝛾 does the not affect the prerequisites for a peak. Let 𝛿 =

−𝑟𝑛, which gives 

det(𝐴 − 𝑟𝑛 𝐼) = det(𝐴 + 𝛿𝐼) 

= det

(

 
 
 
 

−(𝑛 − 2)𝛼 + 𝛿 𝛽 0 0 ⋯ 0
(𝑛 − 2)𝛼 −(𝑛 − 3)𝛼 − 𝛽 + 𝛿 2𝛽 ⋱ ⋱ ⋮

0 (𝑛 − 3)𝛼 ⋱ ⋱ ⋱ 0

0 ⋱ ⋱ ⋱ (𝑛 − 2)𝛽 0

⋮ ⋱ ⋱ 𝛼 −(𝑛 − 2)𝛽 − 𝛾 + 𝛿 𝛿
0 ⋯ 0 0 𝛾 0)

 
 
 
 

 

= 0 

(A19) 
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The determinant can now be expanded in terms of minors along the last row, yielding 

𝛾 det

(

 
 

−(𝑛 − 2)𝛼 + 𝛿 𝛽 0 0 0

(𝑛 − 2)𝛼 −(𝑛 − 3)𝛼 − 𝛽 + 𝛿 2𝛽 ⋱ ⋮
0 (𝑛 − 3)𝛼 ⋱ ⋱ 0
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 𝛼 𝛿)

 
 

= 0 

𝛾 can in this equation be factored out, showing that 𝛾 does not influence the existance 

of a peak as long as 𝛾 > 0.  

(A20) 

 

 

 

 

 


