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1 The mathematical derivation of MetaLonDA
algorithm

Fixing a feature f = 1, . . . , F , the data under consideration are the random
variables Ytki or their observations ytki of mapped reads of the ith subject of
phenotype k to the feature f at time point t, where t = 1, . . . , T , k = 1, 2, and
subject i = 1, . . . , nk.

The random variable Ytki is assumed to follow a negative binomial distribu-
tion

Ytki ∼ NB(α, p(t, k)) (1)

with integer α > 0 and success probability p(t, k) ∈ (0, 1). That is, Ytki
stands for the number of failures before the αth success in a sequence of Bernoulli
trials. Then the probability for observing y number of reads can be written as

P (Ytki = y) =
Γ(α+ y)

y!Γ(α)
· p(t, k)α · (1− p(t, k))y (2)

with an expectation and variance

E(Ytki) =
α(1− p(t, k))

p(t, k)
(3)

V ar(Ytki) =
α(1− p(t, k))

p(t, k)2
(4)

To model the time and phenotypic effect we use a general linear model with
a logit link:

η(t, k) = log
p(t, k)

1− p(t, k)
(5)

From Eq. (5), we have

p(t, k) =
eη(t,k)

1 + eη(t,k)
(6)

1− p(t, k) =
1

1 + eη(t,k)
(7)

Assuming Ytki’s are independent, the log likelihood given a time-course
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metagenomic count profiles y = {ytki}t=1,...,T ;k=1,2;i=1,...,nk
is calculated as:

L = logL(p, α | Y = y)

=

T∑
t=1

2∑
k=1

nk∑
i=1

[ytki log(1− p(t, k)) + α log p(t, k)

+ log Γ(α+ ytki)− log Γ(α)− log(ytki!)]

=

T∑
t=1

2∑
k=1

nk∑
i=1

[ytki log(1− p(t, k)) + α log p(t, k)

+ log Γ(α+ ytki)− log Γ(α)] + constant (8)

Given the success probabilities p = {p(t, k)}t=1,...,T ;k=1,2 or equivalently the
linear predictors η = {η(t, k)}t=1,...,T ;k=1,2, the main part of L involving α is

Lp(α) =

T∑
t=1

2∑
k=1

nk∑
i=1

[log Γ(α+ ytki)− log Γ(α) + α log p(t, k)] (9)

which will be maximized to update α later.
Given the number of failures α > 0, using Eqs. (6), (7), (8), we have the

main part of L involving p or η:

Lα(η) =

T∑
t=1

2∑
k=1

nk∑
i=1

[αη(t, k)− (α+ ytki) log(1 + eη(t,k))] (10)

We seek the estimation of model parameters α and p(t, k) by solving the
optimization minimization Eq. (8). Following (Gu, 2013) [1], in order to control
the smoothness of the function η, a roughness penalty J(η) is added to the minus
log-likelihood together with the smoothing parameter λ > 0 for the trade-off
between the goodness of fit and the smoothness of the spline curve:

min
p,α
−L+ λ · J(η) (11)

In the objective function, L encourages the goodness of fit; J(η) quantifies
the smoothness of η, which is essentially the inner product in a reproducing
kernel Hilbert space (Gu, 2013) [1], Section 3.1). The λ in expression (11) con-
trols the tradeoff between the goodness of fit and the smoothness of the spline
and can be determined using performance-oriented iterations or cross-validation
(Gu, 2013 [1] Section 5.2).

The solution to the optimization problem in Eq. (11) leads to the smoothing
spline that fits the reads from the samples across multiple time points. With
the estimated parameters α and p(t, k), we obtain the estimated mean of Ytki
using Eqs. (3), (6), (7), i.e.,

ˆE(Ytki) = α̂eη̂(t,k) =
α̂p̂(t, k)

1− p̂(t, k)
(12)
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Connecting the values at each time point using Eq. (12) the fitted curve can
be constructed in each group. With Eqs. (4) and (12), the confidence intervals
can be obtained for each feature. We use the R package gss (Gu, 2013 [1])
to solve problem Eq. (11). For readers’ reference, a more detailed description
for the algorithm used in [1], Section 5.4.6) with a specified λ > 0 is given below:

0◦ Given data {ytki}t=1,...,T ;k=1,2;i=1,...,nk
, find the maximum likelihood es-

timate for the usual logistic regression model with negative binomial re-
sponses. That is, determine α̃(0), p̃(0)(t, k), t = 1, . . . , T ; k = 1, 2 that
maximize L in Eq. (8). Denote

ỹ
(0)
tki = ytki, η̃

(0)(t, k) = log(p̃(0)(t, k)/(1− p̃(0)(t, k)))

t = 1, . . . , T ; k = 1, 2; i = 1, . . . , nk.

For iteration s = 1, . . . , S, do 1◦, 2◦ and 3◦:

1◦ Determine α̃(s) that maximizes

T∑
t=1

2∑
k=1

nk∑
i=1

[log Γ(α+ ỹ
(s−1)
tki )− log Γ(α) + α log p̃(s−1)(t, k)]

2◦ For t = 1, . . . , T ; k = 1, 2; i = 1, . . . , nk, let

ũ
(s)
tki = (α̃(s) + ỹ

(s−1)
tki )p̃(s−1)(t, k)− α̃(s)

w̃
(s)
tki = (α̃(s) + ỹ

(s−1)
tki )p̃(s−1)(t, k) · (1− p̃(s−1)(t, k))

ỹ
(s)
tki = η̃(s−1)(t, k)− ũ(s)tki/w̃

(s)
tki

3◦ Use quasi-Newton approach to find η̃(s)(t, k)’s that minimize the penalized
weighted least squares functional

1

T (n1 + n2)

T∑
t=1

2∑
k=1

nk∑
i=1

w̃
(s)
tki(ỹ

(s)
tki − η(t, k))2 + λJ(η)

Let p̃(s)(t, k) = eη̃
(s)(t,k)/(1 + eη̃

(s)(t,k)), t = 1, . . . , T ; k = 1, 2.

Once we have the two splines that fits each group’s samples, we can then
calculate the normalized area between the two curves for each unit time interval
of the T − 1 time intervals. The normalized Area Ratio (AR) is calculated as in
Eq. (13), where Ak1t,t+1 and Ak2t,t+1 denote the area under the spline curve from
time t to time t+1 for group 1 and group 2, respectively, t = 1, . . . , T − 1.

ARt,t+1 =
Ak1t,t+1 −A

k2
t,t+1

max(Ak1t,t+1, A
k2
t,t+1)

(13)
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Then, we perform a permutation procedure by permuting the sample group
labels to calculate the ARb for the random samples for each time interval. The
procedure is repeated B times. This is essential for calculating the p-value of
each interval. The p value is calculated using Eq. (14)

p value =
#(ARb > AR)

B
b = 1, ..., B (14)

The significant time intervals are those with p value < 0.05 after multiple
testing correction [2] which adjusts for the number of time intervals per feature
and for the multiple features that are testing for.

2 Estimation of distributions parameters

For each vector of feature’s reads counts, we used the fitdistr function from
the MASS R-package [3] to estimate the parameters of each parametric distri-
bution used in the paper except zero-inflated Poisson (ZIP) distribution. Here
are the parameters for each distribution:

• Negative-binomial distribution: size and mean

• Poisson distribution: lambda

• Zero-inflated Poisson distribution: p and lambda

• Lognormal distribution: mean and standard deviation

• Normal distribution: mean and standard deviation.

• Exponential distribution: rate

Using the estimated parameters, we simulated N (N = # of samples of the
Caporaso et al., study [4]) random numbers are generated using the correspond-
ing parametric distribution.

For zero-inflated Poisson distribution, we used the zeroinfl function from
the pscl R-package [5, 6] to fit each features read counts with a ZIP. Then we
extracted the p (zero-inflation probability) and the lambda. Using these param-
eters, we can generate N random numbers following ZIP with the estimated
parameters using rzipois function from the VGAM R-package [7, 8]

3 Simulation

Longitudinal differentially abundant features are simulated with mean µ(t)
which follows Eq. (15), where N denotes normal distribution, I denotes an
indicator function, and t = 0, . . . , 20.
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µ(t) =N(20, 1) + [N(20, 1) ∗ (5− t) ∗ I(t < 5)]+

[2 ∗N(20, 1) ∗ (t− 8) ∗ I(t > 8&t 6 11)]+

[2 ∗N(20, 1) ∗ (13− t) ∗ I(t > 11&t 6 13)]+

[N(20, 1) ∗ (t− 15) ∗ I(t > 15)]

(15)
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