Supporting Information for

Catalytic C(sp³)—H Alkylation via an Iron Carbene Intermediate

Jennifer R. Griffin, Chloe I. Wendell, Jacob A. Garwin, and M. Christina White* Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Table of Contents	
General Information	2
Preparation of [FeCl ₈ Pc]Cl and [FeCl ₁₆ Pc]Cl	3
Reaction Discovery: Traditional Diazo Sources	4
Optimization of Fe-Catalyzed Intramolecular C—H Alkylation	9
Preparation of Sulfonate Ester Starting Materials	12
Preparation of Diazosulfonate Starting Materials	17
Substrate Scope for Fe-Catalyzed Intramolecular C—H Alkylation	25
Diversification of Complex Molecules	36
Free Carbene Generation Study	39
Intramolecular Kinetic Isotope Effect Study	41
Determination of Kinetic Isotope Effect via Initial Rates	43
Olefin Isomerization Study	47
Thermal Decomposition of Diazo Esters	49
References	50
Spectral Data	52

General Information

The following commercially obtained reagents were used as received: iron(III) phthalocyanine chloride ([FePc]Cl, Sigma-Aldrich), iron(II) phthalocyanine (FePc, Sigma-Aldrich), 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(TPP)CI, Sigma-Aldrich), 2,6-bis[(4R)-4phenyl-2-oxazolinyl]pyridine (PyBOX, Sigma-Aldrich), rhodium(II) acetate dimer (Rh₂(OAc)₄, hexafluoroantimonate $(AgSbF_{6})$ Strem). Sodium Strem). and silver tetrakis[3.5bis(trifluoromethyl)phenyl]borate (NaBAr^F₄)¹, MeSO₂N₃², and CISO₂CH₂CO₂Et³ were prepared according to literature procedures and stored at rt in the glovebox, 4°C, and -20°C, respectively. All reactions were run in flame- or oven-dried glassware under an atmosphere of N₂ or Ar gas with dry solvents unless otherwise stated. All products were filtered through a glass wool plug prior to obtaining a final weight. Solid reagents were stored in a dessicator or glovebox, and anhydrous solvents were purified by passage through a bed of activated alumina immediately prior to use (Glass Countour, Laguna Beach, California). Chloroform-d was stored over 3Å molecular sieves. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm) and visualized with UV and potassium permanganate stains. Flash chromatography was performed as described by Still⁴ using American International ZEOprep 60 ECO silica gel (230-400 mesh). Achiral gas chromatographic (GC) analysis was performed on an Agilent 6890N Series instrument equipped with FID detectors using a HP-5 (5%-Phenyl)-methylpolysiloxane column (30m, 0.32mm, 0.25mm), and chiral GC analysis using a CycloSil-B column (30m, 0.25mm, 0.25mm). ¹H-NMR spectra were recorded on a Varian Inova-500 (500 MHz), Varian Unity-500 (500 MHz), Varian Unity Inova-400 (400 MHz), or Bruker (500Mz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Data reported as: s = singlet, d = doublet, t = triplet, g = quartet, p = reported aspentet, sxt = sextet, spt = septet, m = multiplet, br = broad, app = apparent; coupling constant(s) in Hz; integration. Proton-decoupled ¹³C-NMR spectra were recorded on a Varian Unity-500 (126 MHz) or Bruker (126Mz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.16 ppm). Kinetic isotope effect analyses were recorded on a Varian Inova-600 (600 MHz) spectrometer. IR spectra were recorded by ATR on a Perkin Elmer Frontier FTIR and are reported in frequency of absorption (cm⁻¹). Optical rotations were measured using a 1 mL cell with a 50 mm path length on a Jasco P-1020 polarimeter. Optical rotations were obtained with a sodium lamp and are reported as follows: $[\alpha]_{\lambda}T^{\circ}C$ (c = g/100 mL, solvent). High-resolution mass spectra were obtained at the University of Illinois Mass Spectrometry Laboratory. Electrospray ionization (ESI) spectra were performed on a Waters Q-Tof Ultima spectrometer, and electron ionization (EI) and field desorption (FD) spectra were performed on a Micromass 70-VSE spectrometer.

Preparation of [FeCl₈Pc]Cl and [FeCl₁₆Pc]Cl

[FeCl₈Pc]Cl: A flame-dried 25 mL round-bottom flask equipped with a stir bar and reflux condenser (the flask and stir bar should be free of trace metal impurities) was sequentially charged with 4,5-dichlorophthalonitrile (788 mg, 4.0 mmol, 4.0 equiv, TCl America), 1-hexanol (10 mL, freshly distilled over MgSO₄ and degassed), FeCl₃ (162 mg, 1.00 mmol, 1.0 equiv, Sigma-Aldrich) and DBU (597 μ L, 4.0 mmol, 4.0 equiv, Sigma-Aldrich). The reaction flask was evacuated under vacuum and refilled with N₂ three times, then heated to 155°C. The reaction mixture changed from brown to turquoise green over 10

min. After stirring at 155°C overnight (12-15h), the heat was ceased and the condenser was removed. After cooling to room temperature, the reaction mixture was filtered. The remaining dark green solid was washed with 10 mL of 1 M HCl, 10 mL of water, and 10 mL of EtOH. The catalyst was dried under high vacuum overnight at 90°C to afford 761 mg (0.867 mmol) of [FeCl₈Pc]Cl as a dark green powder (87% yield).

UV-Vis (H₂SO₄, c = 13.4 μ M, λ_{max} = nm, ϵ = M⁻¹cm⁻¹): 787 (ϵ = 49036), 305 (ϵ = 65655), 249 (ϵ = 107538).; IR (ATR, cm⁻¹) 2955.86, 2353.03, 1889.14, 1767.7, 1730.25, 1602.19, 1514.22, 1448.96, 1435.09, 1416.2, 1387.01, 1330.14, 1290.86, 1200.89, 1137.03, 1084.38, 1071.49, 962.86, 887.52, 849.38, 824.54, 799.97, 783.39, 749.16, 708.28, 679.24, 660.94, 593.17, 550, 504.; HRMS (EI) *m/z* = 839.77 (M-CI).

[FeCl₁₆Pc]CI: A flame-dried 25 mL round-bottom flask equipped with a stir bar and reflux condenser (the flask and stir bar should be free of trace metal impurities) was sequentially charged with tetrachlorophthalonitrile (1.06 g, 4.0 mmol, 4.0 equiv, TCI America), 1-hexanol (10 mL, freshly distilled over MgSO₄ and degassed), FeCl₃ (162 mg, 1.00 mmol, 1.0 equiv, Sigma-Aldrich) and DBU (597 μ L, 4.0 mmol, 4.0 equiv, Sigma-Aldrich). The reaction flask was evacuated under vacuum and refilled with N₂ three times, then heated to 155°C.

The reaction mixture changed from brown to turquoise green over 10 min. After stirring at 155° C overnight (12-15h), the heat was ceased and the condenser was removed. After cooling to room temperature, the reaction mixture was filtered. The remaining dark green solid was washed with 10 mL of 1 M HCl, 10 mL of water, and 10 mL of EtOH. The catalyst was dried under high vacuum overnight at 90°C to afford 638 mg (0.553 mmol) of [FeCl₁₆Pc]Cl as a dark green powder (55% yield).

UV-Vis (H₂SO₄, c = 8.2 μ M, λ_{max} = nm, ϵ = M⁻¹cm⁻¹): 797 (ϵ = 47290), 770 (ϵ = 47654), 317 (ϵ = 60784).; IR (ATR, cm⁻¹) 3258.78, 2323.85, 2162.01, 2050.37, 1980.01, 1736.67, 1561.44, 1501.78, 1391.32, 1302.37, 1273.49, 1212.62, 1156.98, 1091.91, 955.98, 856.36, 780.41, 770.26, 750.95, 647.41, 607.77, 511.89, 470.91.; HRMS (EI) *m/z* = 1111.46 (M-CI).

Reaction Discovery: Traditional Diazo Sources

Preparation of diazoesters:

(E)-pent-3-en-1-yl 2-diazoacetate [1].

 N_2 364 mg (2.14 mmol) of (*E*)-pent-3-en-1-yl 3-oxobutanoate was added to a 100 mL round-bottom flask, diluted with acetonitrile (21.4 mL, 0.1 M), and cooled to 0°C. *p*ABSA (617 mg, 2.57 mmol, 1.2 equiv) and DBU (384 μ L, 2.57 mmol, 1.2 equiv) were added and the reaction was allowed to warm to RT. After stirring for 12 hours, the reaction mixture was diluted with aq. NH₄Cl and extracted with diethyl ether. The organic extracts were combined, dried over NaSO₄, and filtered. After concentration, the crude yellow solid was triturated with a 50/50 mixture of pentane/ether, filtered, and the filtrate was concentrated. This crude mixture was then diluted with acetonitrile (10 mL) and cooled to 0°C. 4% aq. KOH (40 mL) was added and the reaction mixture stirred vigorously until judged complete by TLC (1-5 h). The reaction mixture was extracted three times with diethyl ether, dried over MgSO₄, filtered and concentrated. Purification by flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 191 mg (1.24 mmol) of pure product as a vellow oil (58% vield).

¹H NMR (500 MHz, CDCl₃) δ 5.53 (dqt, J = 15.4, 6.3, 1.3 Hz, 1H), 5.38 (dtq, J = 15.2, 6.8, 1.6 Hz, 1H), 4.73 (s, 1H), 4.15 (t, J = 6.9 Hz, 2H), 2.32 (qp, J = 6.8, 1.2 Hz, 2H), 1.66 (dq, J = 6.4, 1.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.80, 128.08, 126.12, 64.47, 46.17, 32.18, 18.00.; IR (ATR, cm⁻¹) 3121.57, 2961.99, 2919.82, 2858.19, 2105.68, 1686.59, 1453.75, 1394.35, 1354.67, 1337.81, 1237.29, 1179.08, 1155.09, 1080.75, 1025.21, 992.16, 965.71, 739.14, 553.27, 468.42,

(E)-pent-3-en-1-yl 2-phenylacetate [S1].

Synthesized according to literature precedent⁵. (*E*)-pent-3-en-1-ol (689 mg, 8.0 mmol, 1.0 equiv), phenyl acetyl chloride (1.26 mL, 8.0 mmol, 1.0 equiv), pyridine (1.30 mL, 16 mmol, 2.0 equiv), DMAP (97.8 mg, 0.8 mmol, 0.1 equiv), and CH₂Cl₂ (16 mL, 0.5 M) were used. Flash column chromatography on silica using $0\% \rightarrow 5\%$ ethyl acetate/hexanes as eluent gave 1.40 g (6.85 mmol) of pure product as a clear oil (86% vield).

¹H-NMR (400 MHz, CDCl₃) δ 7.36 - 7.24 (m, 5H), 5.55 - 5.42 (m, 1H), 5.35 (dtq, J = 15.0, 6.6, 1.5 Hz, 1H), 4.10 (t, J = 6.8 Hz, 2H), 3.62 (s, 2H), 2.32-2.27 (m, 2H), 1.64 (dq, J = 6.4, 1.3 Hz, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 171.66, 134.27, 129.39, 128.63, 128.09, 127.14, 126.32, 64.56, 41.58, 32.05, 18.09.; HRMS (ESI) *m/z* calculated for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1048, found 227.1051.

(E)-pent-3-en-1-yl 2-diazo-2-phenylacetate [2].

1.43 g (7.00 mmol) of (E)-pent-3-en-1-yl 2-phenylacetate [S1] was added to a 100 mL round-bottom flask, diluted with acetonitrile (70 mL, 0.1 M), and cooled to 0°C. pABSA (2.02 g, 8.40 mmol, 1.2 equiv) and DBU (1.57 mL, 10.5 mmol, 1.5 equiv) were added and the reaction was allowed to

warm to RT. After stirring for 12 hours, the reaction mixture was diluted with ag. NH₄Cl and

extracted with diethyl ether. The organic extracts were combined, dried over Na₂SO₄, and filtered. After concentration, the crude orange solid was triturated with a 50/50 mixture of pentane/ether, filtered, and the filtrate was concentrated. Flash column chromatography on silica using 5% diethyl ether/pentane as eluent gave 669 mg (2.91 mmol) of pure product as an orange oil (42% vield).

¹H-NMR (500 MHz, CDCl₃) δ 7.48 (m, 2H), 7.38 (m, 2H), 7.20-7.16 (m, 1H), 5.57 (dqt, J = 15.2, 6.3, 1.3 Hz, 1H), 5.42 (dtg, J = 15.3, 6.9, 1.5 Hz, 1H), 4.27 (t, J = 6.8 Hz, 2H), 2.38 (gp, J = 6.7, 1.2 Hz, 2H), 1.68 (dq, J = 6.4, 1.3 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 165.27, 129.01, 128.36, 126.19, 125.85, 125.72, 124.05, 64.63, 32.31, 18.12; HRMS (ESI) m/z calculated for $C_{13}H_{15}O_2$ [M+H-N₂]⁺: 203.1072, found 203.1073; IR (ATR, cm⁻¹) 3060.58, 3026.28, 2960.68, 2917.83, 2856.42, 2396.29, 2080.84, 1699.91, 1598.58, 1575.82, 1498.39, 1470.09, 1449.81, 1385.81, 1346.9, 1336.76, 1285.9, 1241.61, 1152.23, 1078.61, 1045.13, 1017.79, 997.6, 965.2, 904.04, 835.72, 752.9, 689.6, 666.78, 619.64, 555.99, 532.68, 493.98

(E)-methyl pent-3-en-1-yl malonate [S2].

1.08 g (8.0 mmol) of (*E*)-pent-3-en-1-ol, pyridine (1.21 mL, 16.0 mmol, 2 equiv), DMAP (97.7 mg, 0.8 mmol, 0.1 equiv) and CH₂Cl₂ were added to a flame-dried round-bottom flask and cooled to 0°C. Methyl malonyl chloride (1.09 g, 8.0 mmol, 1 equiv) was added dropwise. The reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction mixture was diluted with aq. NH₄Cl and extracted with CH₂Cl₂. The organic extracts were combined, dried over Na₂SO₄ and filtered. After concentration, the crude oil was purified by flash column chromatography on silica using 15% EtOAc/hexanes as eluent, giving 939 mg (5.0 mmol) of pure product as a clear oil (63% vield).

¹H-NMR (500 MHz, CDCl₃) δ 5.58-5.48 (m, 1H), 5.38 (dtg, J = 15.3, 6.9, 1.6 Hz, 1H), 4.14 (t, J = 6.9 Hz, 2H), 3.75 (s, 3H), 3.38 (s, 2H), 2.37-2.28 (m, 2H), 1.66 (dq, J = 6.4, 1.3 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 167.11, 166.58, 128.28, 125.99, 65.27, 52.59, 41.46, 31.85, 18.10.; HRMS (ESI) m/z calculated for C₉H₁₄O₄Na [M+Na]⁺: 209.0790, found 209.0786.

(E)-1-methyl 3-(pent-3-en-1-yl) 2-diazomalonate [3].

845 mg (4.54 mmol) of (E)-methyl pent-3-en-1-yl malonate [S2] was N_2 added to a 100 mL flame-dried round-bottom flask, diluted with acetonitrile (45 mL, 0.1 M), and cooled to 0°C. *p*ABSA (1.31 mg, 5.44 mmol, 1.2 equiv) and DBU (815 μ L, 5.44 mmol, 1.2 equiv) were added

and the reaction was allowed to warm to RT. After stirring for 12 hours, the reaction mixture was diluted with aq. NH₄Cl and extracted with diethyl ether. The organic extracts were combined, dried over Na₂SO₄ and filtered. After concentration, the crude yellow solid was triturated with a 50/50 mixture of pentane/ether, filtered, and the filtrate was concentrated. Flash column chromatography on silica using 15% EtOAc/hexanes as eluent gave 812 mg (3.83 mmol) of pure product as a yellow oil (84% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.58 – 5.50 (m, 1H), 5.38 (dtg, J = 15.3, 6.9, 1.7 Hz, 1H), 4.22 (t, J = 6.9 Hz, 2H), 3.84 (s, 3H), 2.38-2.33 (m, J = 6.8, 1.2 Hz, 2H), 1.66 (dq, J = 6.4, 1.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.59, 160.70, 128.37, 125.76, 65.02, 52.48, 32.00, 17.96.; HRMS (ESI) m/z calculated for C₉H₁₂N₂O₄Na [M+Na]⁺: 235.0695, found 235.0698; IR (ATR, cm⁻¹) 2957.88, 2857.93, 2132.69, 1759.74, 1733.99, 1692.34, 1436.48, 1387.26, 1319.59, 1270.24, 1202.92, 1181.13, 1080.91, 1014.16, 966.47, 830.65, 758.66, 732.78, 647.42, 543.79, 497.46.

General procedure for reaction discovery studies:

Into a 1 dram vial was added catalyst (0.040 mmol, 0.10 equiv) in a glovebox. The vial was sealed, taken out of the box, and the contents were added under a stream of nitrogen to a flame dried three neck 25 mL flask equipped with a stir bar, reflux condenser, glass stopper, and rubber septum. CH_2Cl_2 (5.0 mL, 0.08 M) was added and the flask was heated to reflux (~45°C) for 10 minutes (4 hours for FeCl₃•pybox conditions⁶). Diazoester (0.40 mmol) was taken up with CH_2Cl_2 (3.0 mL, 0.13 M) in a glass syringe and added dropwise to the refluxing catalyst solution over the course 2-3 minutes (final reaction concentration is 0.05 M). After complete addition of diazoester, the reaction refluxed until judged complete by TLC (2-24 h). The reaction mixture was cooled, adsorbed onto SiO₂ or florisil, and applied directly to a silica column (75 mL SiO₂). Purification conditions are noted for individual entry.

Acceptor diazoester:

FeCl₃·pybox Conditions: (*E*)-pent-3-en-1-yl 2-diazoacetate **[1]** (61.7 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (5.10 mg, 0.040 mmol, 0.10 equiv), 2,6-bis[(4*R*)-4-phenyl-2-oxazolinyl]pyridine (14.8 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using $5\% \rightarrow 10\% \rightarrow 15\%$ EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (61.6 mg, 0.399 mmol, 100% rsm). Run 2: (60.2 mg, 0.390 mmol, 98% rsm). Average: 99% yield rsm.

Fe(TPP)Cl Conditions: (E)-pent-3-en-1-yl 2-diazoacetate **[1]** (61.7 mg, 0.400 mmol, 1.0 equiv), Fe(TPP)Cl (28.2 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 5% \rightarrow 10% \rightarrow 15% EtOAc/hexanes as eluent gave recovered starting material (rsm) and dimer di(pent-3-en-1-yl) fumarate **[4]** as a mixture of olefin isomers.

Run 1: (47.9 mg, 0.190 mmol, 95% dimer), 0% rsm. Run 2: (45.9 mg, 0.182 mmol, 91% dimer), 0% rsm. **Average: 93% yield dimer [4], 0% rsm.**

[FePc]Cl Conditions: (*E*)-pent-3-en-1-yl 2-diazoacetate **[1]** (61.7 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using $5\% \rightarrow 10\% \rightarrow 15\%$ EtOAc/hexanes as eluent gave recovered starting material (rsm) and dimer di(pent-3-en-1-yl) fumarate **[4]** as a mixture of olefin isomers.

Run 1: (40.9 mg, 0.162 mmol, 81% dimer), 0% rsm. Run 2: (43.4 mg, 0.172 mmol, 86% dimer), 0% rsm. **Average: 84% yield dimer [4], 0% rsm.**

di(pent-3-en-1-yl) fumarate [4]

¹H-NMR (500 MHz, CDCl₃) δ 6.23 (s, 2H), 5.54 (dqt, *J* = 15.4, 6.3, 1.3 Hz, 2H), 5.39 (dtq, *J* = 15.2, 6.8, 1.6 Hz, 2H), 4.18 (t, *J* = 7.0 Hz, 4H), 2.38-2.32 (m, 4H), 1.66 (dq, *J* = 6.4, 1.3 Hz, 6H); ¹³C-NMR (126 MHz, CDCl₃) δ 165.32, 129.88, 128.24, 126.08, 65.05, 31.80,

18.12.; HRMS (ESI) m/z calculated for C₁₄H₂₀O₄Na [M+Na]⁺: 275.1259, found 275.1257.

Donor/acceptor:

FeCl₃·pybox Conditions: (*E*)-pent-3-en-1-yl 2-diazo-2-phenylacetate **[2]** (92.1 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (5.10 mg, 0.040 mmol, 0.10 equiv), 2,6-bis[(4*R*)-4-phenyl-2-oxazolinyl]pyridine (14.8 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (85.1 mg, 0.369 mmol, 92% rsm). Run 2: (80.1 mg, 0.348 mmol, 87% rsm). Average: 90% rsm.

Fe(TPP)CI Conditions: (*E*)-pent-3-en-1-yl 2-diazo-2-phenylacetate **[2]** (92.1 mg, 0.400 mmol), FeTPPCI (28.2 mg, 0.040 mmol, 0.1 equiv), and CH_2CI_2 (8.0 mL, 0.05 M) were used. Flash column chromatography on silica using 0% petroleum ether to 10% Et₂O/petroleum ether as eluent gave recovered starting material (rsm) and ketone (*E*)-pent-3-en-1-yl 2-oxo-2-phenylacetate **[5]**. Yields partially determined via NMR with mesitylene as an internal standard. Run 1: (3.5 mg, 0.016 mmol, 4% ketone), (88.9 mg, 0.386 mmol, 97% rsm). Run 2: (2.8 mg, 0.013 mmol, 3% ketone), (85.9 mg, 0.373 mmol, 93% rsm). **Average: 4% yield ketone [5], 95% rsm**.

[FePc]Cl Conditions: (*E*)-pent-3-en-1-yl 2-diazo-2-phenylacetate **[2]** (92.1 mg, 0.400 mmol), FePcCl (24.2 mg, 0.040 mmol, 0.1 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used. Flash column chromatography on silica using 0% to 10% Et_2O /petroleum ether as eluent gave recovered starting material (rsm) and ketone (*E*)-pent-3-en-1-yl 2-oxo-2-phenylacetate **[5]**. Yields partially determined via NMR with mesitylene as an internal standard.

Run 1: (10.4 mg, 0.048 mmol, 12% ketone), (53.4 mg, 0.232 mmol, 58% rsm). Run 2: (10.4 mg, 0.048 mmol, 12% ketone), (53.4 mg, 0.232 mmol, 58% rsm). **Average: 12% yield ketone [5], 58% rsm**.

(E)-pent-3-en-1-yl 2-oxo-2-phenylacetate [5].

¹H-NMR (500 MHz, CDCl₃) δ 8.00 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.68-7.64 (m, 1H), 7.51 (dd, *J* = 8.3, 7.4 Hz, 2H), 5.65 - 5.54 (m, 1H), 5.44 (dtq, *J* = 15.3, 6.8, 1.6 Hz, 1H), 4.40 (t, *J* = 6.8 Hz, 2H), 2.51 - 2.41 (m, 2H), 1.68 (dq, *J* = 6.4, 1.4 Hz, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 186.56, 164.01, 135.02,

132.61, 130.19, 129.00, 128.96, 125.69, 65.86, 32.01, 18.14. HRMS (ESI) m/z calculated for $C_{13}H_{14}O_3Na$ [M+Na]⁺: 241.0841, found 241.0849.

Acceptor/acceptor:

FeCl₃·pybox Conditions: (*E*)-1-methyl 3-(pent-3-en-1-yl) 2-diazomalonate **[3]** (84.9 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (5.10 mg, 0.040 mmol, 0.10 equiv), 2,6-bis[(4*R*)-4-phenyl-2-oxazolinyl]pyridine(14.8 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (81.9 mg, 0.386 mmol, 97% rsm). Run 2: (81.7 mg, 0.385 mmol, 96% rsm). Average: 97% yield rsm.

Fe(TPP)Cl Conditions: (*E*)-1-methyl 3-(pent-3-en-1-yl) 2-diazomalonate **[3]** (84.9 mg, 0.400 mmol, 1.0 equiv), Fe(TPP)Cl (28.2 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (78.7 mg, 0.371 mmol, 93% rsm). Run 2: (83.0 mg, 0.391 mmol, 98% rsm). Average: 96% rsm.

[FePc]Cl Conditions: (*E*)-1-methyl 3-(pent-3-en-1-yl) 2-diazomalonate **[3]** (84.9 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (78.5 mg, 0.370 mmol, 93% rsm). Run 2: (82.2 mg, 0.387 mmol, 97% rsm). Average: 95% rsm.

Acceptor/acceptor Sulfonate Ester:

FeCl₃·pybox Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (5.10 mg, 0.040 mmol, 0.10 equiv), 2,6-bis[(4*R*)-4-phenyl-2-oxazolinyl]pyridine(14.8 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.5 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (105.6 mg, 0.382 mmol, 96% rsm). Run 2: (110.6 mg, 0.400 mmol, 100% rsm). Average: 98% yield rsm.

Fe(TPP)Cl Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), Fe(TPP)Cl (28.2 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used. Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave recovered starting material (rsm).

Run 1: (108.1 mg rsm, 0.391 mmol, 98%). Run 2: (108.0 mg rsm, 0.391 mmol, 98%). Average: 0% yield, 98% rsm.

[FePc]Cl Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05

M) were used. Flash column chromatography on silica using $10\% \rightarrow 15\% \rightarrow 20\%$ EtOAc/hexanes as eluent gave recovered starting material (rsm) and ethyl (*E*)-4-(prop-1-en-1-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide **[7]** as a mixture of diastereomers.

Run 1: (3.4 mg, 0.014 mmol, 3%), (107.1 mg rsm, 0.388 mmol, 97%). Run 2: (2.4 mg, 0.010 mmol, 2%), (107.0 mg rsm, 0.387 mmol, 97%). **Average: 3% yield [7], 97% rsm.**

Optimization of Fe-Catalyzed Intramolecular C-H Alkylation

Reaction optimization. Reaction stirred for 24 hours after addition of diazoester unless otherwise noted. ^{*a*} Reaction stirred for 2 hours after dropwise addition of diazoester. ^{*b*} Diazo added via syringe pump over one hour. Pc = phthalocyanine; TPP = tetraphenylporphyrin; PyBOX = 2,6-bis[(4*R*)-4-phenyl-2-oxazolinyl]pyridine; AgSbF₆ = silver hexafluoroantimonate; NaBAr^F₄ = sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Isolated yields are average of two runs. rsm denotes recovered starting material.

Ethyl (E)-4-(prop-1-en-1-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [7].

The relative stereochemistry of the δ -sultones was determined via coupling constant analysis, and confirmed by nOe NMR experiments (500 MHz, CDCl₃) in which the C3 and C4 protons for each diastereomer were irradiated (highlighted in red). Syn δ -sultones have a characteristic nOe between the C3 and C4 equatorial and pseudo-axial hydrogens. Conversely, the C3 and C4 hydrogens in the anti δ -sultones fall on opposite sides of the ring and therefore experience

no observable nOe. Instead, for anti allylic C-H alkylation products a weak nOe can be observed between the C3 pseudo-axial hydrogen and the pseudo-axial C5 hydrogen. All products described in this paper are designated with the same relative stereochemistry as 7 as determined by coupling constant analogy. The experimental data are consistent with previously reported studies in the literature ^{3,7}. The syn and anti diastereomers were collected from initial purification of crude reaction as a mixture (d.r. 1:1-3:1 syn:anti) and subsequently purified for characterization. In most, but not all, cases, the syn diastereomer was less polar than the anti diastereomer.

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 5.68 (dqd, J = 15.0, 6.5, 1.1 Hz, 1H), 5.33 (ddd, J = 15.3, 7.6, 1.7 Hz, 1H), 4.68-4.55 (m, 2H), 4.26 (q, J = 7.2 Hz, 0 OEt 2H), 4.05 (d, J = 4.7 Hz, 1H_{C3}), 3.28-3.18 (m, 1H), 2.61 (dtd, J = 14.5, 12.0, 5.6 0 0= Hz, 1H), 1.68 (ddd, J = 6.5, 1.7, 0.8 Hz, 3H), 1.64 (ddt, J = 14.6, 4.3, 2.4 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.11, 129.69, 127.73,

73.03, 64.90, 62.37, 40.59, 25.40, 17.99, 14.10.; HRMS (ESI) m/z calculated for C₁₀H₁₇O₅S [M+H]⁺: 249.0797, found 249.0795.

0 ,OEt 0=

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 5.68 (dqd, J = 13.9, 6.5, 0.9 Hz, 1H), 5.23 (ddd, J = 15.3, 8.3, 1.7 Hz, 1H), 4.70-4.61 (m, 1H), 4.52-4.44 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.78 (d, J = 11.6 Hz, 1H_{C3}), 3.25 (dq, J = 11.4, 8.2 Hz, 1H), 1.92-1.84 (m, 2H), 1.66 (dd, J = 6.4, 1.4 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 163.35, 130.21, 127.93, 72.54, 68.19, 62.67,

41.70, 30.44, 17.98, 14.16.; HRMS (ESI) *m/z* calculated for C₁₀H₁₇O₅S [M+H]⁺: 249.0797, found 249.0796.

General procedure for optimization studies (entries 1-9):

Into a 1 dram vial was added catalyst (0.040 mmol, 0.10 equiv) in a glovebox. The vial was sealed, taken out of the box, and the contents were added under a stream of nitrogen to a flame dried three neck 25 mL flask equipped with a stir bar, reflux condenser, glass stopper, and rubber septum. CH₂Cl₂ (5.0 mL, 0.08 M) was added and the flask was heated to reflux (~45°C) for 10 minutes. Ethyl (E)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate 6 (110.5 mg, 0.400 mmol, 1.0 equiv) was taken up with CH₂Cl₂ (3.0 mL, 0.13 M) in a glass syringe and added dropwise to the refluxing catalyst solution over the course of 2-3 minutes (final reaction concentration is 0.05 M). After complete addition of diazosulfonate, the reaction refluxed until judged complete by TLC (2-24 h). The reaction mixture was cooled, adsorbed onto SiO₂ or florisil, and applied directly to a silica column (75 mL SiO₂) for purification to afford the desired

sultone product. The recovered starting material (rsm) and product were eluted with $10\% \rightarrow 15\% \rightarrow 20\%$ EtOAc/hexanes and isolated separately. Any variation of these reaction conditions is noted for individual entries.

Entry 1. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (3.4 mg, 0.014 mmol, 3%), (107.1 mg rsm, 0.388 mmol, 97%). Run 2: (2.4 mg, 0.010 mmol, 2%), (107.0 mg rsm, 0.387 mmol, 97%). **Average: 3% yield, 97% rsm.**

Entry 2. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), AgSbF₆ (13.7 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (45.5 mg, 0.183 mmol, 46%). Run 2: (44.4 mg, 0.179 mmol, 45%). **Average: 45% yield, 0% rsm.**

Entry 3. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (47.7 mg, 0.192 mmol, 48%). Run 2: (46.3 mg, 0.186 mmol, 47%). **Average: 48% yield, 0% rsm.**

Entry 4. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FeCl₁₆Pc]Cl (46.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used.

Run 1: (35.1 mg, 0.141 mmol, 35%). Run 2: (39.6 mg, 0.159 mmol, 40%). **Average: 38% yield, 0% rsm.**

Entry 5. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FeCl₈Pc]Cl (35.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (24.3 mg, 0.098 mmol, 25%), (73.7 mg rsm, 0.267 mmol, 67%). Run 2: (26.0 mg, 0.105 mmol, 26%), (72.6 mg rsm, 0.263 mmol, 66%). **Average: 25% yield, 66% rsm.**

Entry 6. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Solution of diazo was added via syringe pump over the course of an hour (see General procedure for [FePc]-catalyzed C—H alkylation). Run 1: (53.4 mg, 0.215 mmol, 54%). Run 2: (51.9 mg, 0.209 mmol, 53%). **Average: 53% yield, 0% rsm.**

Entry 7. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), Fe(TPP)Cl (28.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used.

Run 1: (7.5 mg, 0.030 mmol, 7%), (103.2 mg rsm, 0.373 mmol, 93%). Run 2: (6.3 mg, 0.025 mmol, 6%), (104.7 mg rsm, 0.379 mmol, 94%). Average: 7% yield, 93% rsm.

Entry 8. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [6] (110.5 mg, 0.400 mmol, 1.0 equiv), [Fe^{ll}Pc] (22.7 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Run 1: (108.9 mg rsm, 0.394 mmol, 99%). Run 2: (110.2 mg RSM, 0.399 mmol, 100%). Average: 0% yield, 100% rsm.

Entry 9. Ethyl (E)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [6] (110.5 mg, 0.400 mmol, 1.0 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used.

Run 1: (105.7 mg rsm, 0.382 mmol, 96%). Run 2: (106.7 mg rsm, 0.386 mmol, 97%). Average: 0% yield, 96% rsm.

Preparation of Sulfonate Ester Starting Materials

General procedure for preparation of sulfonate ester substrates:

A round-bottom flask equipped with a stir bar and rubber septum was charged with alcohol substrate (1 equiv), imidazole (1.2 equiv), and THF (0.4 M). Ethyl chlorosulfonylacetate (1.5 equiv) was dissolved in THF (0.4 M) and added slowly dropwise to the reaction over the course of 5 mins. The reaction was stirred at room temperature for 1-6 hours, or until complete consumption of starting material as monitored by TLC. The reaction was guenched with H₂O until the mixture turned clear (10-20 mL). The reaction mixture was partitioned between H₂O (15 mL) and CH₂Cl₂ (60 mL) and separated. The aqueous layer was then extracted with CH₂Cl₂ (2x20 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel afforded the desired sulfonate ester.

Ethyl (E)-2-((hex-4-en-1-vloxy)sulfonyl)acetate [S3]. 0 _OEt

1.00 g (10.0 mmol) of (E)-hex-4-en-1-ol were used, along with imidazole (817 mg, 12.0 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (2.80 g, 15.0 mmol, 1.5 equiv), and THF (50 mL, 0.2 M). Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 2.30 g (9.20 mmol) of pure product as a pale vellow oil (92% vield).

¹H-NMR (500 MHz, CDCl₃) δ 5.54-5.43 (m, 1H), 5.38 (dt, *J* = 15.2, 6.6 Hz, 1H), 4.33 (t, *J* = 6.5 Hz, 2H), 4.28 (q, J = 7.2 Hz, 2H), 4.07 (s, 2H), 2.11 (dt, J = 7.3, 6.6 Hz, 2H), 1.82 (p, J = 6.7 Hz, 2H), 1.65 (d, J = 6.3 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.02, 129.02, 126.58, 71.77, 62.60, 54.67, 28.86, 28.14, 17.84, 13.90.; HRMS (ESI) m/z calculated for C₁₀H₁₈O₅SNa [M+Na]⁺: 273.0773, found 273.0771.

Ethyl 2-(((5-methylhex-4-en-1-yl)oxy)sulfonyl)acetate [S4].

0

0≈Ş

0.57 g (5.0 mmol) of 5-methylhex-4-en-1-ol were used, along with imidazole (409 mg, 6.0 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.40 g, 7.5 mmol, 1.5 equiv), and THF (25 mL, 0.2 M). Flash column chromatography on silica using 15% EtOAc/hexanes as eluent gave 0.89 mg (3.40 mmol) of pure product as a clear oil (68% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.08 (t, J = 7.2 Hz, 1H), 4.33 (t, J = 6.5 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 2.11 (dt, J = 7.3, 7.1 Hz, 2H), 1.80 (p, J = 6.8 Hz, 2H), 1.70 (s, 3H), 1.61 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) 162.14, 133.53, 122.37, 72.06, 62.84, 54.97, 29.41, 25.84, 23.85, 17.84, 14.10; HRMS (ESI) *m/z* calculated for C₁₁H₂₀O₅SNa [M+Na]⁺: 287.0929, found 287.0927.

Ethyl (E)-2-(((7-((tert-butyldiphenylsilyl)oxy)hept-4-en-1-yl)oxy)sulfonyl)acetate [S5].

0 _OEt 0 0=S OTBDPS

839 mg (2.30 mmol) of (E)-7-((tert-butyldiphenylsilyl)oxy)hept-4-en-1ol were used, along with imidazole (191 mg, 2.80 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (653 mg, 3.50 mmol, 1.5 equiv), and THF (12 mL, 0.2 M). Flash column chromatography on silica using 10%

EtOAc/hexanes as eluent gave 1.20 g (2.30 mmol) of pure product as a pale yellow oil (100% vield).

¹H-NMR (500 MHz, CDCl₃) δ7.69-7.63 (m, 4H), 7.45-7.34 (m, 6H), 5.44 (m, 2H), 4.32 (t, *J* = 6.4 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.06 (s, 2H), 3.67 (t, J = 6.6 Hz, 2H), 2.25 (q, J = 6.4 Hz, 2H), 2.11 (g, J = 6.9 Hz, 2H), 1.81 (p, J = 6.5 Hz, 2H), 1.31 (t, J = 7.3 Hz, 3H), 1.04 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.07, 135.63, 134.03, 130.11, 129.64, 128.55, 127.68, 71.83, 63.82, 62.73, 54.85, 36.04, 28.96, 28.38, 26.93, 19.30, 14.04.; HRMS (ESI) m/z calculated for C₂₇H₃₉O₆SiS [M+H]⁺: 519.2237, found 519.2239.

Ethyl (E)-2-(((5-phenylpent-4-en-1-yl)oxy)sulfonyl)acetate [S6].

825 mg (5.10 mmol) of (E)-5-phenylpent-4-en-1-ol were used, along with imidazole (415 mg, 6.10 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.40 g, 7.70 mmol, 1.5 equiv), and THF (26 mL, 0.2 M). Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 1.47 g (4.70 mmol) of pure product as a pale yellow oil (92% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.24-7.19 (m, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.18 (dt, J = 15.9, 7.0 Hz, 1H), 4.40 (t, J = 6.4 Hz, 2H), 4.28 (q, J = 7.2 Hz, 2H), 4.09 (s, 2H), 2.36 (dt, J = 8.3, 7.1 Hz, 2H), 1.96 (p, J = 6.6 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 161.89, 137.15, 131.14, 131.11, 128.37, 128.24, 128.19, 127.00, 125.86, 71.48, 62.42, 54.46, 28.57, 28.47, 13.76.; HRMS (ESI) m/z calculated for $C_{15}H_{20}O_5SNa [M+Na]^+$: 335.0929, found 335.0929.

Ethyl (E)-2-(((5-(4-bromophenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate [S7].

735 mg (3.05 mmol) of (E)-hex-4-en-1-ol were used, along with imidazole (249 mg, 3.7 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (854 mg, 4.58 mmol, 1.5 equiv), and THF (15 mL, 0.2 M). Flash column chromatography on silica using $15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes as eluent gave 950 mg (2.42 mmol) of pure product as a clear oil (79% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.38 (d, J = 15.8 Hz, 1H), 6.17 (dt, J = 15.8, 7.0 Hz, 1H), 4.39 (t, J = 6.3 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.08 (s, 2H), 2.35 (dt, J = 7.7, 6.8 Hz, 2H), 1.95 (p, J = 6.5 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 162.26, 136.47, 131.84, 130.54, 129.40, 127.84, 121.09, 71.80, 62.99, 55.08, 28.96, 28.94, 14.23; HRMS (ESI) *m/z* calculated for C₁₅H₁₉BrO₅SNa [M+Na]⁺: 413.0034; found 413.0026.

Ethyl (E)-2-(((5-(4-chlorophenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate [S8].

0 .OEI 0, 0≈\$

610 mg (3.10 mmol) of (E)-5-(4-chlorophenyl)pent-4-en-1-ol were used, along with imidazole (253 mg, 3.72 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (868 mg, 4.65 mmol, 1.5 equiv), and THF (16 mL, 0.2 M). Flash column chromatography on silica using 15% EtOAc/hexanes as eluent gave 846 mg (2.40 mmol) of pure product as a pale vellow oil (77% vield).

¹H-NMR (500 MHz, CDCl₃) δ 7.31- 7.23 (m, 4H), 6.40 (d, J = 15.9, 1H), 6.15 (dt, J = 15.6, 6.9 Hz, 1H), 4.39 (t, J = 6.4 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.09 (s, 2H), 2.36 (dt, J = 7.4, 7.0 Hz, 2H), 1.95 (p, J = 6.4 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.06, 135.87, 132.76, 130.29, 129.09, 128.70, 127.32, 71.60, 62.76, 54.89, 28.80, 28.72, 14.03; HRMS (ESI) *m/z* calculated for C₁₅H₁₉O₅SCINa [M+Na]⁺: 369.0530, found 369.0533.

Ethyl(E)-2-(((5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate [S9].

890 mg (3.88 mmol) of (E)-hex-4-en-1-ol were used, along with imidazole (317 mg, 4.66 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.09 g, 5.82 mmol, 1.5 equiv), and THF (19 mL, 0.2 M). Flash column chromatography on silica using $25\% \rightarrow 30\% \rightarrow 33\%$ EtOAc/hexanes as eluent gave 772 mg (2.03 mmol) of pure product as a clear oil (52% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 6.48 (d, J = 15.9 Hz, 1H), 6.29 (dt, J = 15.8, 7.0 Hz, 1H), 4.41 (t, J = 6.3 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.10 (s, 2H), 2.40 (dt, J = 7.3, 6.8 Hz, 2H), 1.97 (p, J = 6.5 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.27, 140.99, 131.36, 130.48, 129.20 (q, J = 32.4 Hz), 126.42, 125.72 (q, J = 3.8 Hz), 124.47 (q, J = 272.2 Hz), 71.75, 63.01, 55.08, 28.99, 28.88, 14.20. HRMS (ESI) m/z calculated for $C_{16}H_{19}F_{3}O_{5}SNa [M+Na]^{+}$: 403.0803, found 403.0788.

Ethyl (E)-2-(((4-phenylbut-3-en-1-yl)oxy)sulfonyl)acetate [S10].

764 mg (5.20 mmol) of (E)-4-phenylbut-3-en-1-ol were used, along with imidazole (422 mg, 6.20 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.46 g, 7.80 mmol, 1.5 equiv), and THF (26 mL, 0.2 M). Flash column chromatography on silica using 15% EtOAc/hexanes as eluent gave 1.38 g (4.60 mmol) of pure product as a pale yellow oil (88% yield).

¹H-NMR (500 MHz, CDCl₃) δ7.37-7.33 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.21 (m, 1H), 6.52 (d, J = 15.8 Hz, 1H), 6.16 (dt, J = 15.9, 7.0 Hz, 1H), 4.45 (t, J = 6.7 Hz, 2H), 4.26 (g, J = 7.2 Hz, 2H), 4.10 (s, 2H), 2.69 (qd, J = 6.7, 1.5 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.07, 136.89, 133.68, 128.63, 127.63, 126.25, 123.66, 71.40, 62.78, 54.97, 32.90, 14.00.; HRMS (ESI) *m/z* calculated for C₁₄H₁₈O₅SNa [M+Na]⁺: 371.0773, found 321.0767.

Ethyl (E)-2-((pent-3-en-1-yloxy)sulfonyl)acetate [S11].

431 mg (5.0 mmol) of (E)-pent-3-en-1-ol were used, along with imidazole (409 mg, 6.0 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.40 g, 7.50 mmol, 1.5 equiv), and THF (25 mL, 0.2 M). Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 807 mg (3.40 mmol) of pure product as a pale yellow oil (68% vield).

¹H-NMR (500 MHz, CDCl₃) δ 5.65-5.54 (m, 1H), 5.38 (dtq, *J* = 15.4, 6.9, 1.7 Hz, 1H), 4.32 (t, *J* = 6.8 Hz, 2H), 4.28 (g, J = 7.4 Hz, 2H), 4.08 (s, 2H), 2.45 (m, 2H), 1.68 (dg, J = 6.7, 1.4 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.05, 129.40, 124.56, 71.83, 62.66, 54.82, 32.44, 17.98, 13.94.; HRMS (ESI) *m/z* calculated for C₉H₁₆O₅SNa [M+Na]⁺: 259.0616. found 259.0609.

Ethyl 2-((3-((tert-butyldiphenylsilyl)oxy)propoxy)sulfonyl)acetate [S12].

0 OFt 0 0=S OTBDPS

1.57 g (5.0 mmol) of 3-((tert-butyldiphenylsilyl)oxy)propan-1-ol were used, along with imidazole (409 mg, 6.0 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.4 g, 7.5 mmol, 1.5 equiv), and THF (25 mL, 0.2 M). Flash column chromatography

on silica using 5% EtOAc/hexanes as eluent gave 1.16 g (2.50 mmol) of pure product as a sticky pale yellow oil (50% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.70-7.59 (m, 4H), 7.47-7.34 (m, 6H), 4.53 (t, J = 6.3 Hz, 2H), 4.26 (q, J = 7.2 Hz, 2H), 4.05 (s, 2H), 3.78 (t, J = 5.8 Hz, 2H), 1.98 (p, J = 6.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.05 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.03, 135.55, 133.39, 129.83, 127.81, 69.36, 62.69, 59.31, 54.75, 32.14, 26.87, 19.23, 14.01.; HRMS (ESI) m/z calculated for C₂₃H₃₃O₆SiS [M-H]⁺: 463.1611, found 463.1601.

Ethyl 2-((3-(4-methoxyphenyl)propoxy)sulfonyl)acetate [S13].

1.58 g (5.00 mmol) of 3-(4-methoxyphenyl)propan-1-ol were used, along with imidazole (408.5 mg, 6 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.40 g, 7.50 mmol, 1.5 equiv), and THF (25 mL, 0.2 M). Flash column chromatography on silica using $10\% \rightarrow 20\%$ EtOAc/hexanes as eluent gave 855 mg (2.70 mmol) of pure product as a clear oil (53% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.09 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 8.5 Hz, 2H), 4.31 (t, J = 6.3 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 4.08 (s, 2H), 3.76 (s, 3H), 2.68 (t, J = 7.6 Hz, 2H), 2.03 (p, J = 7.6 Hz, 2H), 1.30 (t, J = 7.2, 3H).; 13 C-NMR (126 MHz, CDCl₃) δ 162.08, 158.15, 132.33, 129.45, 114.05, 71.54, 62.79, 55.33, 54.86, 31.04, 30.58, 14.05.; HRMS (ESI) m/z calculated for C₁₄H₂₀O₆SNa [M+Na]⁺: 339.0878, found 339.0872.

Ethyl 2-((3-(4-(N-methylphenylsulfonamido)phenyl)propoxy)sulfonyl)acetate [S14].

1.03 (3.37)mmol) of N-(4-(3-hydroxypropyl)phenyl)-Ng methylbenzenesulfonamide was used, along with imidazole (275.7 mg. 4.05 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (944.2 mg, 5.06 mmol, 1.5 equiv), and THF (17 mL, 0.2 M). Flash column chromatography on

silica using $20\% \rightarrow 50\%$ EtOAc/hexanes as eluent gave 802 mg (1.76 mmol) of pure product as a clear oil (52% yield).

¹H-NMR (400 MHz, CDCl₃) δ 7.62 - 7.51 (m, 3H), 7.69 - 7.43 (m, 2H), 7.12 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 4.34 (t, J = 6.3 Hz, 2H), 4.28 (g, J = 7.1 Hz, 2H), 4.09 (s, 2H), 3.15 (s, 3H), 2.74 (t, J = 7.6 Hz, 2H), 2.12 - 2.04 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.13, 139.84, 139.74, 136.60, 132.90, 129.06, 128.89, 128.00, 126.97, 71.40, 62.93, 55.04, 38.32, 31.13, 30.74, 14.13.; HRMS (ESI) m/z calculated for C₂₀H₂₆NO₇S₂ [M+H]⁺: 456.1151, found 456.1149.

Ethyl 2-((3-(naphthalen-1-yl)propoxy)sulfonyl)acetate [S15].

O OEt O S O OEt

175 mg (0.939 mmol) of 3-(naphthalen-1-yl)propan-1-ol were used, along with imidazole (76.7 mg, 1.13 mmol, 1.2 equiv), $CISO_2CH_2CO_2Et$ (263 mg, 1.41 mmol, 1.5 equiv), and THF (4.7 mL, 0.2 M). Flash column chromatography on silica using 10% \rightarrow 25% EtOAc/hexanes as eluent gave 118 mg (0.351 mmol) of pure product as a clear oil (37% yield).

¹H-NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.55 - 7.47 (m, 2H), 7.41 (dd, J = 8.2, 7.0 Hz, 1H), 7.35 (dd, J = 7.1, 1.5 Hz, 1H), 4.42 (t, J = 6.2 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.11 (s, 2H), 3.23 (dd, J = 8.5, 6.8 Hz, 2H), 2.27 - 2.17 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.14, 136.44, 134.11, 131.76, 129.06, 127.32, 126.49, 126.24, 125.79, 125.69, 123.58, 71.82, 62.92, 55.07, 30.20, 28.84, 14.13.; HRMS (ESI) *m/z* calculated for C₁₇H₂₀O₅SNa [M+Na]⁺: 359.0929, found 359.0927.

Ethyl 2-((3-(2,2-dimethyl-2*H*-chromen-6-yl)propoxy)sulfonyl)acetate [S16].

744 mg (3.41 mmol) of 3-(2,2-dimethyl-2*H*-chromen-6-yl)propan-1-ol was used, along with imidazole (279 mg, 4.10 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (955 mg, 5.12 mmol, 1.5 equiv), and THF (17 mL, 0.2 M). Flash column chromatography on silica using 20% \rightarrow 50%

EtOAc/hexanes as eluent gave 896 mg (2.43 mmol) of pure product as a clear oil (71% yield). ¹H-NMR (400 MHz, CDCl₃) δ 6.91 (d, J = 8.4 Hz, 1H), 6.79 (s, 1H), 6.70 (d, J = 8.1 Hz, 1H), 6.28 (d, J = 9.6 Hz, 1H), 5.60 (d, J = 9.5 Hz, 1H), 4.33 (t, J = 6.4 Hz, 2H), 4.27 (q, J = 7.2 Hz, 2H), 4.07 (s, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.05 (p, J = 7.2 Hz, 2H), 1.42 (s, 6H), 1.32 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.09, 151.45, 132.40, 131.11, 128.99, 126.32, 122.30, 121.36, 116.40, 76.21, 71.59, 62.82, 54.94, 31.00, 30.69, 28.06, 14.08.; HRMS (ESI) *m/z* calculated for C₁₈H₂₅O₆S [M+H]⁺: 369.1372, found 369.1364.

Ethyl 2-((3-(1-(phenylsulfonyl)-1H-indol-3-yl)propoxy)sulfonyl)acetate [S17].

2.30 g (7.28 mmol) of 3-(1-(phenylsulfonyl)-1H-indol-3-yl)propan-1-ol was used, along with imidazole (595 mg, 8.74 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (2.04 g, 10.9 mmol, 1.5 equiv), and THF (18 mL, 0.2 M). Flash column chromatography on silica using $10\% \rightarrow 30\%$ EtOAc/hexanes

as eluent gave 2.40 g (5.16 mmol) of pure product as a clear oil (71% yield). This compound was isolated with <5% of an unknown impurity that did not appear to affect reactivity. ¹H-NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.49 - 7.38 (m, 4H), 7.33 (t, *J* = 8.0, 1H), 7.24 (m, 1H), 4.35 (t, *J* = 6.1 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.10 (s, 2H), 2.83 (t, *J* = 7.3 Hz, 2H), 2.14 (p, *J* = 7.5 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.13, 138.25, 135.54, 133.88, 130.71, 129.39, 126.87, 125.06, 123.38, 121.38, 119.46, 113.99, 71.20, 62.94, 55.03, 28.57, 20.86, 14.11.

126.87, 125.06, 123.38, 121.38, 119.46, 113.99, 71.20, 62.94, 55.03, 28.57, 20.86, 14.11. (one peak missing due to overlap); HRMS (ESI) m/z calculated for $C_{21}H_{24}NO_7S_2$ [M+H]⁺: 446.0994, found 446.0993.

Ethyl 2-((3-(benzo[*d*][1,3]dioxol-5-yl)propoxy)sulfonyl)acetate [S18].

1.26 g (7.0 mmol) of 3-(benzo[*d*][1,3]dioxol-5-yl)propan-1-ol were used, along with imidazole (571 mg, 8.40 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.90 g, 10.5 mmol, 1.5 equiv), and THF (35 mL, 0.2 M). Flash column chromatography on silica using 20% EtOAc/hexanes as eluent gave 1.82 g

(5.50 mmol) of pure product as a pale yellow oil (79% yield). ¹H-NMR (500 MHz, CDCl₃) δ 6.74 (d, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 1.5 Hz, 1H), 6.64 (dd, *J* = 7.9, 1.8 Hz, 1H), 5.93 (s, 2H), 4.33 (t, *J* = 6.3 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.08 (s, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.04 (p, *J* = 6.4 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.11, 147.89, 146.12, 134.13, 121.41, 108.95, 108.43, 101.00, 71.42, 62.87, 55.00, 31.31, 31.14, 14.11.; HRMS (ESI) *m/z* calculated for C₁₄H₁₈O₇SNa [M+Na]⁺: 353.0671, found 353.0672.

Ethyl 2-((3-(4-(2-oxopyrrolidin-1-yl)phenyl)propoxy)sulfonyl)acetate [S19].

414 mg (1.12 mmol) of 1-(4-(3-hydroxypropyl)phenyl)pyrrolidin-2-one was used, along with imidazole (91.1 mg, 1.34 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (312 mg, 1.67 mmol, 1.5 equiv), and THF (5.6 mL, 0.2

M). Flash column chromatography on silica using $30\% \rightarrow 70\%$ EtOAc/hexanes as eluent gave 245 mg (0.771 mmol) of pure product as a clear oil (69% yield).

¹H-NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 4.34 (t, *J* = 6.3 Hz, 2H), 4.28 (q, *J* = 7.2 Hz, 2H), 4.08 (s, 2H), 3.85 (t, *J* = 7.0 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.61 (t, *J* = 8.1 Hz, 2H), 2.17 (p, J = 7.8 Hz, 2H), 2.08 (p, J = 7.0 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 174.25, 162.06, 137.75, 136.52, 128.87, 120.31, 71.44, 62.82, 54.86, 48.91, 32.75, 30.91, 30.84, 18.10, 14.06.; HRMS (ESI) *m/z* calculated for C₁₇H₂₄O₆NS [M+H]⁺: 370.1324, found 370.1325.

Ethyl 2-((3-(4-(3-methylthiophen-2-yl)phenyl)propoxy)sulfonyl)acetate [S20].

1.06 g (4.56 mmol) of 3-(4-(3-methylthiophen-2-yl)phenyl)propan-1-ol were used, along with imidazole (373 mg, 5.47 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.28 g, 6.84 mmol, 1.5 equiv), and THF (24.8 mL, 0.2 M). Flash column chromatography on silica using $10\% \rightarrow 20\%$

EtOAc/hexanes as eluent gave 1.55 g (4.04 mmol) of pure product as a clear oil (89% yield). ¹H-NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 5.1 Hz, 1H), 6.97 (d, J = 5.1 Hz, 1H), 4.43 (t, J = 6.3 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.14 (s, 2H), 2.84 (t, J = 7.2 Hz, 2H), 2.37 (s, 3H), 2.17 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.07, 139.33, 137.63, 133.08, 132.87, 131.19, 129.20, 128.68, 123.29, 71.51, 62.82, 54.88, 31.21, 30.74, 15.00, 14.05.; HRMS (ESI) *m/z* calculated for C₁₈H₂₃O₅S₂ [M+H]⁺: 383.0987, found 383.0985.

Preparation of Diazosulfonate Starting Materials

General procedure for diazo transfer:

A round-bottom flask equipped with a stir bar and rubber septum was charged with sulfonate ester (1 equiv) and THF (0.4 M) and cooled to -45° C with a dry ice/acetonitrile bath. MeSO₂N₃

(2.2-3.0 equiv) was then added in one portion. DBU (1.5 equiv) was then added slowly dropwise over 2-5 minutes and the solution turned yellow. After the reaction was stirred for 1 hour at -45°C, the cooling bath was removed and 15 mL of sat. aq. (NH₄)₂SO₄ was immediately added. The mixture was transferred to a separatory funnel with 20 mL of CH₂Cl₂. The agueous layer was extracted with 3 x 10 mL CH₂Cl₂ and the combined organic extracts were washed with 2 x 10 mL 10% NaOH, 2 x 10 mL H₂O, and sat. aq. NaCl. The organic phase was dried over Na₂SO₄ or MgSO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel gave the desired diazo product. Some diazoesters were difficult to separate from the sulfonamide byproduct (MeSO₂NH₂, singlet at 3.30 ppm). In these cases, the diazoester was washed 3x with 20% NaOH, 2x with H₂O, and 1x with brine after column chromatography. We found that this sulfonamide impurity (in trace quantities, <5%) did not affect the reactivity of the diazoesters. Following purification, the diazo compounds were stored at -20°C under argon. The ¹³C NMR signal for the diazo carbon was typically not detected; Novikov⁷ and Du Bois³ noticed similar results. NOTE: Some diazosulfonate ester compounds exhibited suboptimal reactivity after storing for more than a month: repurification sometimes restored reactivity in these cases. Some diazosulfonate ester compounds decomposed during long periods under reduced pressure. These cases are noted below. WARNING: Although we have not experienced problems with the preparation and the handling of $MeSO_2N_3$ or diazosulfonate esters, sulfonyl azides and diazo compounds can be heat and/or shock sensitive and should be handled with appropriate caution.

Ethyl (E)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [6].

.OEt 2.30 g (9.20 mmol) of ethyl (E)-2-((hex-4-en-1-yloxy)sulfonyl)acetate [S3] were used, along with MeSO₂N₃ (2.40 g, 20.2 mmol, 2.2 equiv), DBU (206 μ L, 13.8 mmol, 1.5 equiv), and THF (23 mL, 0.4 M). Flash column chromatography on silica using 5% EtOAc/hexanes as eluent gave 1.98 g (7.17 mmol) of pure product as a yellow oil (78% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.53-5.43 (m, 1H), 5.37 (ddd, *J* = 15.2, 6.8, 5.1 Hz, 1H), 4.35 (t, *J* = 6.3 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 2.10 (dt, J = 7.7, 7.3 Hz, 2H), 1.81 (p, J = 6.7 Hz, 2H), 1.65 (dd, J = 6.2, 1.3 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.62, 129.05, 126.88, 72.98, 62.80, 28.77, 28.29, 18.01, 14.39.; HRMS (ESI) m/z calculated for $C_{10}H_{16}O_5N_2SNa [M+Na]^+$: 299.0678, found 299.0681; IR (ATR, cm⁻¹) 2970, 2940, 2856, 2130, 1721, 1465, 1447, 1373, 1285, 1224, 1178, 1083, 1005, 964, 929, 836, 765, 739, 614, 564, 541, 491.

Ethyl 2-diazo-2-(((5-methylhex-4-en-1-yl)oxy)sulfonyl)acetate [S21].

0

0

0.89 g (3.40 mmol) of ethyl 2-(((5-methylhex-4-en-1-yl)oxy)sulfonyl)acetate [S4] were used, along with MeSO₂N₃ (908 mg, 7.50 mmol, 2.2 equiv), DBU (762 μ L, 5.10 mmol, 1.5 equiv), and THF (8.5 mL, 0.4 M). Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 0.60 g (2.08 mmol) of pure product as a yellow oil (61% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.07 (t, J = 7.3 Hz, 1H), 4.34 (t, J = 6.6 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 2.10 (dt, J = 7.5, 7.0 Hz, 2H), 1.79 (p, J = 7.3 Hz, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 159.58, 133.51, 122.26, 73.17, 62.76, 29.10, 25.77, 23.81, 17.77, 14.35; IR (ATR, cm⁻¹) 2970, 2918, 2130, 1722, 1447, 1373, 1285, 1224, 1178, 1083, 1007, 924, 879, 843, 777, 739, 615, 558, 495; HRMS (ESI) *m/z* calculated for $C_{11}H_{18}N_2O_5SNa$ [M+Na]⁺: 313.0834, found 313.0831.

Ethyl (*E*)-2-(((7-((*tert*-butyldiphenylsilyl)oxy)hept-4-en-1-yl)oxy)sulfonyl)-2-diazoacetate [S22].

O OEt O N₂ O S N₂ O OTBDPS 1.18 g (2.30 mmol) of ethyl (*E*)-2-(((7-((*tert*-butyldiphenylsilyl)oxy)hept-4-en-1-yl)oxy)sulfonyl)acetate **[S5]** were used, along with MeSO₂N₃ (618 mg, 5.10 mmol, 2.2 equiv), DBU (524 μ L, 3.50 mmol, 1.5 equiv), and THF (5.75 mL, 0.4 M). Flash column chromatography on silica

using 5% EtOAc/hexanes as eluent gave 879 mg (1.61 mmol) of pure product as a yellow oil (70% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.68-7.64 (m, 4H), 7.45-7.35 (m, 6H), 5.51-5.36 (m, 2H), 4.34 (t, J = 6.2 Hz, 2H), 4.31 (q, J = 7.3 Hz, 2H), 3.67 (t, J = 6.6 Hz, 2H), 2.25 (q, J = 6.9 Hz, 2H), 2.10 (dt, J = 7.7, 7.2 Hz, 2H), 1.80 (p, J = 6.5 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.04 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.59, 135.68, 134.06, 130.08, 129.68, 128.63, 127.71, 73.01, 63.84, 62.79, 36.08, 28.78, 28.44, 26.96, 19.34, 14.40.; HRMS (ESI) *m/z* calculated for C₂₇H₃₇O₆N₂SiS [M+H]⁺: 545.2142, found 545.2141; IR (ATR, cm⁻¹) 3071, 2931, 2857, 2130, 1723, 1589, 1472, 1376, 1288, 1225, 1179, 1091, 1006, 926, 822, 783.

Ethyl (*E*)-2-diazo-2-(((5-phenylpent-4-en-1-yl)oxy)sulfonyl)acetate [S23].

1.49 g (4.70 mmol) of ethyl (*E*)-2-(((5-phenylpent-4-en-1-yl)oxy)sulfonyl)acetate **[S6]** were used, along with MeSO₂N₃ (1.25 g, 10.3 mmol, 2.2 equiv), DBU (106 μ L, 7.10 mmol, 1.5 equiv), and THF (12 mL, 0.4 M). Flash column chromatography on silica using 5% EtOAc/hexanes as eluent gave 1.03 g (3.04 mmol) of pure product as a yellow oil (65%

yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.36-7.27 (m, 4H), 7.24- 7.19 (m, 1H), 6.43 (d, *J* = 15.8 Hz, 1H), 6.16 (dt, *J* = 15.8, 7.0 Hz, 1H), 4.41 (t, *J* = 6.3 Hz, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.36 (q, *J* = 7.5 Hz, 2H), 1.95 (p, *J* = 6.3 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.56, 137.32, 131.59, 128.65, 128.24, 127.34, 126.12, 72.81, 62.82, 28.80, 28.67, 14.39.; HRMS (ESI) *m/z* calculated for C₁₅H₁₈O₅N₂SNa [M+H]⁺: 361.0834, found 361.0844; IR (ATR, cm⁻¹) 3024, 2997, 2970, 2946, 2513, 2127, 1715, 1598, 1576, 1492, 1471, 1447, 1372, 1287, 1226, 1177, 1155, 1079, 1007, 986, 962, 926, 848.

Ethyl (*E*)-2-(((5-(4-bromophenyl)pent-4-en-1-yl)oxy)sulfonyl)-2-diazoacetate [S24].

950 mg (2.42 mmol) of ethyl(*E*)-2-(((5-(4-bromophenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate **[S7]** were used, along with MeSO₂N₃ (640 mg, 5.3 mmol, 2.2 equiv), DBU (543 μ L, 3.63 mmol, 1.5 equiv), and THF (6.1 mL, 0.4 M). Flash column chromatography on silica using 10% \rightarrow 15%

 \rightarrow 20% EtOAc/hexanes as eluent gave 614 mg (1.47 mmol) of pure product as a yellow oil (61% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.37 (d, *J* = 15.9 Hz, 1H), 6.16 (dt, *J* = 15.8, 7.0 Hz, 1H), 4.41 (t, *J* = 6.3 Hz, 2H), 4.31 (q, *J* = 7.2 Hz, 2H), 2.34

(dt, J = 7.6, 7.0 Hz, 2H), 1.94 (p, J = 6.7 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ159.68, 136.43, 131.85, 130.61, 129.29, 127.83, 121.13, 72.89, 62.96, 28.94, 28.70, 14.53.; HRMS (ESI) *m/z* calculated for C₁₅H₁₈N₂O₅SBr [M+H]⁺: 417.0120, found 417.0113.; IR (ATR, cm⁻¹) 2982.7, 2131.1, 1717.0, 1587.7, 1487.6, 1466.0, 1445.4, 1373.3, 1285.6, 1223.1, 1177.1, 1085.4, 1073.1, 1007.4, 962.7, 924.3, 881.7, 838.1, 823.3, 738.2, 703.5, 613.8, 564.3, 537.3, 522.3, 500.5.

Ethyl (E)-2-(((5-(4-chlorophenyl)pent-4-en-1-yl)oxy)sulfonyl)-2-diazoacetate [S25].

846 mg (2.40 mmol) of ethyl (*E*)-2-(((5-(4-chlorophenyl)pent-4-en-1yl)oxy)sulfonyl)acetate **[S8]** were used, along with MeSO₂N₃ (641 mg, 5.3 mmol, 2.2 equiv), DBU (538 μ L, 3.60 mmol, 1.5 equiv), and THF (6 mL, 0.4 M). Flash column chromatography on silica using 20%

 Et_2O /hexanes as eluent gave 633 mg (1.70 mmol) of pure product as a yellow oil (71% yield). This compound was isolated with <5% of an unknown impurity that did not appear to affect reactivity.

¹H-NMR (500 MHz, CDCl₃) δ 7.28-7.24 (m, 4H), 6.39 (dt, J = 15.8, 1.5 Hz, 1H), 6.14 (dt, J = 15.9, 7.0 Hz, 1H), 4.41 (t, J = 6.3 Hz, 2H), 4.31 (q, J = 7.0 Hz, 2H), 2.35 (dt, J = 7.9, 7.5 Hz, 2H), 1.94 (p, J = 6.5 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.41, 135.79, 132.70, 130.26, 128.98, 128.40, 127.27, 72.67, 62.72, 28.69, 28.46, 14.28.; HRMS (ESI) *m/z* calculated for C₁₅H₁₇O₅N₂SCI [M+H]⁺: 395.0444, found 395.0444; IR (ATR, cm⁻¹) 2970, 2940, 2131, 1718, 1593, 1490, 1465, 1373, 1285, 1224, 1177, 1088, 1011, 924, 839.

Ethyl (*E*)-2-diazo-2-(((5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate [S26].

772 mg (2.03 mmol) of ethyl(*E*)-2-(((5-(4-(trifluoromethyl)phenyl)pent-4en-1-yl)oxy)sulfonyl)acetate **[S9]** were used, along with MeSO₂N₃ (541 mg, 4.47 mmol, 2.2 equiv), DBU (456 μ L, 3.05 mmol, 1.5 equiv), and THF (5.1 mL, 0.4 M). Flash column chromatography on silica using 10%

 \rightarrow 15% \rightarrow 20% EtOAc/hexanes as eluent gave 412 mg (1.02 mmol) of pure product as a yellow oil (50% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 6.47 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.8, 7.0 Hz, 1H), 4.42 (t, *J* = 6.2 Hz, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.39 (dt, *J* = 7.3, 7.0 Hz, 2H), 1.97 (p, *J* = 6.6 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.67, 140.95, 131.28, 130.53, 129.24 (q, *J* = 32.3 Hz), 126.42, 125.73 (q, *J* = 3.8 Hz), 124.46 (q, J = 273.42 Hz), 72.84, 62.96, 29.00, 28.62, 14.50. HRMS (ESI) m/z calc'd for C₁₆H₁₈N₂O₅F₃S [M+H]⁺: 407.0889, found 407.0899.; IR (ATR, neat, cm⁻¹) 2988.19, 2143.5, 1916.96, 1707.3, 1654.07, 1614.47, 1578.37, 1467.21, 1454.81, 1432.38, 1378.24, 1325.48, 1299.49, 1207.47, 1177.77, 1156.31, 1113.06, 1097.62, 1066.63, 1014.63, 1001.32, 975.17, 951.8, 924.77, 858.66, 843.86, 825.59, 799.6, 758.89, 741.11, 650.05, 615.73, 575.8, 534.59, 523.13, 509.54, 496.94

Ethyl (E)-2-diazo-2-(((4-phenylbut-3-en-1-yl)oxy)sulfonyl)acetate [S27].

 O_{OEt} O_{OEt} O_{N_2} 1.38 g (4.60 mmol) of ethyl (*E*)-2-(((4-phenylbut-3-en-1-yl)oxy)sulfonyl)acetate **[S10]** were used, along with MeSO₂N₃ (1.22 g, 10.1)

mmol, 2.2 equiv), DBU (1.00 mL, 6.90 mmol, 1.5 equiv), and THF (12 mL, 0.4 M). Flash column chromatography on silica using 5% EtOAc/hexanes as eluent gave 1.11 g (3.42 mmol) of pure product as a yellow oil (74% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.37-7.33 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.21 (m, 1H), 6.52 (dt, J = 15.9, 1.4 Hz, 1H), 6.15 (dt, J = 15.8, 7.0 Hz, 1H), 4.47 (t, J = 6.6 Hz, 2H), 4.27 (q, J = 7.1Hz, 2H), 2.68 (qd, J = 6.7, 1.5 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.49, 136.88, 133.74, 128.65, 127.68, 126.27, 123.59, 72.69, 62.78, 32.66, 14.32.; HRMS (ESI) m/z calculated for C₁₄H₁₆O₅N₂SNa [M+Na]⁺: 347.0678, found 347.0672; IR (ATR, cm⁻¹) 3424, 3082, 3059, 3027, 2984, 2939, 2908, 2385, 2131, 1947, 1716, 1598, 1577, 1494, 1465, 1448, 1371, 1284, 1223, 1177, 1085, 1007, 961, 922, 852, 825, 738, 693.

Ethyl (E)-2-((pent-3-en-1-yloxy)sulfonyl)acetate [S28].

807 mg (3.40 mmol) of ethyl (E)-2-((pent-3-en-1-yloxy)sulfonyl)acetate [S11] .OEt were used, along with MeSO₂N₃ (908 mg, 7.50 mmol, 2.2 equiv), DBU (762 μ L, 5.10 mmol, 1.5 equiv), and THF (8.50 mL, 0.4 M). Flash column chromatography on silica using 5% EtOAc/hexanes as eluent gave 777 mg (3.0 mmol) of pure product as a yellow oil (87% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.59 (dqt, J = 15.5, 6.4, 1.4 Hz, 1H), 5.38 (dtq, J = 15.3, 6.8, 1.7 Hz, 1H), 4.37-4.31 (m, 4H), 2.44 (qp, J = 6.8, 1.2 Hz, 2H), 1.67 (dq, J = 6.5, 1.4 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.66, 129.66, 124.59, 73.14, 62.82, 32.36, 18.14, 14.43.; HRMS (ESI) m/z calculated for C₉H₁₄O₅SNa [M+Na]⁺: 285.0521, found 285.0515; IR (ATR, cm⁻¹) 3424, 2969, 2940, 2919, 2859, 2388, 2130, 1717, 1466, 1448, 1372, 1285, 1223, 1178, 1083, 1009, 961, 914, 842, 787, 739, 614, 560, 540, 491, 463.

Ethyl 2-((3-((tert-butyldiphenylsilyl)oxy)propoxy)sulfonyl)-2-diazoacetate [S29].

0 .OEt 0 0=S OTBDPS

0

0 0=S

0

1.16 g (2.50 mmol) of ethyl 2-((3-((*tert*-butyldiphenylsilyl)oxy)propoxy) sulfonyl)acetate [S12] were used, along with MeSO₂N₃ (666 mg, 5.50 mmol, 2.2 equiv), DBU (561 µL, 3.80 mmol, 1.5 equiv), and THF (6.30 mL, 0.4 M). Flash column chromatography on silica using 2% EtOAc/hexanes as eluent gave 829 mg (1.69 mmol) of pure product as a pale yellow solid (68% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.67-7.62 (m, 4H), 7.49-7.33 (m, 6H), 4.54 (t, J = 6.3 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.77 (t, J = 5.8 Hz, 2H), 1.97 (p, J = 6.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 1.05 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.54, 135.62, 133.47, 129.90, 127.88, 70.53, 62.79, 59.38, 32.03, 26.92, 19.31, 14.39.; HRMS (ESI) m/z calculated for C₂₃H₃₁O₆N₂SiS [M+H]⁺: 491.1672, found 491.1685; IR (ATR, cm⁻¹) 3071, 2998, 2962, 2938, 2891, 2860, 2136, 1728, 1588, 1471, 1428, 1419, 1373, 1281, 1224, 1179, 1159, 1102, 1090, 1068, 1010, 994.

Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy)sulfonyl)acetate [30].

mg (2.70 mmol) of ethyl 2-((3-(4-methoxyphenyl)propoxy)-855 sulfonyl)acetate [S13] were used, along with MeSO₂N₃ (761 mg, 8.11 mmol, 3 equiv), DBU (605 μ L, 4.06 mmol, 1.5 equiv), and THF (6.8 mL, 0.4 M). Flash column chromatography on silica using $10\% \rightarrow 20\%$

EtOAc/hexanes as eluent gave 721 mg (2.11 mmol) of pure product as a vellow oil (78% vield).

Note: the reactivity of this diazoester deteriorated after one week and could not be restored by additional purification.

¹H-NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.4 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 4.38 - 4.28 (m, 4H), 3.79 (s, 3H), 2.69 (t, *J* = 7.5 Hz, 2H), 2.04 (p, J = 7.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.62, 158.25, 132.31, 129.52, 114.13, 72.66, 62.86, 55.42, 30.85, 30.66, 14.43.; HRMS (ESI) *m/z* calculated for C₁₄H₁₉O₆N₂S [M+H]⁺: 343.0964, found 343.0956; IR (ATR, cm⁻¹) 2938.6, 2837.84, 2132.38, 1717.58, 1612.33, 1584.04, 1512.66, 1465.72, 1373.33, 1285.65, 1244.79, 1224.31, 1176.21, 1084.54, 1033.1, 996.13, 830.05, 811.04, 738.66, 698.12, 614.07, 569.25, 554.06, 509.88.

Ethyl 2-diazo-2-((3-(4-(*N*-methylphenylsulfonamido)phenyl)propoxy)sulfonyl) acetate [S30].

chromatography on silica using $10\% \rightarrow 40\%$ EtOAc/hexanes as eluent gave 639 mg (1.33 mmol) of pure product as a yellow oil (75% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.62 - 7.54 (m, 3H), 7.48 (dd, *J* = 8.3, 7.2, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 4.38 (t, J = 6.0 Hz, 2H), 4.36 (q J = 7.2, 2H), 3.18 (s, 3H), 2.73 (t, J = 7.5 Hz, 2H), 2.00 - 2.04 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.42, 139.74, 139.52, 136.50, 132.76, 128.91, 128.74, 127.86, 126.84, 72.42, 62.75, 38.18, 30.99, 30.38, 14.31. HRMS (ESI) *m/z* calculated for C₂₀H₂₃O₇N₃S₂Na [M+Na]⁺: 504.0875, found 504.0873; IR (ATR, cm⁻¹) 2924.36, 2852.36, 2133.81, 1717.16, 1608.82, 1584.78, 1508.07,1466.48, 1446.96, 1374.87, 1348.87, 1287.10, 1224.05, 1173.43, 1155.02, 1088.53, 1066.30, 1017.80, 998.66, 926.55, 870.22, 834.43, 722.39, 690.35, 665.65, 649.93, 615.06, 588.85, 572.72, 557.75, 497.97.

Ethyl 2-diazo-2-((3-(naphthalen-1-yl)propoxy)sulfonyl)acetate [S31].

118 mg (0.351 mmol) of ethyl 2-((3-(naphthalen-1-yl)propoxy)sulfonyl)acetate **[S15]** were used, along with MeSO₂N₃ (127.5 mg, 1.05 mmol, 3 equiv), DBU (78.6 μ L, 0.527 mmol, 1.5 equiv), and THF (0.9 mL, 0.4 M). Flash column chromatography on silica using 5% \rightarrow 15% EtOAc/hexanes as eluent gave 86.8 mg (0.240 mmol) of pure product as a yellow oil (67% yield).

¹H-NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.56 - 7.46 (m, 2H), 7.40 (dd, J = 8.1, 7.0 Hz, 1H), 7.34 (d, J = 7.0 Hz, 1H), 4.43 (t, J = 6.1 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 2.29 - 2.17 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.57, 136.33, 134.07, 131.71, 129.04, 127.31, 126.47, 126.22, 125.77, 125.64, 123.54, 72.93, 62.85, 29.86, 28.80, 14.40.; HRMS (ESI) *m/z* calculated for C₁₇H₁₉O₅N₂S [M+H]⁺: 363.1015, found 363.1008; IR (ATR, cm⁻¹) 2921.48, 2134.02, 1714.69, 1594.01, 1509.49, 1459.33, 1445.80, 1424.40, 1392.28, 1371.95, 1286.49, 1217.84, 1178.91, 1081.27, 1030.36, 1012.76, 989.32, 925.46, 912.74, 869.31, 854.39, 829.19, 817.01, 796.38, 779.72, 734.26, 648.01, 610.89, 561.82, 549.71, 533.15, 508.97, 496.86, 458.39.

Ethyl 2-diazo-2-((3-(2,2-dimethyl-2*H*-chromen-6-yl)propoxy)sulfonyl)acetate [S32].

400. mg (1.09 mmol) of ethyl 2-((3-(2,2-dimethyl-2H-chromen-6-yl)propoxy)sulfonyl)acetate **[S16]** were used, along with MeSO₂N₃ (395 mg, 3.26 mmol, 3 equiv), DBU (243 μ L, 1.63 mmol, 1.5 equiv), and THF (2.70 mL, 0.4 M). Flash column chromatography on silica using 5% \rightarrow

15% EtOAc/hexanes as eluent gave 228 mg (0.578 mmol) of pure product as a yellow oil (53% yield).

¹H-NMR (500 MHz, CDCl₃) δ 6.93 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.81 (d, *J* = 2.2 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 1H), 6.31 (d, *J* = 9.8 Hz, 1H), 5.64 (d, *J* = 9.8 Hz, 1H), 4.40 - 4.33 (m, 4H), 2.67 (t, *J* = 7.5 Hz, 2H), 2.07 (p, J = 6 Hz, 2H), 1.45 (s, 6H), 1.36 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.53, 151.43, 132.30, 131.11, 128.97, 126.30, 122.27, 121.36, 116.37, 76.20, 72.63, 62.81, 30.69, 30.64, 28.04, 14.38. HRMS (ESI) *m/z* calculated for C₁₈H₂₃O₆N₂S [M+H]⁺: 395.1277, found 395.1273; IR (ATR, cm⁻¹) 2976.12, 2925.41, 2131.58, 1719.37, 1638.37, 1489.48, 1464.88, 1372.12, 1286.63, 1261.45, 1211.27, 118.2, 1151.82, 1127.63, 1084.09, 1001.31, 958.9, 925.35, 923.03, 793.14, 768.19, 738.45, 717.48, 614.17, 584.89, 562.72, 535.86, 510.44, 486.44.

Ethyl 2-((3-(1-(phenylsulfonyl)-1H-indol-3-yl)propoxy)sulfonyl)acetate [S33].

2.30 g (7.28 mmol) of ethyl 2-((3-(1-(phenylsulfonyl)-1H-indol-3-yl)propoxy)sulfonyl)acetate **[S17]** was used, along with imidazole (595 mg, 8.74 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (2.04 g, 10.9 mmol, 1.5 equiv), and THF (18 mL, 0.2 M). Flash column chromatography on silica using $10\% \rightarrow$

30% EtOAc/hexanes as eluent gave 2.40 g (5.16 mmol) of pure product as a clear oil (71% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.90 - 7.85 (m, 2H), 7.56 - 7.50 (m, 1H), 7.45 (q, J = 8.7 Hz, 3H), 7.39 (s, 1H), 7.33 (t, J = 9.8 Hz, 1H), 7.25 - 7.21 (m, 1H), 4.38 (t, J = 6.0 Hz, 3H), 4.33 (q, J = 7.1 Hz, 3H), 2.82 (t, J = 7.4 Hz, 3H), 2.13 (p, J = 6.5 Hz, 3H), 1.31 (t, J = 7.1 Hz, 4H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.47, 138.30, 135.54, 133.85, 130.70, 129.36, 126.84, 125.04, 123.36, 123.33, 121.33, 119.42, 113.96, 72.44, 62.87, 28.36, 20.85, 14.37.; HRMS (ESI) *m/z* calculated for C₂₁H₂₁NO₇S₂ [M+H]⁺: 514.0719, found 514.0769. IR (ATR, cm⁻¹) 2138.67, 1723.8, 1463.45. 1446.28, 1376.14, 1362.96, 1287.43, 1274.42, 1229.7, 1202.13, 1174.21, 1129.69, 1120.47, 1095.71, 1078.09, 1017.77, 970.87, 943.64, 869.67, 860.01, 821.95, 789.11, 766.62, 748.94, 737.16, 723.89, 685.23, 626.35, 602.94, 591.1, 578.54, 570.31, 549.73, 536.17, 501.85, 478.29.

Ethyl 2-((3-(benzo[*d*][1,3]dioxol-5-yl)propoxy)sulfonyl)-2-diazoacetate [S34].

1.82 g (5.50 mmol) of ethyl 2-((3-(benzo[d][1,3]dioxol-5yl)propoxy)sulfonyl)acetate **[S18]** were used, along with MeSO₂N₃ (1.47 g, 12.1 mmol, 2.2 equiv), DBU (1.23 mL, 8.3 mmol, 1.5 equiv), and THF (13.9 mL, 0.4 M). Flash column chromatography on silica using 5% \rightarrow 10%

EtOAc/hexanes as eluent gave 1.47 g (4.13 mmol) of pure product as a yellow oil (75% yield). *Note*: the reactivity of this diazoester deteriorated after one week and could not be restored by additional purification.

¹H-NMR (500 MHz, CDCl₃) δ 6.73 (d, J = 7.9 Hz, 1H), 6.67 (d, J = 1.4 Hz, 1H), 6.63 (dd, J = 7.9, 1.4 Hz, 1H), 5.93 (s, 2H), 4.38-4.29 (m, 4H), 2.67 (t, J = 7.5 Hz, 2H), 2.03 (p, J = 6.4 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.50, 147.85, 146.07, 134.00, 121.36, 108.90, 108.37, 100.97, 72.44, 62.81, 31.23, 30.79, 14.37.; HRMS (ESI) m/z calculated for $C_{14}H_{16}O_7N_2SNa [M+Na]^+$: 379.0576, found 379.0574; IR (ATR, cm⁻¹) 2970, 2941, 2132, 1717, 1608, 1503, 1488, 1442, 1371, 1286, 1243, 1226, 1177, 1121, 1091, 1036, 999, 922.838.808.770.

Ethyl 2-diazo-2-((3-(4-(2-oxopyrrolidin-1-yl)phenyl)propoxy)sulfonyl)acetate [S35].

0=S

649 (1.76)mmol) of ethyl 2-((3-(4-(2-oxopyrrolidin-1mg yl)phenyl)propoxy)sulfonyl)acetate [S19] were used, along with MeSO₂N₃ (638 mg, 5.27 mmol, 3 equiv), DBU (390 µL, 2.64 mmol, 1.5 equiv), and THF (4.4 mL, 0.4 M). Flash column chromatography on silica using 30%

2-((3-(4-(3-methylthiophen-2-

 \rightarrow 60% EtOAc/hexanes as eluent gave 490 mg (1.24 mmol) of pure product as a yellow oil (70% yield). Note: this diazoester decomposes after twelve hours under vacuum at room temperature; for best results use immediately.

¹H-NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 4.38 (t, J = 6.2 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 3.88 (t, J = 7.0 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.64 (t, J = 8.1 Hz, 2H), 2.20 (p, J = 7.3 Hz, 2H), 2.10 (p, J = 6.4 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 174.22, 159.47, 137.79, 136.42, 128.85, 120.29, 72.50, 62.80, 48.89, 32.74, 30.91, 30.57, 18.09, 14.36. HRMS (ESI) *m/z* calculated for C₁₇H₂₂O₆N₃S [M+H]⁺: 396.1229, found 396.1221; IR (ATR, cm⁻¹) 2980.9, 2133.8, 1690.4, 1612.35, 1514.75, 1487.79, 1461.43, 1426.78, 1390.72, 1373.34, 1287.34, 1222.81, 1177.02, 1124.05, 1085.38, 1034.71, 996.62, 923.73, 834.88, 801.99, 738.04, 636.79, 613.70, 557.11, 541.11, 508.90.

Ethyl 2-diazo-2-((3-(4-(3-methylthiophen-2-yl)phenyl)propoxy)sulfonyl)acetate [S36].

(4.04 mmol) ethyl 0 OEt 1.55 q of yl)phenyl)propoxy)sulfonyl)acetate [S20] were used, along with MeSO₂N₃ (1.47 g, 12.1 mmol, 3 equiv), DBU (905 µL, 6.06 mmol, 1.5 equiv), and THF (10 mL, 0.4 M). Flash column chromatography on silica using $0\% \rightarrow$

15% EtOAc/hexanes as eluent, and then a second purification using $2\% \rightarrow 15\%$ Et₂O/petroleum ether as eluent gave 839 mg (2.05 mmol) of pure product as a yellow oil (51% vield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 5.2 Hz, 1H), 6.92 (d, J = 5.0 Hz, 1H), 4.39 (t, J = 6.2 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.32 (s, 3H), 2.11 (p, J = 6.4 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.56, 139.29, 137.70, 133.16, 133.04, 131.22, 129.30, 128.70, 123.35, 72.63, 62.85, 31.28, 30.55, 15.02, 14.41.; HRMS (ESI) m/z calculated for C₁₈H₂₁O₅N₂S₂ [M+H]⁺: 409.0892, found 409.0883; IR (ATR, cm⁻¹) 2981.11, 2131.45, 1717.25, 1546.48, 1508.41, 1447.81, 1373.97, 1285.99, 1222.83, 1177.96, 1084.70, 997.25, 925.17, 833.91, 799.89, 736.71, 707.17, 614.44, 554.86, 535.08, 498.08.

Substrate Scope for Fe-Catalyzed Intramolecular C—H Alkylation

General procedure for [FePc]-catalyzed C—H alkylation:

Into a 1 dram vial was added [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv) and NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv) in a glovebox. The vial was sealed, taken out of the box, and the contents were added under a stream of nitrogen to a flame-dried three neck 25 mL flask equipped with a stir bar, reflux condenser, glass stopper, and rubber septum. CH₂Cl₂ (5.0 mL, 0.08 M) was added and the flask was heated to reflux (~45°C) for 10 minutes. Diazosulfonate ester (0.40 mmol, 1 equiv) was taken up with CH₂Cl₂ (3.0 mL, 0.13 M) in a 5 mL glass syringe and added to the refluxing catalyst solution over the course of an hour (rate of 3 mL/h) via syringe pump (final reaction concentration is 0.05 M). After complete addition of diazosulfonate, the reaction refluxed until judged complete by TLC (2-12 h). The reaction mixture was cooled, adsorbed onto SiO₂ or florisil, and applied directly to a silica column for purification to afford the desired sultone product. Yields were calculated from a mixture of diastereomers. Subsequent purification afforded the separation of diastereomers for characterization. Relative stereochemistry was assigned via coupling constant analysis and analogy from 7. Some substrates demonstrated improved yields with the addition of activated powdered 3Å molecular sieves. In these cases, the molecular sieves were added to the reaction flask at the same time as [FePc]Cl and NaBAr^F₄ Any further variation of these reaction conditions is noted for individual substrates.

General procedure for $Rh_2(OAc)_4$ -mediated intramolecular C—H alkylation:

The following procedure was adapted from literature precedent ^{3, 7}. Into a 1 dram vial was added Rh₂(OAc)₄ (3.5 mg, 0.008 mmol, 0.02 equiv) in a glovebox. The vial was sealed, taken out of the box, and the contents were added under a stream of nitrogen to a flame dried three neck 25 mL flask equipped with a stir bar, reflux condenser, glass stopper, and rubber septum. CH₂Cl₂ (5.0 mL, 0.08 M) was added and the flask was heated to reflux (~45°C). Diazosulfonate was taken up with CH₂Cl₂ (3.0 mL, 0.13 M) and added to the refluxing catalyst solution over the course of one minute. Transfer of the starting material was made quantitative with an additional 1 mL of CH₂Cl₂. After complete addition of diazosulfonate, the reaction refluxed until judged complete by TLC (1-12 h). The solution was cooled to RT, filtered through a small pad of celite with 30 mL of CH₂Cl₂, and concentrated under reduced pressure. Purification by silica gel chromatography afforded the desired sultone product.

(±)-Ethyl 4-(2-methylprop-1-en-1-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [8].

Ethyl 2-diazo-2-(((5-methylhex-4-en-1-yl)oxy)sulfonyl)acetate **[S21]** (116.1 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica (75 mL SiO₂)

using $10\% \rightarrow 15\% \rightarrow 20\%$ EtOAc in hexanes. Pure product was isolated as a white solid and a 2:1 syn:anti mixture of diastereomers. Subsequent purification using $5\% \rightarrow 10\% \rightarrow 15\%$ EtOAc/hexanes allowed for separation of diastereomers.

Run 1: (63.5 mg, 0.242 mmol, 61%), 0% rsm. Run 2: (57.4 mg, 0.219 mmol, 55%), 0% rsm. Run 3: (57.8 mg, 0.220 mmol, 55%), 0% rsm. **Average: 57% yield ± 2.8, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 4.96 (d, J = 9.1, 1H), 4.65 (td, J = 12.3, 2.6 Hz, 1H), 4.58 (ddd, J = 11.6, 5.1, 2.1 Hz, 1H), 4.27 (g, J = 7.2 Hz, 2H), 3.98 (d, J = 4.9 Hz, 1H), 3.44 (ddd, J = 12.0, 9.0, 4.6 Hz, 1H), 2.57 (dtd, J = 14.5, 12.3, 5.2 Hz, 1H), 1.71 (s, 3H), 1.70 (s, 3H), 1.61-1.50 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 164.40, 137.36, 121.37, 73.30, 64.50, 62.50, 36.85, 26.21, 25.92, 18.43, 14.25.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 4.84 (dd, J = 9.7, 1.4 Hz, 1H), 4.72-4.62 (m, 1H), 4.47 (ddd, J = 11.6, 4.4, 2.5 Hz, 1H), 4.30-4.18 (m, 2H), 3.74 (d, J = 11.4 Hz, 1H), 3.50 (qd, J = 10.1, 5.7 Hz, 1H), 1.84-1.75 (m, 2H), 1.70 (s, 3H), 1.69 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 163.56, 137.45, 121.76, 72.57, 68.37, 62.65, 38.12, 30.68, 25.90, 18.49, 14.13.

HRMS (ESI) m/z calculated for C₁₁H₁₈O₅SNa [M+Na]⁺: 285.0773, found 285.0773.

Ethyl (E)-4-(4-((tert-butyldiphenylsilyl)oxy)but-1-en-1-yl)-1,2-oxathiane-3-carboxylate 2,2dioxide [9].

0 ,OEt OTROPS o=ïs

Ethyl (E)-2-(((7-((tert-butyldiphenylsilyl)oxy)hept-4-en-1-yl)oxy)sulfonyl)-2-diazoacetate [S22] (108.9 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (4.0 mL, 0.05 M) were used. Product was purified

via flash column chromatography on silica (75 mL SiO₂) using 10% EtOAc/hexanes. Pure product was isolated as a clear, thick oil and a 1.5:1 syn:anti mixture of diastereomers. Subsequent purification using $5\% \rightarrow 10\% \rightarrow 15\%$ EtOAc/hexanes allowed for separation of diastereomers.

Run 1: (55.6 mg, 0.108 mmol, 54%), 0% rsm. Run 2: (57.4 mg, 0.111 mmol, 56%), 0% rsm. Run 3: (51.9 mg, 0.100 mmol, 50%), 0% rsm. Average: 53% yield ± 2.2, 0% rsm.

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.67-7.61 (m, 4H), 7.46-7.35 (m, 6H), 5.68 (td, J = 15.2, 6.9 Hz, 1H), 5.35 (dd, J = 15.4, 7.6 Hz, 1H), 4.66-4.56 (m, 2H), 4.28-4.11 (m, 2H), 4.02 (d, J = 4.6 Hz, 1H), 3.67 (t, J = 6.4 Hz, 2H), 3.20 (ddt, J = 12.4, 8.5, 4.6 Hz, 1H), 2.60 (dtd, J = 14.6, 12.2, 5.5 Hz, 1H), 2.26 (g, J = 6.4 Hz, 2H), 1.63-1.56 (m, 1H), 1.24 (t, J = 7.2Hz, 3H), 1.04 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.09, 135.67, 133.87, 131.75, 129.82, 128.58, 127.80, 73.02, 64.85, 63.37, 62.44, 40.78, 35.89, 26.98, 25.46, 19.36, 14.14.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.70-7.60 (m, 4H), 7.46-7.34 (m, 6H), 5.67 (dt, J = 14.4, 6.9 Hz, 1H), 5.26 (dd, J = 15.4, 8.2 Hz, 1H), 4.68-4.58 (m, 1H), 4.47 (dt, J = 11.5, 3.6 Hz, 1H), 4.27-4.15 (m, 2H), 3.75 (d, J = 11.6 Hz, 1H), 3.64 (t, J = 6.5 Hz, 2H), 3.29-3.19 (m, 1H), 2.23 (q, J = 6.5 Hz, 2H), 1.94-1.78 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.04 (s, 9H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.25, 135.66, 133.83, 131.99, 129.82, 128.72, 127.89, 72.48, 68.11, 63.29, 62.73, 41.60, 35.86, 30.33, 26.96, 19.34, 14.16.; HRMS (ESI) m/z calculated for C₂₇H₃₇O₆SSi [M+H]⁺: 517.2080, found 517.2062.

Ethyl (E)-4-styryl-1,2-oxathiane-3-carboxylate 2,2-dioxide [10].

(E)-2-diazo-2-(((5-phenylpent-4-en-1-yl)oxy)sulfonyl)acetate [S23] Ethvl (135.4 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv). NaBArF₄ (35.4 mg, 0.040 mmol, 0.10 equiv), 100 mg activated powdered 3Å mol sieves, and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15%

EtOAc/hexanes. Pure product was isolated as a white solid and a 1:1 syn:anti mixture of diastereomers. Subsequent purification using $15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes allowed for separation of diastereomers. A trace impurity (<5%) was isolated with this product and was factored into yield calculations. The anti diastereomer was isolated with 12% of the syn.

Run 1: (89.1 mg, 0.287 mmol, 72%), 0% rsm. Run 2: (94.0 mg, 0.303 mmol, 75%), 0% rsm. Run 3: (87.3 mg, 0.281 mmol, 70%), 0% rsm. **Average: 73% yield ± 2.3, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 6.58 (dd, *J* = 15.9, 1.1 Hz, 1H), 6.06 (dd, *J* = 15.9, 7.8 Hz, 1H), 4.76-4.62 (m, 2H), 4.33-4.19 (m, 2H), 4.17 (d, *J* = 4.7 Hz, 1H), 3.51-3.41 (m, 1H), 2.77 (dtd, *J* = 14.5, 12.0, 5.5 Hz, 1H), 1.78 (ddt, *J* = 14.5, 4.3, 2.4 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.03, 135.99, 133.46, 128.79, 128.34, 126.51, 125.86, 72.92, 64.65, 62.54, 40.90, 25.40, 14.09.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.35-7.24 (m, 5H), 6.58 (dd, *J* = 15.7, 0.9 Hz, 1H), 5.94 (dd, *J* = 15.8, 8.5 Hz, 1H), 4.76-4.65 (m, 1H), 4.54 (ddd, *J* = 11.7, 4.2, 2.6 Hz, 1H), 4.30-4.19 (m, 2H), 3.91 (d, *J* = 11.5 Hz, 1H), 3.54-3.42 (m, 1H), 2.08-1.98 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.23, 135.97, 134.07, 128.81, 128.40, 126.55, 125.91, 72.45, 67.94, 62.88, 42.06, 30.41, 14.16.

HRMS (ESI) m/z calculated for C₁₅H₁₉O₅S [M+H]⁺: 311.0943, found 311.0953.

Ethyl (*E*)-4-(4-bromostyryl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [11].

Ethyl (*E*)-2-(((5-(4-bromophenyl)pent-4-en-1-yl)oxy)sulfonyl)-2-diazoacetate **[S24]** (167 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), 100 mg activated powdered 3Å mol sieves, and CH₂Cl₂ (8.0 mL, 0.5 M) were used.

Product was purified via flash column chromatography on silica (75 mL SiO₂) using $20\% \rightarrow 25\% \rightarrow 30\%$ EtOAc/hexanes. Pure product was isolated as a yellow oil and a 1:1 syn:anti mixture of diastereomers. Subsequent purification using $10\% \rightarrow 20\% \rightarrow 25\% \rightarrow 30\%$ EtOAc/hexanes allowed for separation of diastereomers. A trace impurity (<5%) was isolated with this product and was factored into yield calculations. The anti diastereomer was isolated with 10% of the syn.

Run 1: (101 mg, 0.260 mmol, 65%), 0% rsm. Run 2: (104 mg, 0.268 mmol, 67%), 0% rsm. Run 3: (106 mg, 0.272 mmol, 68%), 0% rsm. **Average: 67% yield ± 1.2, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 6.51 (d, *J* = 16.5 Hz, 1H), 6.07 (dd, *J* = 15.9, 7.8 Hz, 1H), 4.74-4.64 (m, 2H), 4.30-4.21 (m, 2H), 4.16 (d, *J* = 4.7 Hz, 1H), 3.45 (ddt, *J* = 12.1, 8.2, 4.6 Hz, 1H), 2.75 (dtd, *J* = 14.6, 11.8, 5.7 Hz, 1H), 1.82-1.73 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.01, 134.92, 132.41, 131.96, 128.06, 126.68, 122.27, 72.84, 64.54, 62.66, 40.90, 25.39, 14.16.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 15.7 Hz, 1H), 5.93 (dd, J = 15.8, 8.6 Hz, 1H), 4.77-4.65 (m, 1H), 4.54 (dt, J = 11.6, 3.4 Hz, 1H), 4.29-4.20 (m, 2H), 3.90 (d, J = 11.5 Hz, 1H), 3.54-3.42 (m, 1H), 2.06-1.97 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.18, 134.86, 132.90, 131.90, 128.04, 126.68, 122.21, 72.43, 67.69, 62.88, 42.02, 30.21, 14.15.

HRMS (ESI) m/z calculated for C₁₅H₁₈O₅SBr [M+H]⁺: 389.0058, found 389.0045.

Ethyl (*E*)-4-(4-chlorostyryl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [12].

Ethyl (*E*)-2-(((5-(4-chlorophenyl)pent-4-en-1-yl)oxy)sulfonyl)-2diazoacetate **[S25]** (149.1 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Product was purified via flash column

chromatography on silica (75 mL SiO₂) using 20% EtOAc/hexanes. Pure product was isolated as a white solid and a 1.4:1 syn:anti mixture of diastereomers. Subsequent purification using $15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes allowed for separation of diastereomers. A trace impurity (<5%) was isolated with this product and was factored into yield calculations. The syn diastereomer was isolated with 6% of the anti, and the anti diastereomer was isolated with 10% of the syn.

Run 1: (85.2 mg, 0.247 mmol, 62%), 0% rsm. Run 2: (78.5 mg, 0.228 mmol, 57%), 0% rsm. Run 3: (82.6 mg, 0.240 mmol, 60%), 0% rsm. **Average: 60% yield ± 2.0, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.33-7.23 (m, 4H), 6.53 (d, *J* = 15.9 Hz, 1H), 6.05 (dd, *J* = 15.9, 7.8 Hz, 1H), 4.75-4.62 (m, 2H), 4.30-4.21 (m, 2H), 4.16 (d, *J* = 4.7 Hz, 1H), 3.51-3.41 (m, 1H), 2.75 (dtd, *J* = 14.5, 11.6, 5.4 Hz, 1H), 1.82-1.72 (m, 1H), 1.25 (td, *J* = 7.1, 1.0 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.00, 134.49, 134.05, 132.31, 128.99, 127.75, 126.56, 72.85, 64.58, 62.63, 40.87, 25.40, 14.14.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.45-7.10 (m, 4H), 6.53 (d, *J* = 15.7 Hz, 1H), 5.91 (dd, *J* = 15.8, 8.5 Hz, 1H), 4.76-4.67 (m, 1H), 4.54 (ddd, *J* = 11.6, 4.1, 2.6 Hz, 1H), 4.31-4.18 (m, 2H), 3.90 (d, *J* = 11.6 Hz, 1H), 3.47 (ddd, *J* = 16.7, 11.4, 8.3 Hz, 1H), 2.07-1.98 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.20, 134.43, 134.15, 132.92, 129.02, 127.77, 126.57, 72.38, 67.83, 62.93, 42.04, 30.35, 14.19.

HRMS (ESI) m/z calculated for C₁₅H₁₈O₅SCI [M+H]⁺: 345.0563, found 345.0561.

Ethyl (*E*)-4-(4-(trifluoromethyl)styryl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [13].

Ethyl(*E*)-2-diazo-2-(((5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)oxy)sulfonyl)acetate **[S26]** (163 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBArF₄ (35.4 mg, 0.040 mmol, 0.10 equiv), 100 mg activated powdered 3\AA mol sieves, and CH₂Cl₂ (8.0 mL, 0.05 M)

were used. Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% EtOAc/hexanes. Pure product was isolated as a dark brown oil and a 1:1 syn:anti mixture of diastereomers. Subsequent purification using 15% EtOAc/hexanes allowed for separation of diastereomers. The syn diastereomer was isolated with 10% of the anti.

Run 1: (65.1 mg, 0.172 mmol, 43%), 0% rsm. Run 2: (65.1 mg, 0.172 mmol, 43%), 0% rsm. Run 3: (69.6 mg, 0.184 mmol, 46%), 0% rsm. **Average: 44% yield ± 1.7, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 6.61 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 15.9, 7.7 Hz, 1H), 4.74-4.65 (m, 2H), 4.30-4.21 (m, 2H), 4.18 (d, J = 4.7 Hz, 1H), 3.50 (ddt, J = 11.7, 7.7, 3.9 Hz, 1H), 2.78 (dtd, J = 14.5, 11.7, 5.7 Hz, 1H), 1.83–1.76 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃) δ 164.09, 139.59, 132.38, 130.30 (q, J = 32.3 Hz), 128.79, 126.89, 125.93 (q, J = 3.8 Hz), 124.25 (q, J = 273.42 Hz), 72.93, 64.63, 62.83, 41.00, 25.50, 14.26.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 6.61 (d, J = 15.8 Hz, 1H), 6.05 (dd, J = 15.8, 8.5 Hz, 1H), 4.73 (td, J = 11.6, 3.8

Hz, 1H), 4.55 (ddd, J = 11.4, 4.3, 2.1 Hz, 1H), 4.29-4.20 (m, 2H), 3.94 (d, J = 11.5 Hz, 1H), 3.51 (ddt, J = 15.9, 11.2, 5.2 Hz, 1H), 2.11 – 1.97 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.29, 139.54, 132.90, 130.31 (q, J = 32.3 Hz), 128.81, 126.88, 125.91 (q, J = 3.8 Hz), 124.25 (q, J = 272.16 Hz), 72.50, 67.80, 63.08, 42.11, 30.33, 14.27. HRMS (ESI) m/z calculated for C₁₆H₁₈O₅SF₃ [M+H]⁺: 379.0827, found 379.0825.

Ethyl (*E*)-4-styryl-1,2-oxathiolane-3-carboxylate 2,2-dioxide [14].

[FePc] Conditions: Ethyl (*E*)-2-diazo-2-(((4-phenylbut-3-en-1-yl)oxy)sulfonyl)acetate **[S27]** (129.7 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), 100 mg activated powdered 3Å mol sieves, and CH_2Cl_2 (8.0 mL, 0.05 M) were used. After the reaction was judged complete by TLC, the mixture

was transferred to a 25 mL round-bottom flask, concentrated, and filtered through a celite plug with diethyl ether to remove the catalyst. This was then concentrated and analyzed by crude NMR which revealed that no cyclopropanated product was formed and the C-H insertion product was an 11:1 inseparable mixture of diastereomers. The product was purified via flash column chromatography on silica (75 mL SiO₂) using 10% EtOAc/hexanes. Pure C-H insertion product was isolated as a colorless oil. Relative stereochemistry was not assigned. Only characterization of the major diastereomer is reported.

Run 1: (72.4 mg, 0.244 mmol, 61%), 0% rsm. Run 2: (73.1 mg, 0.246 mmol, 62%), 0% rsm. Run 3: (70.0 mg, 0.236 mmol, 59%), 0% rsm. **Average: 61% yield C—H ins. ± 1.1, 0% rsm.**

Rh₂(**OAc**)₄ **Conditions:** The general procedure for Rh₂(OAc)₄ catalyzed C—H alkylation was followed. Ethyl (*E*)-2-diazo-2-(((4-phenylbut-3-en-1-yl)oxy)sulfonyl)acetate **[S27]** (137.3 mg, 0.400 mmol, 1.0 equiv), Rh₂(OAc)₄ (3.5 mg, 0.008 mmol, 0.02 equiv), and CH₂Cl₂ (8 mL, 0.05 M) were used. This was then concentrated and analyzed by crude NMR which revealed a 1:4 ratio of C—H insertion product to cyclopropanated product. The crude mixture was purified via flash column chromatography on silica (75 mL SiO₂) using 10% \rightarrow 15% \rightarrow 20% EtOAc/hexanes. Pure C—H insertion product was isolated as a colorless oil and pure cyclopropanated product (more polar) was isolated as a white solid.

Run 1: (16.5 mg, 0.056 mmol, 14% C—H ins.), (55.8 mg, 0.188 mmol, 47% cycloprop.), 0% rsm. Run 2: (14.2 mg, 0.048 mmol, 12% C—H ins.), (53.4 mg, 0.180 mmol, 45% cycloprop.), 0% rsm. Run 3: (11.8 mg, 0.040 mmol, 10% C—H ins.), (54.6 mg, 0.184 mmol, 46% cycloprop.), 0% rsm. Average: 12% yield C—H ins. ± 1.6, 46% yield cycloprop. ± 0.9, 0% rsm.

¹H-NMR (500 MHz, CDCl₃) δ7.39-7.27 (m, 5H), 6.68 (d, J = 15.7 Hz, 1H), 6.04 (dd, J = 15.7, 8.5 Hz, 1H), 4.66 (dd, J = 9.2, 7.4 Hz, 1H), 4.39 (dq, J = 10.8, 7.2 Hz, 1H), 4.30 (dq, J = 10.8, 7.1 Hz, 1H), 4.22 (br. t, J = 9.0 Hz, 1H), 4.12 (dt, J = 16.5, 8.2 Hz, 1H), 4.05 (d, J = 8.9 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.05, 135.97, 135.38, 128.81, 128.69, 126.64, 122.34, 71.08, 64.69, 63.47, 44.12, 13.99.; HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₅S [M+H]⁺: 297.0797, found 297.0786.

Ethyl 7-phenyl-3-oxa-2-thiabicyclo[4.1.0]heptane-1-carboxylate 2,2-dioxide [S37].

¹H-NMR (500 MHz, CDCl₃) δ 7.43-7.12 (m, 5H), 4.75 (td, *J* = 11.6, 4.7 Hz, 1H), 4.45 (ddd, *J* = 11.9, 6.3, 2.5 Hz, 1H), 4.10-3.96 (m, 2H), 3.26 (d, *J* = 8.6 Hz, 1H), 3.12 (td, *J* = 8.5, 2.2 Hz, 1H), 2.41 (dddd, *J* = 14.6, 8.5, 4.8, 2.5 Hz, 1H), 2.31

(dddd, J = 14.8, 11.4, 6.3, 2.3 Hz, 1H), 0.98 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.89, 132.22, 128.56, 128.52, 128.25, 71.15, 62.89, 49.86, 39.08, 27.96, 21.75, 13.80.; HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₅S [M+H]⁺: 297.0797, found 297.0788.

Ethyl (*E*)-4-(prop-1-en-1-yl)-1,2-oxathiolane-3-carboxylate 2,2-dioxide [15].

[FePc] Conditions: Ethyl (*E*)-2-((pent-3-en-1-yloxy)sulfonyl)acetate [S28] (104.9 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄
(35.4 mg, 0.040 mmol, 0.10 equiv), 100 mg activated powdered 3Å mol sieves, and CH₂Cl₂ (8.0 mL, 0.05 M) were used. After the reaction was judged complete

by TLC, the mixture was transferred to a 25 mL round-bottom flask, concentrated, and filtered through a celite plug with diethyl ether to remove the catalyst. This was then concentrated and analyzed by crude NMR which revealed that no cyclopropanated product was formed and the C-H insertion product was a 10:1 inseparable mixture of diastereomers. The product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% EtOAc/hexanes. Pure C-H insertion product was isolated as a colorless oil. Relative stereochemistry was not assigned. Only characterization of the major diastereomer is reported.

Run 1: (40.0 mg, 0.171 mmol, 43%), 0% rsm. Run 2: (39.8 mg, 0.170 mmol, 43%), 0% rsm. Run 3: (42.5 mg, 0.181 mmol, 45%), 0% rsm. **Average: 44% yield ± 1.3, 0% rsm.**

Rh₂(**OAc**)₄ **Conditions:** The general procedure for Rh₂(OAc)₄ catalyzed C—H alkylation was followed. Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-*d*)sulfonyl)acetate **[S28]** (137.3 mg, 0.400 mmol, 1.0 equiv), Rh₂(OAc)₄ (3.5 mg, 0.008 mmol, 0.02 equiv), and CH₂Cl₂ (8 mL, 0.05 M) were used. This was then concentrated and analyzed by crude NMR which revealed a 1:1 ratio of C—H insertion product to cyclopropanated product. Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% → 25% EtOAc/hexanes. Pure C—H insertion product was isolated as a colorless oil and pure cyclopropanated product (more polar) was isolated as a white solid.

Run 1: (17.6 mg, 0.075 mmol, 19% C—H ins.), (23.6 mg, 0.101 mmol, 25% cycloprop.), 0% rsm. Run 2: (17.4 mg, 0.074 mmol, 19% C—H ins.), (29.9 mg, 0.127 mmol, 32% cycloprop.), 0% rsm. Run 3: (18.7 mg, 0.080 mmol, 20% C—H ins.), (29.2 mg, 0.124 mmol, 31% cycloprop.), 0% rsm. Average: 19% yield C—H ins. ± 0.6, 29% yield cycloprop. ± 2.9, 0% rsm.

¹H-NMR (500 MHz, CDCl₃) δ 5.80 (dqd, *J* = 15.3, 6.6, 0.8 Hz, 1H), 5.34 (ddq, *J* = 15.2, 7.9, 1.7 Hz, 1H), 4.55 (dd, *J* = 9.1, 7.2 Hz, 1H), 4.37 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.30 (dq, *J* = 10.6, 7.1 Hz, 1H), 4.12-4.05 (m, 1H), 3.94- 3.85 (m, 2H), 1.72 (dd, *J* = 6.3, 1.8 Hz, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.23, 132.79, 124.66, 71.35, 64.90, 63.45, 43.90, 18.08, 14.09.; HRMS (ESI) *m/z* calculated for C₉H₁₄O₅SNa [M+Na]⁺: 257.0460, found 257.0452.

Ethyl 7-methyl-3-oxa-2-thiabicyclo[4.1.0]heptane-1-carboxylate 2,2-dioxide ^D_{.CO₂Et} [S38].

¹H-NMR (500 MHz, CDCl₃) δ 4.64 (ddd, J = 11.9, 11.2, 5.0 Hz, 1H), 4.42- 4.29 (m, 3H), 2.35 (td, J = 8.2, 2.3 Hz, 1H), 2.23 (dddd, J = 11.1, 10.3, 5.0, 2.7 Hz, 1H), 2.15 (dddd, J = 17.1, 11.2, 6.2, 2.3 Hz, 1H), 1.99 (dq, J = 8.4, 6.3 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.33, 70.76, 63.04, 47.84, 31.03,

30.05, 21.53, 14.17, 12.21.; HRMS (ESI) m/z calculated for C₉H₁₄O₅SNa [M+Na]⁺: 257.0460, found 257.0457.

Ethyl 4-((*tert*-butyldiphenylsilyl)oxy)-1,2-oxathiane-3-carboxylate 2,2-dioxide [16].

Ethyl 2-((3-((*tert*-butyldiphenylsilyl)oxy)propoxy)sulfonyl)-2-diazoacetate **[S29]** (98.1 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.025 M) were used. Product was purified via flash column chromatography on silica (75

mL SiO₂) using 5% \rightarrow 10% \rightarrow 15 \rightarrow 20% EtOAc/hexanes. Pure product was isolated as a white solid and a 1:1 syn:anti mixture of diastereomers. The diastereomers were inseparable by column chromatography and were characterized as a mixture.

Run 1: (62.2 mg, 0.134 mmol, 67%), 0% rsm. Run 2: (64.3 mg, 0.139 mmol, 69%), 0% rsm. Run 3: (61.9 mg, 0.134 mmol, 67%), 0% rsm. **Average: 68% yield ± 1.2, 0% rsm.**

¹H-NMR (500 MHz, CDCl₃) δ 7.71-7.60 (m, 4H D_{maj} + 4H D_{min}), 7.51-7.44 (m, 2H D_{maj} + 2H D_{min}), 7.44-7.33 (m, 4H D_{maj} + 4H D_{min}), 4.62-4.56 (m, 1H D_{maj}), 4.48 (dt, *J* = 10.5, 5.0 Hz, 1H D_{min}), 4.43 (ddd, *J* = 11.9, 5.2, 2.5 Hz, 1H D_{min}), 4.38-4.30 (m, 1H D_{maj} + 1H D_{min}), 4.29-4.18 (m, 2H D_{maj} + 2H D_{min}), 4.18-4.09 (m, 1H D_{maj} + 1H D_{min}), 4.01 (d, *J* = 9.1 Hz, 1H D_{maj}), 2.75-2.64 (m, 1H D_{min}), 1.88 (h, *J* = 4.6, 4.1 Hz, 2H D_{maj}), 1.64 (ddt, *J* = 14.2, 4.7, 2.5 Hz, 1H D_{min}), 1.31 (dt, *J* = 8.3, 7.1 Hz, 3H D_{maj} + 3H D_{min}), 1.05 (s, 9H D_{min}), 1.01 (s, 9H D_{maj}).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.34, 163.04, 135.85, 135.83, 135.80, 135.74, 135.62, 132.98, 132.54, 132.14, 132.03, 130.64, 130.51, 130.46, 130.31, 129.83, 128.20, 128.11, 128.09, 127.99, 127.85, 70.17, 69.90, 68.99, 68.74, 68.43, 66.37, 63.00, 62.65, 33.01, 28.94, 26.78, 26.76, 19.35, 19.23, 14.07, 14.04.; HRMS (ESI) *m/z* calculated for C₂₃H₃₀O₆SSiNa [M+Na]⁺: 485.1430, found 485.1417.

Ethyl 4-(4-methoxyphenyl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [17].

Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy)sulfonyl)acetate **[30]** (137 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using 10% \rightarrow

25% EtOAc/hexanes. Pure product was isolated as a clear oil and a 1.1:1 syn:anti mixture of diastereomers. Subsequent purification using $10\% \rightarrow 25\%$ EtOAc/hexanes allowed for separation of diastereomers. The anti diastereomer was isolated with 15% of the syn.

Run 1: (84.1 mg, 0.268 mmol, 67%), 0% rsm. Run 2: (75.0 mg, 0.239 mmol, 60%), 0% rsm. Run 3: (85.5 mg, 0.272 mmol, 68%), 0% rsm. **Average: 65% yield ± 3.6%, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.81 – 4.63 (m, 2H), 4.21 (d, J = 4.7 Hz, 1H), 4.18 – 3.93 (m, 2H), 3.87 - 3.80 (m, 1H), 3.79 (s, 3H), 3.16 (tdd, J = 13.9, 11.7, 6.6 Hz, 1H), 1.80 (dd, J = 13.2, 1.8 Hz, 1H), 1.05 (t, J = 7.2, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.11, 159.43, 129.94, 128.42, 114.45, 73.20, 66.51, 62.26, 55.41, 42.25, 24.34, 13.84.

Anti diastereomer (minor): ¹H-NMR (400 MHz, CDCl₃) δ 7.14 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.74 (ddd, J = 13.4, 11.6, 2.2 Hz, 1H), 4.54 (ddd, J = 11.6, 4.9, 1.5 Hz, 1H), 4.17 (d, J = 12 Hz, 1H), 4.12 - 4.01 (m, 2H), 3.82 - 3.73 (m, 4H), 2.21 (dtd, J = 15.0, 13.0, 4.9 Hz, 1H)

1H), 1.99 (d, J = 14.8, 1H), 1.05 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.95, 159.42, 130.63, 128.60, 128.46, 114.52, 72.65, 69.01, 62.67, 55.43, 43.68, 32.53, 13.89. HRMS (ESI) *m/z* calculated for C₁₄H₁₈O₆SNa [M+Na]⁺: 337.0721, found 337.0722.

Ethyl 4-(4-(*N*-methylphenylsulfonamido)phenyl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [18].

Ethyl 2-diazo-2-((3-(4-(*N*-methylphenylsulfonamido)phenyl) propoxy)sulfonyl) acetate **[S30]** (96.3 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (4.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using $10\% \rightarrow 30\%$ EtOAc/hexanes. Pure product was isolated as a clear oil and a 1:1 syn:anti mixture of diastereomers. The

diastereomers were inseparable by column chromatography and were characterized as a mixture.

Run 1: (65.7 mg, 0.145 mmol, 72%), 0% rsm. Run 2: (59.8 mg, 0.132 mmol, 66%), 0% rsm. Run 3: (55.7 mg, 0.123 mmol, 76% (scale: 76.9 mg, 0.160 mmol)), 0% rsm. **Average: 71% yield ± 4.1%, 0% rsm.**

Mixture of syn and anti diastereomers: ¹H NMR (500 MHz, CDCl₃) δ 7.61 (td, J = 6.5, 5.5, 3.6 Hz, 1H D_{syn} + 1H D_{anti}), 7.53 (ddd, J = 8.3, 4.7, 1.4 Hz, 2H D_{syn} + 2H D_{anti}), 7.47 (m, 2H D_{syn} + 2H D_{anti}), 7.21 (dd, J = 8.3, 5.3 Hz, 2H D_{syn} + 2H D_{anti}), 7.11 (dd, J = 8.4, 6.1 Hz, 2H D_{syn} + 2H D_{anti}), 4.82 - 4.71 (m, 1H D_{syn} + 2H D_{anti}), 4.59 (dd, J = 11.5, 4.5 Hz, 1H D_{syn}), 4.28 - 4.21 (m, 1H D_{syn}), 4.17 - 4.02 (m, 2H D_{syn} + 2H D_{anti}), 3.92 - 3.80 (m, 1H D_{syn} + 1H D_{anti}), 3.25 - 3.11 (m, 3H D_{syn} + 4H D_{anti}), 2.26 (dq, J = 13.5, 5.0 Hz, 1H D_{syn}), 2.04 (dd, J = 14.7, 3.7 Hz, 1H D_{anti}), 1.86 (dd, J = 14.5, 3.2 Hz, 1H D_{anti}), 1.09 (td, J = 7.1, 2.3 Hz, 3H D_{syn} + 3H D_{anti}). ¹³C NMR (126 MHz, CDCl₃) δ 163.84, 162.73, 141.47, 141.37, 137.64, 136.91, 136.41, 133.05, 128.91, 128.02, 127.86, 127.82, 127.77, 127.75, 127.07, 127.06, 73.11, 72.66, 68.47, 66.11, 62.69, 62.37, 43.81, 42.37, 38.06, 32.15, 24.02, 13.87.; HRMS (ESI) *m/z* calculated for C₂₀H₂₄NO₇S₂ [M+H]⁺: 454.0994, found 454.1003.

Ethyl 4-(naphthalen-1-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [19].

Ethyl 2-((3-(naphthalen-1-yl)propoxy)sulfonyl)acetate **[S31]** (72.4 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (4.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using 0.4% Et₂O, 19.6% DCM, 80%

hexanes → 1.2% Et₂O, 58.8% CH₂Cl₂, 40% hexanes as eluent. Impure product was isolated as a clear oil and a 1.2:1 syn:anti mixture of diastereomers. Yield was determined with mesitylene as an internal standard. Subsequent purification using 0.4% Et₂O, 19.6% CH₂Cl₂, 80% hexanes → 1% Et₂O, 49% CH₂Cl₂, 50% hexanes as eluent allowed for separation of diastereomers. A trace impurity (<5%) was isolated with the anti product and was factored into yield calculations.

Run 1: (34.8 mg, 0.104 mmol, 52%), 0% rsm. Run 2: (34.8 mg, 0.104 mmol, 52%), 0% rsm. Run 3: (35.4 mg, 0.106 mmol, 53%), 0% rsm. **Average: 52% yield ± 0.5%, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (400 MHz, $CDCI_3$) δ 8.06 (d, J = 8.5 Hz, 1H), 7.92 (dd, J = 8.1, 1.4 Hz, 1H), 7.83 (dd, J = 7.9, 1.4 Hz, 1H), 7.64 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.56 (dddd, J = 8.5, 1.5 Hz, 1H), 7.56 (ddddd, J = 8.5, 1.5 Hz, 1H), 7.5

 $J = 8.1, 6.9, 1.1 \text{ Hz}, 1\text{ H}), 7.47 - 7.36 \text{ (m, 2H)}, 4.90 \text{ (ddd, J} = 12.9, 11.5, 2.1 \text{ Hz}, 1\text{ H}), 4.81 \text{ (ddd, J} = 11.5, 5.0, 1.5 \text{ Hz}, 1\text{ H}), 4.73 \text{ (dt, J} = 13.1, 3.8 \text{ Hz}, 1\text{ H}), 4.47 \text{ (d, J} = 4.4 \text{ Hz}, 1\text{ H}), 4.00 - 3.83 \text{ (m, 2H)}, 3.49 \text{ (dq, J} = 16.5 \text{ 6 Hz}, 1\text{ H}), 1.89 \text{ (d, J} = 14.3 \text{ Hz}, 1\text{ H}), 0.86 \text{ (t, J} = 7.1 \text{ Hz}, 3\text{ H}).; {}^{13}\text{C-NMR} \text{ (126 MHz, CDCl}_3) \delta 163.93, 134.15, 133.19, 130.46, 129.67, 129.09, 127.57, 126.32, 125.36, 124.31, 121.68, 73.53, 65.10, 62.18, 38.30, 24.31, 13.76.}$

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 8.21 (d, *J* = 8.6 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.60 (ddd, *J* = 8.5, 6.8, 1.4 Hz, 1H), 7.53 (ddd, *J* = 8.0, 6.8, 1.1 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.32 (dd, *J* = 7.1, 1.2 Hz, 1H), 4.89 (td, *J* = 11.6 Hz, 3.7 Hz, 1H), 4.77 (td, *J* = 11.8, 4.7 Hz, 1H), 4.58 (ddd, *J* = 12.0, 4.5, 2.0 Hz, 1H), 4.55 (d, *J* = 12.0 Hz, 1H), 4.01 - 3.88 (m, 2H), 2.27 - 2.13 (m, 2H), 0.85 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.83, 135.58, 134.18, 130.93, 129.22, 128.69, 127.02, 126.37, 125.43, 123.12, 122.57, 72.85, 68.70, 62.76, 38.24, 33.13, 13.66.

HRMS (ESI) m/z calculated for C₁₇H₁₉O₅S [M+H]⁺: 335.0953, found 335.0954.

Ethyl 4-(2,2-dimethyl-2*H*-chromen-6-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [20].

Ethyl 2-diazo-2-((3-(2,2-dimethyl-2*H*-chromen-6-yl)propoxy)sulfonyl)acetate **[S32]** (75.7 mg, 0.192 mmol, 1.0 equiv), [FePc]Cl (11.6 mg, 0.0192 mmol, 0.10 equiv), NaBAr^F₄ (17.0 mg, 0.0192 mmol, 0.10 equiv), and CH₂Cl₂ (3.80 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using 10% \rightarrow 30% EtOAc/hexanes. Pure product was isolated as a clear oil and a 1:1.2 syn:anti mixture of diastereomers.

Subsequent purification with 12.5% \rightarrow 27.5% Et₂O/hexanes separated the diastereomers. The anti diastereomer was isolated with 10% of the syn.

Run 1: (40.1 mg, 0.1094 mmol, 57%), 0% rsm. Run 2: (41.9 mg, 0.1143 mmol, 60%), 0% rsm. Run 3: (56.3 mg, 0.1536 mmol, 61% (scale: 92.7 mg, 0.253 mmol)), 0% rsm. **Average: 59% yield ± 1.7%, 0% rsm.**

Syn diastereomer (major): ¹H NMR (500 MHz, CDCl₃) δ 6.96 (dd, J = 8.3, 2.4 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 6.27 (d, J = 9.5 Hz, 1H), 5.64 (d, J = 9.8 Hz, 1H), 4.77 - 4.62 (m, 2H), 4.20 (d, J = 4.7 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 3.75 (dt, J = 13.4, 4.1 Hz, 1H), 3.14 (tdd, J = 13.9, 11.6, 6.5 Hz, 1H), 1.78 (ddt, J = 14.3, 3.4, 1.7 Hz, 1H), 1.41 (s, 3H), 1.42 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.20, 152.90, 131.71, 130.07, 127.89, 125.17, 121.98, 121.80, 116.95, 76.66, 73.19, 66.49, 62.31, 42.43, 28.10, 24.36, 13.91. Anti diastereomer (minor): ¹H NMR (500 MHz, CDCl₃) δ 6.94 (dd, J = 8.3, 2.4 Hz, 1H), 6.81 (d, J = 2.3 Hz, 1H), 6.72 (d, J = 8.3 Hz, 1H), 6.26 (d, J = 10 Hz, 1H), 5.63 (d, J = 9.8 Hz, 1H), 4.73 (ddd, J = 13.4, 11.6, 2.2 Hz, 1H), 4.53 (ddd, J = 11.6, 4.9, 1.5 Hz, 1H), 4.15 (d, J = 12.1 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.72 (td, J = 12.5, 3.7 Hz, 1H), 2.20 (dtd, J = 14.9, 13.0, 5.0 Hz, 1H), 2.03 - 1.96 (m, 1H), 1.41 (s, 6H), 1.05 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.97, 152.83, 131.64, 130.66, 127.95, 125.41, 121.94, 116.89, 76.72, 72.62, 68.96, 62.67, 43.76, 32.45, 28.13, 13.90.

HRMS (ESI) m/z calculated for C₁₈H₂₃O₆S [M+H]⁺: 367.1215, found 367.1220.

Ethyl 4-(1-(phenylsulfonyl)-1H-indol-3-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [21].

0 OEt SO₂Ph

Ethyl 2-diazo-2-((3-(1-(phenylsulfonyl)-1H-indol-3-yl)propoxy)sulfonyl)acetate **[S33]** (196.6 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10

equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using 5% \rightarrow 25% EtOAc/hexanes. Pure product was isolated as a clear oil and a 1.1:1 syn:anti mixture of diastereomers. Diastereomers could not be separated.

Run 1: (118 mg, 0.255 mmol, 64%), 0% rsm. Run 2: (119 mg, 0.256 mmol, 64%), 0% rsm. Run 3: (116 mg, 0.250 mmol, 63%), 0% rsm. **Average: 64% yield ± 0.5%, 0% rsm.**

Mixture of syn and anti diastereomers: ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 13.0, 8.3 Hz, 1H D_{maj} + 1H D_{min}), 7.90 - 7.81 (m, 2H D_{maj} + 2H D_{min}), 7.61 - 7.52 (m, 2H D_{maj} + 2H D_{min}), 7.50 - 7.42 (m, 3H D_{min} + 3H D_{min}), 7.41 - 7.23 (m, 2H D_{maj} + 2H D_{min}), 4.88 - 4.66 (m, 2H D_{maj} + 1H D_{min}), 4.57 (ddd, J = 11.8, 4.8, 1.6 Hz, 1H D_{min}), 4.37 (d, J = 4.6 Hz, 1H D_{maj}), 4.33 (d, J = 12.0 Hz, 1H D_{min}), 4.11 (ddd, J = 12.5, 8.2, 3.8 Hz, 1H D_{maj} + 1H D_{min}), 4.03 - 3.71 (m, 2H D_{maj} + 2H D_{min}), 3.19 (qd, J = 13.3, 5.2 Hz, 1H D_{maj}), 2.34 - 2.21 (m, 1H D_{min}), 2.19 - 2.11 (m, 1H D_{min}), 1.96 - 1.88 (m, 1H D_{maj}), 0.88 (t, J = 7.1 Hz, 3H D_{maj}), 0.80 (t, J = 7.1 Hz, 3H D_{min}). ¹³C NMR (126 MHz, CDCl₃) δ 163.84, 162.73, 141.47, 141.37, 137.64, 136.91, 136.41, 133.05, 128.91, 128.02, 127.90, 127.86, 127.82, 127.77, 127.75, 127.07, 127.06, 73.11, 72.66, 68.47, 66.11, 62.69, 62.37, 43.81, 42.37, 38.06, 32.15, 24.02, 13.87. HRMS (ESI) *m/z* calculated for C₂₁H₂₂NO₇S₂ [M+H]⁺: 464.0838, found 464.0829.

Ethyl 4-(benzo[*d*][1,3]dioxol-5-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [22].

Ethyl 2-((3-(benzo[*d*][1,3]dioxol-5-yl)propoxy)sulfonyl)-2-diazoacetate **[S34]** (142.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8,0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% EtOAc/hexanes. Pure product was isolated as a white solid

and a 2:1 syn:anti mixture of diastereomers. Subsequent purification using $15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes allowed for separation of diastereomers.

Run 1: (71.1 mg, 0.217 mmol, 54%), 0% rsm. Run 2: (68.8 mg, 0.210 mmol, 52%), 0% rsm. Run 3: (70.6 mg, 0.215 mmol, 54%), 0% rsm. **Average: 53% yield ± 0.8, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 6.77 (d, *J* = 7.9 Hz, 1H), 6.74 – 6.68 (m, 2H), 5.96 (s, 2H), 4.76 – 4.66 (m, 2H), 4.19 (d, *J* = 4.6 Hz, 1H), 4.16 – 4.03 (m, 2H), 3.77 (dt, *J* = 13.3, 4.0 Hz, 1H), 3.13 (tdd, *J* = 13.8, 11.6, 6.4 Hz, 1H), 1.85 – 1.72 (m, 1H), 1.11 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.08, 148.26, 147.49, 131.73, 120.74, 108.76, 107.72, 101.43, 73.09, 66.52, 62.39, 42.75, 24.50, 13.91.; HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₇S [M+H]⁺: 329.0695, found 329.0681.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 6.76 (d, *J* = 8.0 Hz, 1H), 6.71-6.67 (m, 2H), 5.96 (s, 2H), 4.73 (ddd, *J* = 12.9, 11.7, 2.2 Hz, 1H), 4.53 (ddd, *J* = 11.7, 4.9, 1.5 Hz, 1H), 4.18-4.06 (m, 3H), 3.75 (td, *J* = 12.4, 3.7 Hz, 1H), 2.18 (dtd, *J* = 14.8, 12.9, 4.9 Hz, 1H), 2.00 (ddt, *J* = 14.9, 3.6, 1.9 Hz, 1H), 1.11 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.85, 148.18, 147.43, 132.35, 120.90, 108.76, 107.77, 101.41, 72.58, 68.87, 62.71, 44.05, 32.50, 13.91.; HRMS (ESI) *m/z* calculated for C₁₄H₁₇O₇S [M+H]⁺: 329.0695, found 329.0688.

Ethyl 4-(4-(2-oxopyrrolidin-1-yl)phenyl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [23].

Ethyl 2-diazo-2-((3-(4-(2-oxopyrrolidin-1-yl)phenyl)propoxy)sulfonyl)acetate **[S35]** (75.3 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (4.0 mL, 0.05 M) were used. Product was purified via flash column chromatography on silica using $30\% \rightarrow 60\%$ EtOAc/hexanes. Product was isolated as a clear oil and a 1.1:1 syn:anti mixture of diastereomers. The diastereomers were inseparable

by column chromatography and were characterized as a mixture. Yield was determined via NMR with mesitylene as an internal standard.

Run 1: (29.2 mg, 0.080 mmol, 40%), 0% rsm. Run 2: (28.5 mg, 0.078 mmol, 39%), 0% rsm. Run 3: (29.2 mg, 0.080 mmol, 40%), 0% rsm. **Average: 40% yield ± 0.5%, 0% rsm.**

Mixture of syn and anti diastereomers: ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, *J* = 8.7, 6.9 Hz, 2H D_{maj} + 2H D_{min}), 7.25 (dd, *J* = 8.5, 5.3 Hz, 2H D_{maj} + 2H D_{min}), 4.82 - 4.69 (m, 2H D_{maj} + 1H D_{min}), 4.56 (dd, J = 11.5, 4.0 Hz, 1H D_{min}), 4.26 (d, *J* = 3.8 Hz, 1H D_{maj}), 4.24 (d, *J* = 3.6 Hz, 1H D_{min}), 4.14 - 4.00 (m, 2H D_{maj} + 2H D_{min}), 3.92 - 3.78 (m, 3H D_{maj} + 3H D_{min}), 3.21 (dq, J = 14.0, 6.4 Hz, 1H D_{maj}), 2.63 (td, J = 8.1, 2.9 Hz, 2H D_{maj} + 2H D_{min}), 2.29-2.15 (m, 2H D_{maj} + 3H D_{min}), 2.00 (d, J = 14.5, 1H D_{min}), 1.82 (d, J = 14 Hz, 1H D_{maj}), 1.09 (t, J = 7.1 Hz, 3H D_{maj} + 3H D_{min}). ¹³C NMR (126 MHz, CDCl₃) δ 174.47, 163.98, 162.80, 139.38, 139.28, 134.46, 133.67, 127.88, 127.76, 120.24, 120.17, 73.18, 72.66, 68.58, 66.25, 62.69, 62.36, 48.69, 48.66, 43.70, 42.39, 32.79, 32.34, 24.20, 18.01, 17.98, 13.85, 13.83. HRMS (ESI) *m/z* calculated for C₁₇H₂₂NO₆S [M+H]⁺: 368.1168, found 368.1167.

Ethyl 4-(4-(3-methylthiophen-2-yl)phenyl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [24].

Ethyl 2-diazo-2-((3-(4-(3-methylthiophen-2-yl)phenyl)propoxy)sulfonyl)acetate **[S36]** (81.7 mg, 0.2 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.025 M) were used. Product was purified via flash column chromatography on silica using 0.4% Et₂O, 19.6% CH₂Cl₂, 80% hexanes \rightarrow 1% Et₂O, 49%

 CH_2CI_2 , 50% hexanes as eluent. Pure product was isolated as a clear oil and a 1:1.3 syn:anti mixture of diastereomers. Subsequent purification using 0.4% Et₂O, 19.6% CH_2CI_2 , 80% hexanes \rightarrow 1% Et₂O, 49% CH_2CI_2 , 50% hexanes as eluent allowed for separation of diastereomers. Yields were determined via NMR with mesitylene as an internal standard. The syn diastereomer was isolated with 10% of the anti, and the anti diastereomer was isolated with 5% syn.

Run 1: (40.4 mg, 0.106 mmol, 53%), 0% rsm. Run 2: (37.9 mg, 0.099 mmol, 49%), 0% rsm. Run 3: (38.2 mg, 0.100 mmol, 52%), 0% rsm. **Average: 51% yield ± 1.7%, 0% rsm.**

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 5.1 Hz, 1H), 6.93 (d, *J* = 5.1 Hz, 1H), 4.82 - 4.70 (m, 2H), 4.28 (d, *J* = 4.6 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.90 (dt, J = 13.5 Hz, 4 Hz, 1H), 3.32 - 3.17 (m, 1H), 2.31 (s, 3H), 1.86 (ddt, J = 14.7, 3.5, 1.7 Hz, 1H), 1.04 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.05, 136.92, 136.68, 134.97, 133.68, 131.40, 129.63, 127.53, 123.91, 73.18, 66.24, 62.39, 42.72, 24.11, 15.07, 13.87.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 5.1 Hz, 1H), 6.92 (d, J = 5.1 Hz, 1H), 4.78 (ddd, J = 13.5, 11.5, 2.0

Hz, 1H), 4.57 (ddd, J = 12.4, 5.6, 2.2 Hz, 1H), 4.25 (d, J = 12.1 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.87 (td, J = 12.4, 3.7 Hz, 1H), 2.33 (s, 3H), 2.30 - 2.23 (m, 1H), 2.06 (d, J = 15 Hz, 1H), 1.04 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.90, 137.36, 136.95, 134.93, 133.66, 131.40, 129.65, 127.68, 123.88, 72.67, 68.65, 62.78, 44.16, 32.36, 15.09, 13.87. HRMS (ESI) *m/z* calculated for C₁₈H₂₁O₅S₂ [M+Na]⁺: 381.0830, found 381.0841.

(+)-(R)-6-allyl-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chromane [S39]

To an oven-dried round-bottom flask with a stir bar was added (+)-δ-tocopherol (3.2 g, 8.0 mmol, 1.0 equiv), CH₂Cl₂ (40 mL, 0.2 M), pyridine (1.94 mL, 12 mmol, 1.5 equiv). The reaction was cooled to 0 °C.

Trifluoromethanesulfonic anhydride (1.62 mL, 9.6 mmol, 1.2 equiv) was added dropwise and the reaction was stirred at 0 °C for 30 min. After warming up to room temperature, the reaction was guenched with addition of cold water. The layers were separated, and the agueous layer was extracted with CH₂Cl₂. The organic layers were combined and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica using 100% hexanes as eluent. The characterization of the resulting compound matched the literature⁸. To an oven-dried round bottom flask equipped with condenser was added a stir bar, LiCl (477 mg, 11.25 mmol, 3.75 equiv), DMF (7.5 mL, 0.4 M), allyltributylstannane (1.16 mL, 3.75 mmol, 1.25 equiv), (+)-δ-tocopherol triflate (1.60 g, 3 mmol, 1 equiv) and Pd(PPh₃)₄ (104 mg, 0.09 mmol, 0.03 equiv). The reaction was heated to 100 °C and stirred for 12 hours. Upon completion, the reaction was cooled to room temperature, transferred into a separatory funnel with iced 10% NH₄OH solution (1:1 to DMF) and shake vigorously. Layers were separated, aqueous layer was extracted with ethyl acetate (30 mL x 3). The organic layers were combined and concentrated. The crude mixture was purified by flash column chromatography on silica using 100% petroleum ether as eluent to give (+)-allylated- δ -tocopherol derivative [S39] in 88% yield over two steps.

¹H NMR (500 MHz, CDCl₃) δ 6.80 (d, *J* = 2.2 Hz, 1H), 6.73 (d, *J* = 2.1 Hz, 1H), 5.97 (ddt, *J* = 16.8, 10.0, 6.8 Hz, 1H), 5.13-4.95 (m, 2H), 3.28 (d, *J* = 6.8 Hz, 2H), 2.80-2.61 (m, 2H), 2.16 (s, 3H), 1.86-1.71 (m, 2H), 1.64-1.03 (m, 24H), 0.91-0.84 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 150.5, 138.5, 130.2, 128.6, 126.8, 126.3, 120.4, 115.2, 75.96, 40.3, 39.7, 39.5, 37.6, 37.6, 37.4, 33.0, 32.9, 31.4, 28.1, 25.0, 24.6, 24.4, 22.9, 22.8, 22.5, 21.1, 19.9, 19.8, 16.2. HRMS (ESI) *m/z* calculated for C₃₀H₅₀O [M]⁺: 426.3862, found 426.3851. [α]²²_D = +5.6 ° (*c* = 1.05, CHCl₃)

(+)-3-((R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)propan-1-ol [S40].
The following procedure was adapted from literature precedent ⁹. A round-bottomed flask was flame-dried under vacuum, backfilled with nitrogen, and then charged with 1.28 g (3.0 mmol, 1 equiv) of (*R*)-6-allyl-2,8-dimethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chromane [**S39**] and THF (8.6 mL, 0.35 M). The solution was cooled to 0°C in an ice bath. A 1.0 M BH₃ solution in THF (24 mL, 24 mmol, 8 equiv) was added dropwise. The reaction mixture was removed from the bath and allowed to stir at room temperature for one hour. The mixture was again cooled to 0°C and a 4 M solution of NaOH (2.70 mL) was added dropwise, followed by dropwise addition of 30% H₂O₂ (3.60 mL, 117 mmol, 39 equiv). The reaction was removed from the ice bath and allowed to stir for 40 minutes at room temperature. The mixture was then extracted three times with EtOAc. The combined organic phases were dried over magnesium sulfate and concentrated in vacuo. Flash column chromatography on silica gel with 5% \rightarrow 13% EtOAc/hexanes as eluent yielded 644 mg (1.45 mmol) of pure product as a clear oil (48%). ¹H-NMR (500 MHz, CDCl₃) δ 6.79 (d, *J* = 2.7 Hz, 1H), 6.73 (s, *J* = 2.2 Hz, 1H), 3.68 (t, J = 6.4 Hz, 2H), 2.77 – 2.67 (m, 2H), 2.57 (dd, J = 7.3, 7.9 Hz, 2H), 2.14 (s, 3H), 1.92 – 1.68 (m, 4H), 1.63 – 1.00 (m, 25H), 0.92 – 0.81 (m, 12H).; ¹³C-NMR (126 MHz, CDCl₃) δ 150.39, 131.89,

128.51, 126.67, 126.24, 120.40, 75.96, 62.72, 40.38, 39.53, 37.61, 37.57, 37.44, 34.70, 32.95, 32.85, 31.42, 31.40, 28.14, 24.96, 24.60, 24.41, 22.88, 22.79, 22.50, 21.15, 19.91, 19.82, 16.20.; $[\alpha]^{22}{}_{D}$ =+3.80° (c=1.39, CHCl₃); HRMS (ESI) *m/z* calculated for C₃₀H₅₃O₂ [M+H]⁺: 445.4046, found 445.4040.

(+)-Ethyl 2-((3-((*R*)-2,8-dimethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)propoxy)sulfonyl)acetate [S41].

Prepared according to the general procedure for preparation of sulfonate ester substrates. 644 mg (1.45 mmol) of 3-((*R*)-2,8-dimethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-

yl)propan-1-ol **[S40]** were used, along with imidazole (119 mg, 1.74 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (406 mg, 2.18 mmol, 1.5 equiv), and THF (7.2 mL, 0.2 M). Flash column chromatography on silica using 5% \rightarrow 20% Et₂O/petroleum ether as eluent gave 427 mg (0.719 mmol) of pure product as a clear oil (50% yield).

¹H-NMR (500 MHz, CDCl₃) δ 6.80 (d, J = 2.2 Hz, 1H), 6.74 (d, J = 1.8 Hz, 1H), 4.38 (t, J = 6.4 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 4.11 (s, 2H), 2.79-2.69 (m, 2H), 2.64 (t, J = 7.0 Hz, 2H), 2.17 (s, 3H), 2.12 - 2.04 (m, 2H), 1.89 - 1.72 (m, 2H), 1.64 - 1.05 (m, 27H), 0.94 - 0.84 (m, 12H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.14, 150.67, 130.33, 128.49, 126.80, 126.42, 120.55, 76.05, 71.88, 62.86, 54.99, 40.40, 39.52, 37.60, 37.57, 37.43, 32.94, 32.85, 31.35, 31.18, 30.73, 28.13, 24.95, 24.60, 24.38, 22.88, 22.78, 22.46, 21.15, 19.90, 19.80, 16.18, 14.12.; $[\alpha]^{22}_{D}$ =+3.21° (c=0.44, CHCl₃); HRMS (ESI) *m/z* calculated for C₃₄H₅₉O₆S [M+H]⁺: 595.4032, found 595.4036.

(+)-Ethyl 2-diazo-2-((3-((*R*)-2,8-dimethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)propoxy)sulfonyl)acetate [25].

Prepared according to the general procedure for diazo transfer. 427 mg (0.719 mmol) of ethyl 2-((3-((R)-2,8-dimethyl-2-((4R,8R)- 4,8,12-trimethyltridecyl)chroman-6-yl)propoxy)sulfonyl)acetate **[S40]** were used, along with MeSO₂N₃ (261 mg, 2.16 mmol, 3 equiv), DBU (161 μ L, 1.08 mmol, 1.5 equiv), and THF (1.8 mL, 0.4 M). Flash column chromatography on silica using 1% \rightarrow 8% Et₂O/petroleum ether as eluent gave 280 mg (0.452 mmol) of pure product as a yellow oil (63% yield).

¹H-NMR (500 MHz, CDCl₃) δ 6.75 (d, *J* = 2.9 Hz, 1H), 6.69 (d, *J* = 3.0 Hz, 1H), 4.35 (t, J = 6.3 Hz, 2H), 4.33 (q, J = 7.3 Hz, 2H), 2.76 - 2.65 (m, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.13 (s, 3H), 2.07 - 1.98 (m, 2H), 1.85 - 1.67 (m, 2H), 1.60 - 1.00 (m, 27H), 0.91 - 0.81 (m, 12H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.54, 150.60, 130.22, 128.42, 126.73, 126.31, 120.46, 75.95, 72.85, 62.74, 40.31, 39.45, 37.52, 37.49, 37.36, 32.86, 32.76, 31.29, 30.85, 30.64, 28.05, 24.88, 24.52, 24.31, 22.81, 22.72, 22.39, 21.06, 19.84, 19.75, 16.12, 14.35.; [a]²²_D=+2.58° (c=1.99, CHCl₃); HRMS (ESI) *m/z* calculated for C₃₄H₅₆O₆N₂SNa [M+Na]⁺: 643.3757, found 643.3767; IR (ATR, cm⁻¹) 2925.67, 2867.31, 2130.74, 1723.96, 1598.56, 1480.78, 1464.51, 1376.38, 1288.42, 1222.30, 1180.52. 1151.78, 1092.88, 1006.25, 928.65, 835.62, 738.50, 615.85, 558.77, 538.19, 509.25.

Ethyl 4-((*R*)-2,8-dimethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [26].

Ethyl 2-diazo-2-((3-((R)-2,8-dimethyl-2-((4R,8R)-4,8,12 trimethyltridecyl)chroman-6-yl)propoxy)sulfonyl)acetate **[25]** (24.2 mg, 0.200 mmol, 1.0 equiv), [FePc]Cl (12.1 mg, 0.020 mmol, 0.10 equiv), NaBAr^F₄ (17.7 mg, 0.020 mmol, 0.10 equiv), and CH₂Cl₂ (4.0 mL, 0.05 M) were used. Product was purified via flash column

chromatography on silica using $2\% \rightarrow 15\%$ EtOAc/hexanes. Pure product was isolated as a yellow oil and a 1.4:1 syn:anti mixture of diastereomers. Subsequent purification using $5\% \rightarrow 20\%$ Et₂O/hexanes allowed for separation of diastereomers. A trace impurity (<5%) was isolated with the syn product and was factored into yield calculations.

Run 1: (96.9 mg, 0.163 mmol, 82%), 0% rsm. Run 2: (85.2 mg, 0.144 mmol, 72%), 0% rsm. Run 3: (94.0 mg, 0.159 mmol, 79%), 0% rsm. **Average: 78% yield ± 4.2%, 0% rsm.**

Syn diastereomer (major): ¹H NMR (500 MHz, CDCl₃) δ 6.79 (d, *J* = 2.3 Hz, 1H), 6.74 (d, *J* = 2.4 Hz, 1H), 4.77 - 4.66 (m, 2H), 4.19 (d, *J* = 4.6 Hz, 1H), 4.14 - 4.00 (m, 2H), 3.71 (dt, *J* = 13.5, 4.1 Hz, 1H), 3.11 (dtd, J = 6.5 Hz, 11.6 Hz, 14.0 Hz, 1H), 2.80 - 2.60 (m, 2H), 2.12 (s, 3H), 1.86 - 1.68 (m, 4H), 1.55 - 0.97 (m, 26H), 0.91 - 0.77 (m, 12H).; ¹³C-NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 164.32, 152.06, 128.00, 127.24, 127.19, 127.00, 125.73, 125.68, 120.96, 120.94, 76.44, 73.31, 66.67, 62.16, 42.57, 40.30, 40.23, 39.51, 37.60, 37.43, 32.94, 32.87, 32.83, 31.21, 28.13, 24.95, 24.59, 24.56, 24.32, 24.26, 22.88, 22.49, 21.12, 19.90, 19.78, 16.27, 13.91.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 6.78 (d, J = 2.3 Hz, 1H), 6.72 (d, J = 2.3 Hz, 1H), 4.72 (ddd, J = 13.4, 11.7, 2.2 Hz, 1H), 4.52 (ddd, J = 11.6, 4.9, 1.5 Hz, 1H), 4.15 (d, J = 12.0 Hz, 1H), 4.12 – 4.04 (m, 2H), 3.67 (td, J = 12.4, 3.6 Hz, 1H), 2.76 – 2.65 (m, 2H), 2.20 (dtd, J = 14.8, 12.9, 4.9 Hz, 1H), 2.12 (s, 3H), 2.01 - 1.94 (m, 1H), 1.82 – 1.70 (m, 2H), 1.59 - 0.99 (m, 27H), 0.87 – 0.83 (m, 12H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.10, 151.96, 128.59, 127.25, 127.20, 126.90, 125.99, 125.93, 120.91, 120.90, 76.42, 72.72, 69.11, 62.47,

43.79, 40.37, 40.30, 39.51, 37.60, 37.58, 37.42, 32.94, 32.85, 32.65, 31.17, 28.13, 24.94, 24.59, 24.32, 24.26, 22.87, 22.78, 22.44, 21.11, 19.89, 19.78, 16.26, 13.87. HRMS (ESI) m/z calculated for $C_{34}H_{57}O_6S$ [M+H]⁺: 593.3876, found 593.3865.

Ethyl 5-cyano-3-((R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)pentanoate [27].

The following procedure was adapted from literature precedent³. Other examples of sultone eleaboration have been reported¹⁰⁻¹³. A round-bottomed flask was charged with ethyl 4-((R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)-1,2-oxathiane-

3-carboxylate 2,2-dioxide (93.9 mg, 0.159 mmol) and DMF (0.45 mL, 0.33 M). Sodium cyanide (8.60 mg, 0.174 mmol, 1.1 equiv) was added and the resulting mixture was heated to 100°C and stirred for three hours. The reaction mixture was then allowed to cool to room temperature and the DMF was removed in vacuo. The resulting brown oil was coevaporated three times with toluene and then allowed to stand under high vacuum for three hours at room temperature. The resulting brown oil was dissolved in toluene (0.63 mL, 0.25 M) and DMF (3.2 µL) and then oxalyl chloride (100.6 mg, 68 µL, 0.793 mmol, 5 equiv) were added. The resulting mixture was heated to 100°C and stirred for twenty minutes, and then allowed to cool to room temperature. The resulting suspension was filtered through a small pad of celite and the filter cake washed three times with toluene. The filtrate was concentrated in vacuo and the resulting brown oil was redissolved in THF (0.8 mL, 0.2 M). A separate round-bottomed flask was charged with zinc dust (104 mg, 1.59 mmol, 10 equiv), copper (II) acetate monohydrate (31.6 mg, 0.159 mmol, 1 equiv), and glacial acetic acid (0.8 mL). This mixture was stirred for one minute before the substrate solution in THF was added dropwise. The resulting reaction mixture was stirred at room temperature for 2.5 hours. The mixture was diluted with diethyl ether and filtered through a small pad of celite. The filter cake was washed three times with ether. The ether was removed in vacuo. Flash column chromatography on silica gel with $2\% \rightarrow 20\%$ Et₂O/petroleum ether as eluent gave some pure product (19.5 mg, 0.037 mmol, 23%) as a clear oil and some product as a clear oil with minor impurities. The yield was determined via NMR with mesitylene as an internal standard.

Overall: 0.070 mmol, 44% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.75 (s, 1H), 6.71 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.10 – 3.04 (m, 1H), 2.79 – 2.68 (m, 2H), 2.60 (dd, *J* = 7.5, 2.1 Hz, 2H), 2.33 - 2.03 (m, 7H), 1.90 – 1.74 (m, 3H), 1.65 - 1.03 (m, 26H), 0.91 – 0.87 (m, 12H). ¹³C NMR (126 MHz, CDCl3) δ 171.93, 151.37, 131.18, 127.15, 127.10, 126.70, 126.69, 125.95, 125.90, 120.78, 119.74, 76.22, 60.59, 41.85, 40.64, 40.48, 39.52, 37.62, 37.58, 37.44, 32.95, 31.74, 31.25, 28.13, 24.95, 24.60, 24.37, 24.33, 22.87, 22.78, 22.50, 21.15, 19.90, 19.80, 16.31, 15.52, 14.30.; HRMS (ESI) *m/z* calculated for C₃₅H₅₈NO₃ [M+H]⁺: 540.4417, found 540.4416.

Free Carbene Generation Study

Procedure for UV-light mediated diazo decomposition:

To a flame-dried quartz tube equipped with a rubber septum and stir bar was added **6** (55.3 mg, 0.20 mmol, 1 equiv) in CH_2Cl_2 (4.0 mL, 0.05M) under an inert atmosphere. Argon was bubbled

through the mixture for 10 minutes. The gas inlet was removed, the septum was wrapped in aluminum foil, and the reaction, while stirring, was irradiated with four 15W compact UV germicidal bulbs at room temperature. After 1 hour, the tube was removed and TLC analysis revealed complete consumption of starting material. The reaction mixture was then transferred to a 25 mL flask, concentrated and analyzed by crude NMR, which revealed the mixture was composed of predominantly one compound **[28]**. The product was purified via flash column chromatography on silica (40 mL SiO₂) using 5% \rightarrow 10% \rightarrow 15% EtOAc/hexanes. Pure product was isolated as a colorless oil. No other products were isolated off the column.

Ethyl (E)-3,3-dichloro-2-((hex-4-en-1-yloxy)sulfonyl)propanoate [28]

Run 1: (24.8 mg, 0.074 mmol, 37%), 0% rsm. Run 2: (25.7 mg, 0.078 mmol, 39%), 0% rsm. Run 3: (22.0 mg, 0.066 mmol, 33%), 0% rsm. Average: 36% yield ± 2.5, 0% rsm.

¹H-NMR (500 MHz, CDCl₃) δ 5.49 (dt, J = 15.1, 6.3 Hz, 1H), 5.37 (ddd, J = 15.0, 6.6, 1.3 Hz, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4.53 (td, J = 6.5, 1.2 Hz, 2H), 4.41 (m, 2H), 4.04 (d, J = 11.8 Hz, 1H), 2.11 (tt, J = 6.9, 6.0 Hz, 2H), 1.84 (dt, J = 13.4, 6.9 Hz, 2H), 1.66 (dq, J = 6.3, 1.4 Hz, 3H), 1.38 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 161.55, 128.91, 127.24, 85.20, 77.02, 65.18, 47.05, 29.50, 28.29, 18.16, 14.07.; HRMS (ESI) *m/z* calculated for C₁₁H₁₈O₅SCl₂Na [M+Na]⁺: 355.0150, found 355.0146.

Procedure for iron salt mediated diazo decomposition study:

Into a 1 dram vial was added iron salt (0.040 mmol, 0.10 equiv) in a glovebox. The vial was sealed, taken out of the box, and the contents were added under a stream of nitrogen to a flame dried three neck 25 mL flask equipped with a stir bar, reflux condenser, glass stopper, and rubber septum. CH_2Cl_2 (5.0 mL, 0.08 M) was added and the flask was heated to reflux (~45°C) for 10 minutes. Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **6** (110.5 mg, 0.400 mmol, 1.0 equiv) was taken up with CH_2Cl_2 (3.0 mL, 0.13 M) in a glass syringe and added dropwise to the refluxing catalyst solution over the course of 2-3 minutes (final reaction concentration is 0.05 M). After complete addition of diazosulfonate, the reaction refluxed for 2 hours. The reaction mixture was cooled, adsorbed onto SiO₂ or florisil, and applied directly to a silica column (75 mL SiO₂) for purification to afford the desired sultone product. The recovered starting material (rsm) was eluted with 10% EtOAc/hexanes. No other compounds were isolated off the column.

FeCl₃ Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (6.5 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (99.5 mg rsm, 0.360 mmol, 90%). Run 2: (103.5 mg rsm, 0.375 mmol, 94%). **Average:** 0% yield, 92% rsm.

FeCl₂ Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), FeCl₂ (5.1 mg, 0.040 mmol, 0.10 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used.

Run 1: (109.3 mg rsm, 0.396 mmol, 99%). Run 2: (106.3 mg rsm, 0.385 mmol, 96%). Average: 0% yield, 98% rsm.

FeCl₃/NaBAr^F₄ Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), FeCl₃ (6.5 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used.

Run 1: (108.8 mg rsm, 0.394 mmol, 98%). Run 2: (108.2 mg rsm, 0.391 mmol, 98%). Average: 0% yield, 98% rsm.

FeCl₂/NaBAr^F₄ Conditions: Ethyl (*E*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[6]** (110.5 mg, 0.400 mmol, 1.0 equiv), FeCl₂ (5.1 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used.

Run 1: (108.9 mg rsm, 0.394 mmol, 98%). Run 2: (110.5 mg rsm, 0.400 mmol, 100%). Average: 0% yield, 99% rsm.

Intramolecular Kinetic Isotope Effect Study

Method for KIE Determination: The column-purified product mixture **31** (*vide infra*, ca. 20 mg in 600 μ L CDCl₃) was analyzed by ¹³C-NMR (600 MHz instrument) ¹⁴⁻¹⁵. Cr(acac)₃ (3.5-5.0 mg) was added directly to the solution in the NMR tube immediately prior to running the NMR study; this helps to significantly reduce delay times needed to obtain accurate integrations. The experiment was run under inverse-gated decoupling conditions without sample spinning. The following parameters were used for the experiment, listed as Varian commands:

temp=23 dm='nny' (inverse-gated decoupling) d1=5 (initial delay) at=0.5 (acquisition time) setsw(180,0) (spectral width, in ppm) bs=64 (block size for FID) nt=2944 (number of scans) pw=7.0 (pulse width) pw90=7.0 (90° pulse width)

The KIE was reported as the area of the deuterated peak over that of the non-deuterated peak for the benzylic carbon (~42 ppm). All diastereomeric peaks resolve in the ¹³C NMR and the sample can be analyzed accurately as a mixture. However, the KIE was calculated off of the major (*syn*) diastereomer of the product due to better signal to noise ratios. Three NMR experiments were run for each catalyst and an average value was calculated with error reported as a standard deviation.

[FePc]Cl: $C-H/C-D = 5.0 \pm 0.1$ [FeCl₈Pc]Cl: $C-H/C-D = 4.8 \pm 0.1$ [FeCl₁₆Pc]Cl: $C-H/C-D = 4.5 \pm 0.1$ $Rh_2(OAc)_4: C - H/C - D = 1.8 \pm 0.1$

Ethyl 2-((3-(4-methoxyphenyl)propoxy-3-d)sulfonyl)acetate [S41].

1.30 g (7.6 mmol) of 3-(4-methoxyphenyl)propan-3-d-1-ol¹⁶ were used, .OEt along with imidazole (620 mg, 9.1 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (2.10 OMe g, 11.3 mmol, 1.5 equiv), and THF (38 mL, 0.2 M). Flash column chromatography on silica using 20% EtOAc/hexanes as eluent gave 1.95 g `n (6.10 mmol) of pure product as a pale yellow oil (80% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.11 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.33 (t, J = 6.3 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.08 (s, 2H), 3.79 (s, 3H), 2.68 (t, J = 7.7 Hz, 1H), 2.05 (q, J = 6.7 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 161.96, 157.95, 132.17, 129.28, 113.85, 71.40, 62.56, 55.10, 54.54, 30.77, 30.03 (t, J = 19.8 Hz), 13.85.; HRMS (ESI) m/z calculated for C₁₄H₁₉D₁O₆SNa [M+Na]⁺: 340.0941, found 340.0933.

Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-d)sulfonyl)acetate [29].

0 OMe 0=S D НĹ

0=8

(6.10 mmol) of ethyl 2-((3-(4-methoxyphenyl)propoxy-3-1.95 a d)sulfonyl)acetate [S41] were used, along with MeSO₂N₃ (1.63 g, 13.5 mmol, 2.2 equiv), DBU (1.4 mL, 9.20 mmol, 1.5 equiv), and THF (15 mL, 0.4 M). Flash column chromatography on silica using 10% EtOAc/hexanes

as eluent gave 1.74 g (5.07 mmol) of pure product as a yellow oil (83% yield). ¹H-NMR (500 MHz, CDCl₃) δ 7.10 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.34 (t, J = 6.4 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 2.67 (t, J = 7.6 Hz, 1H), 2.04 (q, J = 6.5 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.53, 158.17, 132.20, 129.45, 114.05, 72.60, 62.80, 55.34, 30.70, 30.24 (t, J = 19.7 Hz), 14.37.; HRMS (ESI) m/z calculated for C₁₄H₁₈DO₆N₂S [M+H]⁺: 344.1027, found 344.1020; IR (ATR, cm⁻¹) 2970, 2918, 2130, 1722, 1447, 1373, 1285, 1224, 1178, 1083, 1007, 924, 879, 843, 777, 739, 615, 558, 495.

Ethyl 4-(4-methoxyphenyl)-1,2-oxathiane-3-carboxylate-4-d 2,2-dioxide [31]:

Product was isolated and characterized as a mixture of the two isomers as well as a minor amount of the non-deuterated product (formed from H-exchange at the acidified C3 site).

Svn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.78-4.67 (m, 2H),4.21 (s, 1H), 4.13-3.98 (m, 2H), 3.80 (s, 3H), 3.18 (ddd, J =

18.5, 13.9, 7.4 Hz, 1H), 1.79 (dt, J = 14.4, 1.9 Hz, 1H), 1.07 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126) MHz, CDCl₃) 164.27, 159.57, 130.06, 130.04, 128.56, 114.59, 73.35, 73.33, 66.65 (non-deut), 66.58, 66.30 (t, J = 22.0 Hz), 62.44, 62.42, 55.56, 42.41 (non-deut), 42.31, 42.02 (t, J = 20.2 Hz), 24.47, 24.41, 14.00.; HRMS (ESI) *m/z* calculated for C₁₄H₁₈DO₆S [M+H]⁺: 316.0965, found 316.0968.

[FePc] Conditions: The general procedure for [FePc]-catalyzed C—H alkylation was followed. Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-d)sulfonyl)acetate [29] (137.3 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. Flash column chromatography on silica (75 mL) using $10\% \rightarrow 15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes gave the *syn* and *anti* diastereomers mostly separated. All of the fractions containing the *syn* product were collected, concentrated, and analyzed by ¹³C NMR. This procedure was repeated three times. Run 1: 4.94. Run 2: 5.05. Run 3: 5.06. **Average: 5.0 ± 0.1**

[FeCl₈Pc] Conditions: The general procedure for [FePc]-catalyzed C—H alkylation was followed. Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-*d*)sulfonyl)acetate **[29]** (206.0 mg, 0.600 mmol, 1.0 equiv), [FeCl₈Pc]Cl (52.8 mg, 0.060 mmol, 0.10 equiv), NaBAr^F₄ (53.2 mg, 0.060 mmol, 0.10 equiv), and CH₂Cl₂ (12.0 mL, 0.05 M) were used. The reaction was allowed to stir for 16 hours. Flash column chromatography on silica (75 mL) using $10\% \rightarrow 15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes gave the *syn* and *anti* diastereomers mostly separated. All of the fractions containing the *syn* product were collected, concentrated, and analyzed by ¹³C NMR. This procedure was repeated three times.

Run 1: 4.94. Run 2: 4.79. Run 3: 4.70. Average: 4.8 ± 0.1

[FeCl₁₆Pc] Conditions: The general procedure for [FePc]-catalyzed C—H alkylation was followed. Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-*d*)sulfonyl)acetate **[29]** (206.0 mg, 0.600 mmol, 1.0 equiv), [FeCl₁₆Pc]Cl (69.3 mg, 0.060 mmol, 0.10 equiv), NaBAr^F₄ (53.2 mg, 0.060 mmol, 0.10 equiv), and CH₂Cl₂ (12.0 mL, 0.05 M) were used. The reaction was allowed to stir for 16 hours. Flash column chromatography on silica (75 mL) using $10\% \rightarrow 15\% \rightarrow 20\%$ $\rightarrow 25\%$ EtOAc/hexanes gave the *syn* and *anti* diastereomers mostly separated. All of the fractions containing the *syn* product were collected, concentrated, and analyzed by ¹³C NMR. Run 1: 4.55. Run 2: 4.57. Run 3: 4.45. **Average: 4.5 ± 0.1**

Rh₂(OAc)₄ Conditions:

The general procedure for $Rh_2(OAc)_4$ catalyzed C—H alkylation was followed. Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3-*d*)sulfonyl)acetate **[29]** (137.3 mg, 0.400 mmol, 1.0 equiv), $Rh_2(OAc)_4$ (3.5 mg, 0.008 mmol, 0.02 equiv), and CH_2Cl_2 (8.0 mL, 0.05 M) were used. Flash column chromatography on silica (75 mL) using $10\% \rightarrow 15\% \rightarrow 20\% \rightarrow 25\%$ EtOAc/hexanes gave the *syn* and *anti* diastereomers mostly separated. All of fractions containing the *syn* product were collected, concentrated, and analyzed by ¹³C NMR. This procedure was repeated three times.

Run 1: 1.78. Run 2: 1.84. Run 3: 1.91. Average: 1.8 ± 0.1

Determination of Kinetic Isotope Effect via Initial Rates

General Procedure for Initial Rate Analysis: To a 1 dram flame-dried borosilicate vial containing a Teflon stir bar was added catalyst (0.010 mmol, 0.10 equiv) and NaBAr^F₄ (8.9 mg, 0.010 mmol, 0.10 equiv) in the glove box. The vial was removed and the contents were diluted with 1 mL of CH₂Cl₂, sealed with a Teflon septum cap, and heated to 40°C for 10 minutes. **30** or **30-***d*₂ (34.2 mg, 0.2 mmol, 1.0 equiv) and internal standard nitrobenzene (0.04 mmol, 40 mol%), were dissolved in 1 mL of CH₂Cl₂ (400 μ L, 0.5M) and added to the 1 dram vial in one portion. The septum cap was wrapped with Teflon tape. Aliquots (25 μ L) were taken at the corresponding times from the reaction flask, and filtered through a silica pad with 500 μ L of 1:1 isopropanol/hexanes for normal phase HPLC (Zorbax CN, 4.6 x 250 nm) analysis. The yield was determined by integration of the product peaks relative to the nitrobenzene internal standard and comparison to a standard curve. Initial rates were determined for formation of **17** by plotting the yield versus time. Rates are reported as the average of three runs, with the error denoted by standard deviation. Error for kinetic isotopes was calculated via propagation of the standard error of the mean for each set of rates.

Ethyl 2-((3-(4-methoxyphenyl)propoxy-3,3-*d*₂)sulfonyl)acetate [S42].

1.71 g (10.2 mmol) of 3-(4-methoxyphenyl)propan-3,3- d_2 -1-ol were used, along with imidazole (837.3 mg, 12.3 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (2.90 g, 15.3 mmol, 1.5 equiv), and THF (51 mL, 0.2 M). Flash column chromatography on silica using 10% \rightarrow 20% EtOAc/hexanes as eluent gave 2.75 g (8.64 mmol) of pure product as a clear oil (85% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 4.33 (t, *J* = 6.3 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.07 (s, 2H), 3.79 (s, 3H), 2.04 (t, *J* = 6.3 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.13, 158.24, 132.31, 129.51, 114.13, 71.58, 62.89, 55.42, 55.00, 30.97, 14.12.; HRMS (ESI) *m/z* calculated for C₁₄H₁₉D₂O₆S [M+H]⁺: 319.1184, found 319.1188.

Ethyl 2-diazo-2-((3-(4-methoxyphenyl)propoxy-3,3-d₂)sulfonyl)acetate [30-d₂].

1.30 g (4.0 mmol) of ethyl 2-((3-(4-methoxyphenyl)propoxy-3,3d₂)sulfonyl)acetate **[S42]** were used, along with MeSO₂N₃ (1.06 mg, 8.80 mmol, 2.2 equiv), DBU (895 μ L, 6.0 mmol, 1.5 equiv), and THF (10 mL, 0.4 M). Flash column chromatography on silica using 10% \rightarrow 20% EtOAc/hexanes as eluent gave 1.21 g (3.51 mmol) of pure product as a

yellow oil (88% yield).

¹H-NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 4.36-4.31 (m, 4H), 3.79 (s, 3H), 2.03 (t, *J* = 6.5 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.61, 158.26, 132.23, 129.50, 114.13, 72.65, 62.86, 55.42, 30.70, 14.43.; IR (ATR, cm⁻¹) 3424.56, 2984.44, 2959.73, 2937.88, 2837.83, 2543.3, 2132.08, 1887.91, 1717.93, 1611.77, 1581.55, 1513.07, 1465.1, 1444.66, 1372.35, 1286.84, 1244.11, 1224.78, 1176.61, 1089.82, 1032.45, 1008.39, 993.33, 960.88, 919.92, 826.41, 807.79, 786.49, 738.48, 699.17, 684.54, 612.94, 564.24, 552.45, 509.78, 468.23.; HRMS (ESI) *m/z* calculated for C₁₄H₁₇D₂O₆N₂S [M+H]⁺: 345.1089, found 345.1084.

[FePc]CI: $k_H = 0.86$ % yield/min; $k_D = 0.29$ % yield/min; $k_H/k_D = 3.0 \pm 0.2$ **[FeCl₁₆Pc]CI:** $k_H = 0.036$ % yield/min; $k_D = 0.025$ % yield/min; $k_H/k_D = 1.4 \pm 0.1$

Figure S3:

Figure S4:

Figure S10:

Figure S12:

Olefin Isomerization Study

Ethyl (Z)-2-((hex-4-en-1-yloxy)sulfonyl)acetate [S43].

0.50 g (5.0 mmol) of (*Z*)-hex-4-en-1-ol were used, along with imidazole (409 mg, 6.0 mmol, 1.2 equiv), CISO₂CH₂CO₂Et (1.40 g, 7.5 mmol, 1.5 equiv), and THF (25 mL, 0.2 M). Flash column chromatography on silica using 10% EtOAc/hexanes as eluent gave 1.04 g (4.20 mmol) of pure product as a pale vellow oil (84% vield).

¹H-NMR (500 MHz, CDCl₃) δ 5.57-5.49 (m, 1H), 5.35 (dtq, *J* = 11.0, 7.4, 1.8 Hz, 1H), 4.34 (t, *J* = 6.5 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.08 (s, 2H), 2.18 (q, *J* = 7.3 Hz, 2H), 1.89-1.79 (p, *J* = 7.4 Hz, 2H), 1.62 (d, *J* = 6.9 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 162.03, 128.17, 125.67, 71.80, 62.64, 54.75, 28.94, 22.56, 13.93, 12.74.; HRMS (ESI) *m/z* calculated for C₁₀H₁₈O₅SNa [M+Na]⁺: 273.0773, found 273.0771.

Ethyl (Z)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [32].

0. OFt 0=S

0

0

0 O=`8

1.04 g (4.20 mmol) of ethyl (Z)-2-((hex-4-en-1-yloxy)sulfonyl)acetate [S43] were used, along with MeSO₂N₃ (1.12 g, 9.20 mmol, 2.2 equiv), DBU (942 μ L, 6.30 mmol, 1.5 equiv), and THF (11 mL, 0.4 M). Flash column chromatography on silica using 5% EtOAc/hexanes as eluent gave 957 mg (3.46 mmol) of pure product as a yellow oil (83% yield).

¹H-NMR (500 MHz, CDCl₃) δ 5.58-5.49 (m, 1H), 5.34 (dtq, J = 9.0, 7.3, 3.6, Hz, 1H), 4.36 (t, J = 6.6 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.17 (q, J = 7.4 Hz, 2H), 1.82 (p, J = 6.6 Hz, 2H), 1.61 (dd, J = 6.9, 0.9 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 159.57, 128.16, 125.88, 73.05, 62.78, 28.82, 22.70, 14.37, 12.86.; HRMS (ESI) m/z calculated for C₁₀H₁₆O₅N₂SNa [M+Na]⁺: 299.0678, found 299.0675; IR (ATR, cm⁻¹) 2970, 2941, 2130, 1721, 1465, 1446, 1372, 1285, 1224, 1177, 1083, 1006, 991, 928, 836, 740, 704, 614.

Ethyl (Z)-4-(prop-1-en-1-yl)-1,2-oxathiane-3-carboxylate 2,2-dioxide [(Z)-7].

Syn diastereomer (major): ¹H-NMR (500 MHz, CDCl₃) δ 5.69-5.63 (m, 1H), 5.25 (t, J = 9.9 Hz, 1H), 4.71-4.64 (m, 1H), 4.63-4.57 (m, 1H), 4.34-4.20 (m, 2H), 4.00 (d, J = 4.8 Hz, 1H), 3.57 (ddt, J = 13.4, 9.2, 4.5 Hz, 1H), 2.66-2.53 (m, 1H), 1.71 (d, J = 7.1 Hz, 3H), 1.63-1.54 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 164.16, 128.94, 126.84, 73.15, 64.11, 62.50, 35.43, 25.87, 14.09, 13.32.; HRMS (ESI) m/z calculated for C₁₀H₁₇O₅S [M+H]⁺: 249.0797, found 249.0797.

Anti diastereomer (minor): ¹H-NMR (500 MHz, CDCl₃) δ 5.64 (dg, J = 10.7, 6.9 Hz, .OEt 1H), 5.14-5.06 (m, 1H), 4.70 (td, J = 11.7, 3.5 Hz, 1H), 4.49 (ddd, J = 11.6, 4.3, 2.2 Hz, 1H), 4.25 (qd, J = 7.1, 2.1 Hz, 2H), 3.78 (d, J = 11.4 Hz, 1H), 3.64 (qd, J =10.9, 4.7 Hz, 1H), 1.91-1.77 (m, 2H), 1.71 (dd, J = 6.9, 1.8 Hz, 3H), 1.29 (t, J = 7.1

Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃) δ 163.42, 129.18, 127.25, 72.59, 68.00, 62.76, 36.74, 30.30, 14.10, 13.42.; HRMS (ESI) *m/z* calculated for C₁₀H₁₇O₅S [M+H]⁺: 249.0797, found 249.0797.

[FePc] Conditions: The general procedure for [FePc]-catalyzed C-H alkylation was followed. Ethyl (Z)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [32] (110.5 mg, 0.400 mmol, 1.0 equiv), [FePc]Cl (24.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8.0 mL, 0.05 M) were used. The reaction went to complete conversion. By GC analysis of the crude product, Z/E was 3.5:1 (this ratio was confirmed by subjecting columnpurified Z/E mixtures of products to GC analysis). Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% EtOAc/hexanes. Pure product was isolated as a white solid and as a mixture of diastereomers. By GC analysis of column-purified product mixtures, Z/E was 3:1.

[FeCl₈Pc] Conditions: The general procedure for [FePc]-catalyzed C-H alkylation was followed. Ethyl (Z)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate [32] (110.5 mg, 0.400 mmol, 1.0 equiv), [FeCl₈Pc]Cl (35.2 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8 mL, 0.05 M) were used. After 16 h, the reaction did not go to complete conversion; crude reaction samples containing unreacted diazosulfonate ester decomposed by GC analysis, producing unreliable data. Thus, the reaction was purified via flash column chromatography on silica (75 mL SiO₂) using $10 \rightarrow 15\%$ EtOAc/hexanes to remove unreacted starting material. Pure product was isolated as a white solid and as a mixture of diastereomers. By GC analysis of column-purified product mixtures, *Z/E* was **7:1**.

[FeCl₁₆Pc] Conditions: The general procedure for [FePc]-catalyzed C—H alkylation was followed. Ethyl (*Z*)-2-diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[32]** (110.5 mg, 0.400 mmol, 1.0 equiv), [FeCl₁₆Pc]Cl (46.8 mg, 0.040 mmol, 0.10 equiv), NaBAr^F₄ (35.4 mg, 0.040 mmol, 0.10 equiv), and CH₂Cl₂ (8 mL, 0.05 M) were used. After 16 h, the reaction did not go to complete conversion; crude reaction samples containing unreacted diazosulfonate ester decomposed by GC analysis, producing unreliable data. Thus, the reaction was purified via flash column chromatography on silica (75 mL SiO₂) using 10 \rightarrow 15% EtOAc/hexanes to remove unreacted starting material. Pure product was isolated as a white solid and as a mixture of diastereomers. By GC analysis of column-purified product mixtures, *Z/E* was **10:1**.

Rh₂(OAc)₄ Conditions:

The general procedure for $Rh_2(OAc)_4$ catalyzed C—H alkylation was followed. Ethyl (*Z*)-2diazo-2-((hex-4-en-1-yloxy)sulfonyl)acetate **[32]** (110.5 mg, 0.400 mmol, 1.0 equiv), $Rh_2(OAc)_4$ (3.54 mg, 0.008 mmol, 0.02 equiv), and CH_2Cl_2 (8 mL, 0.05 M) were used. By GC analysis of the crude product, *Z/E* was **>20:1** (this ratio was confirmed by subjecting column-purified *Z/E* mixtures of products to GC analysis). Product was purified via flash column chromatography on silica (75 mL SiO₂) using 15% EtOAc/hexanes. Pure product was isolated as a white solid and as a mixture of diastereomers.

Thermal Decomposition of Diazo Esters

The following procedure was adapted from a literature report¹⁷ of an iron catalyzed C–H insertion reaction, wherein a 66% yield of C–H alkylation of cyclohexane was reported with the use of 2 mol% Fe(TPP)Cl at 80°C. We conducted the reaction in the same fashion, but without the addition of catalyst.

Procedure for metal-free C—H functionalization of cyclohexane:

Methyl 2-phenyldiazoacetate¹⁸ (70.5 mg, 0.40 mmol) was added into a new, flame-dried flask equipped with a reflux condenser. Distilled and thoroughly degassed cyclohexane (11.7 mL) was then added and N₂ was bubbled through the solution for 10 minutes. The mixture stirred at 80°C for 24 hours. The mixture was then cooled, concentrated, and purified via flash chromatography on silica using 10% EtOAc/hexanes. Due to co-elution with the diazoester starting material, the yield was determined via NMR with mesitylene as an internal standard. ¹H NMR spectrum matched literature values ¹⁹. We also repeated this experiment with

glassware that had been washed with EDTA (to remove trace metals) and observed the same results.

Run 1: (43.7 mg, 0.188 mmol, 47% yield). Run 2: (29.7 mg, 0.128 mmol, 32% yield). Run 3: (40.9 mg, 0.176 mmol, 44% yield). **Average: 41% yield [S44] ± 6.5.**

These results are consistent with other reports in the literature where a nearly identical yield was achieved without catalyst (**Fig. S13**). According to Woo, the following transformation occurred in 78% yield under iron catalysis ¹⁷. According to Davies, the same transformation occurred in 76% yield without the addition of catalyst ²⁰.

References

- 1. Reger, D. L. L., C.A.; Brown, K.J.; Lamba, J.J.S.; Krumper, J. R.; Bergman, R.G.; Irwin, M.; Fackler, J.P., *Main Group Compounds*. 2004; Vol. 34.
- 2. Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. *J. Org. Chem.* **1990**, *55* (6), 1959-1964.
- 3. Wolckenhauer, S. A.; Devlin, A. S.; Du Bois, J. Org. Lett. 2007, 9 (21), 4363-4366.
- 4. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43 (14), 2923-2925.
- 5. Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org. Lett. 2009, 11 (19), 4318-4321.
- 6. Shen, J. J.; Zhu, S. F.; Cai, Y.; Xu, H.; Xie, X. L.; Zhou, Q. L. *Angew. Chem. Int. Ed.* **2014,** *53* (48), 13188-13191.
- 7. John, J. P.; Novikov, A. V. Org. Lett. 2007, 9 (1), 61-63.
- 8. Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131 (5), 1662-+.
- 9. Lee, B. C.; Paik, J. Y.; Chi, D. Y.; Lee, K. H.; Choe, Y. S. *Bioconjugate Chem* **2004**, *15* (1), 104-111.
- 10. Bequette, J. P.; Jungong, C. S.; Novikov, A. V. Tet. Lett. 2009, 50 (50), 6963-6964.
- 11. Liyanage, D. S.; Jungong, C. S.; Novikov, A. V. *Tet. Lett.* **2015**, *56* (17), 2269-2271.
- 12. Liyanage, D. S.; Jungong, C. S.; Novikov, A. V. *Synthetic Commun.* **2015**, *45* (2), 226-231.
- 13. Jungong, C. S.; John, J. P.; Bequette, J. P.; Novikov, A. V. *Heterocycles* **2009**, *78* (10), 2531-2539.
- 14. Wang, P.; Adams, J. J. Am. Chem. Soc. **1994**, *116* (8), 3296-3305.

- 15. Paradine, S. M.; Griffin, J. R.; Zhao, J. P.; Petronico, A. L.; Miller, S. M.; White, M. C. *Nat Chem* **2015**, *7* (12), 987-994.
- 16. Karlsson, S.; Hallberg, A.; Gronowitz, S. J Organomet. Chem 1991, 403 (1-2), 133-144.
- 17. Mbuvi, H. M.; Woo, L. K. Organometallics 2008, 27 (4), 637-645.
- 18. Davies, H. M. L.; Hansen, T.; Churchill, M. R. *J. Am. Chem. Soc.* **2000**, *122* (13), 3063-3070.
- 19. Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. **1997**, *119* (38), 9075-9076.
- 20. Tortoreto, C.; Rackl, D.; Davies, H. M. Org. Lett. 2017, 19 (4), 770-773.

..0

-1700

												-4000
Parameter	Value											1000
Origin	Bruker BioSpin GmbH											-
Owner	user1d											
Site												-3500
Spectrometer	spect											-
Solvent	CDCI3											-3000
Temperature	298.0											5000
Pulse Sequence	zapa30											-
Experiment	1D											
Number of Scans	365											-2500
Receiver Gain	191											
Relaxation Delay	2.0000											-
Pulse Width	10.0000											
Acquisition Time	1.1010											-2000
Acquisition Date	2016-11-28T15:35:22				4							
Modification Date	2016-11-28T15:35:22											-
Class									1			-1500
Spectrometer Frequency	125.83											
Spectral Width	29761.9											
Lowest Frequency	-2299.6											-1000
Nucleus	13C											
Acquired Size	32768											-
Spectral Size	65536											
												-500
												-
				~								
210 200 190	180 170 160 150 14	0 130 120	110 100 f1 (ppm)	90 80	70	60 50	40	30	20 1	0 0	-10	-

.0

⊢2100

-2000

-1900

-1800

-1.43 H2O

<u>~~</u> 0~	production of the second secon				1	-4500
0						-4000
Parameter	Value					-
Owner	vallall					-3500
Site						
Spectrometer Author	inova					-3000
Solvent	CDCI3					
Temperature Pulse Sequence Experiment	20.0 s2pul 1D					-2500
Number of Scans	592					-
Receiver Gain Relaxation Delay	60 2 0000					-2000
Pulse Width	0.0000		1			-
Modification Date Class	2016-12-09T08:40:32					-1500
Spectrometer Frequer	ncy 125.66					-
Spectral Width Lowest Frequency Nucleus	30165.9 -1276.3 13C					-1000
Acquired Size Spectral Size	32768 65536					-
						-500
						-
ฟูฟาฟิตาพลตากเหล่งสารฟปราการสารสารและเป็นการประเทศไห้ไ	งกลุงที่สองไปให้ของหลาวของราพรรมไดยราคมี หลงสุกกุรร้องการพระพระพระสามเรากุรรามสาม	การการการการการการการการการการการการการก	หางสาราสีสารแหน่งหางสาราสาร	พทุกที่เกษาการการสุดตรรมการการการที่ได้ประการการที่ได้	-	Mammann -0
						ł
					<u> </u>	
220 210 200	190 180 170 160 150 140	130 120 110 100 f1 (ppm)	90 80 70	60 50 40	30 20 10 0	-10

	\sim			l			71 Grease		-2600 - -2400
Parameter	Value								- -2200
Origin	Bruker BioSpin GmbH								-
Owner	user1d								-2000
Site									
Spectrometer	spect								
Author		ıl.							-1800
Solvent	CDCI3								F
Temperature	298.0								-1600
Pulse Sequence	zgpg30								-
Experiment	1D								-1400
Number of Scans	365								
Receiver Gain	191								
Relaxation Delay	2.0000								-1200
Pulse Width	10.0000								-
Acquisition Time	1.1010								-1000
Acquisition Date	2016-11-14T13:10:33						I	1	
Modification Date	2016-11-14T13:10:32		1						800
Class									-800
Spectrometer Freque	ncy 125.83								-
Spectral Width	29761.9								-600
Lowest Frequency	-2299.6								-
Nucleus	13C								-400
Acquired Size	32768								
Spectral Size	65536								
									-200
									-
		muunhuduulluu	***		~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		างการสำราชอายุราสสาราชาวารางการสารางการสาราชอาสารางการ	· -0
									-
									200

110 100 90 f1 (ppm)

-10

- L

160 150 140

OEt 0 ő 0=

-23000

-22000

-15000

-10000

-5000

-0

-1.0

-25000

1.56 H2O

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

8

-7

-6

-3

-1

-0

-1

	Me N SO₂Ph								-45000
·///									
Parameter	Value								
Origin	Varian								-35000
Owner									
Site									-
Spectrometer	inova								
Author									-30000
Solvent	CDCI3								-
Temperature	20.0								
Pulse Sequence	s2pul								-25000
Experiment	1D								
Number of Scans	11532								-
Receiver Gain	60								20000
Relaxation Delay	2.0000								-20000
Pulse Width	0.0000								-
Modification Date	2016-06-30T07:52:34								
Class									-15000
Spectrometer Frequen	cy 125.66								
Spectral Width	30165.9								-
Lowest Frequency	-1260.2	L.							-10000
Nucleus	13C								10000
Acquired Size	32768								-
Spectral Size	65536								
						I			-5000
		.							
	I								Ē
*aๅไกรประเทศสาวตรรรมหารายการประการประการประการประการประการประการประ	าการแรงการการการการการการการการการการการการการก	mumment had a second	กพแกลของมหายเสตุโหญเปล่ามาได้แนดแกะบราจจากสุภภาณ	-UNIVALANIA MANAMANAMA	munimum	1.5.4ml Martin Martin Coloured	man manual deriver	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0
									-
									· · · · · · · · · · · · · · · · · · ·
30 220 210 200	190 180 170 160	150 140 130	120 110 100 f1 (ppm)	90 80	70 60	50	40 30	20 10	0 -10
			94						

Spectral Size

L1.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0 f1 (ppm)

103

4.5

4.0

3.5

2.5

2.0

1.5

1.0

3.0

-0

-1.0

-0.5

0.5

0.0

inova

20.0

s2pul

1D

16 32

1H

Origin

Owner

Author

Solvent Temperature

Spectrometer

Pulse Sequence

Number of Scans

Relaxation Delay

Modification Date

Spectral Width

Acquired Size

Spectral Size

Lowest Frequency

Receiver Gain

Pulse Width

Class

Nucleus

Experiment

Site

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 ..0

 $^{5.0}_{f1 \; (ppm)}\; 107^{4.5}_{07}$

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

Q ≤S N₂			.30 CH20				-50
0			1				
Parameter	Value						-45
Comment							
Origin	Bruker BioSpin GmbH						-40
Owner Site	useria						
Spectrometer	spect						-35
Author							
Solvent	CDCI3						-
Temperature	298.0						-30
Pulse Sequence	zg30		I				
Experiment	1D						
Number of Scans	16						-25
Receiver Gain	137						
Relaxation Delay	10.0000						-
Pulse Width	12.0000						-20
Acquisition Time	3.2768						
Acquisition Date	2016-11-11T09:58:27						F
Modification Date	2016-11-11T09:58:27						
Class	1						-15
Spectrometer	500.35						-
-requency Spectral Width	10000 0						-10
owest Frequency	-1956.2						
	1850.2						Ē
	30768						-50
Acquired Size	52700 65526	1.					
Spectral Size	00000		A				-
······		N'	11h_	/`L	nh_n	hr_Alm	 -0
							-

1.54 H2O

-3400

-3200

1.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

-700

-600

-500

-400

-300

-200

-100

-0

-1.0

--100

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

6.5

6.0

5.5

7.0

OEt 0. Ο 11 0=S N_2 Ο

-4000

O OEt Syn diastereomer

Parameter	Value									
Drigin Dwner	Varian									
lite										
pectrometer uthor	inova									
olvent	CDCI3									
emperature	30.0					I				
ulse Sequence	s2pul									
xperiment	1D		1							
umber of Scans	166									
eceiver Gain	60									
elaxation Delay	2.0000									
ulse Width	0.0000									
lodification Date	2016-01-23T14:11:49									
lass										
pectrometer Frequer	ncy 125.66									
pectral Width	30165.9									
owest Frequency	-1260.2									
ucleus	13C									
cquired Size	32768									
pectral Size	131072									
Andrahan an an Ann a	יין אין אין אין אין אין אין אין אין אין		ah hadan an ing Albah muhatika an	און אינון אינין איני איני איני איני איני איני אי	استناسه المرادي	יוע אייע אייע אייע אייע אייע	יויין ייטר אוניאאין אייאאין אייאאין אייאין	עליו נענטיע	an Alti An	נא גו (לוניגן ערועינים, לערים אלעים אלי היו או אינואני
a da hara da	In A field of the first find a set if the set of second second second second second second second second second	vaalmiliikali naitiise Maal Luulaan lakkkaan	uruhuhuhan Minina II a difliana ki	a ul un debuik d'hunk an hun de	Authlite Maximal	Arh India as is lideall. (A. 1)	And a Andrew (Minimized on such	linin ilinin Ann	NAM. In NAME A	na da ta di ka Aldina kula di ka di ka Alda a Alda da A

f1 (ppm) 144

-1.0

0 0		ł					1	-100
OSCO2Et							-	-
							-	-900
Parameter	Value						-	-
Comment								_ 800
Origin	Bruker BioSpin GmbH							-800
Owner	user1d						-	_
Site								
Spectrometer	spect							-700
Author							-	F
Solvent	CDCI3							
Temperature	298.0						-	-600
Pulse Sequence	zqpq30						-	-
Experiment	1D							
Number of Scans	512						-	-500
Receiver Gain	191							
Relaxation Delay	2.0000							-
Pulse Width	10.0000						-	-400
Acquisition Time	1.1010							
Acquisition Date	2016-11-15T18:21:55						-	-
Modification Date	2016-11-15T18:21:55							-300
Class								-300
Spectrometer Frequer	ncy 125.83						-	-
Spectral Width	29761.9				I			
Lowest Frequency	-2299.6						-	-200
Nucleus	13C						-	F
Acquired Size	32768							
Spectral Size	65536						-	-100
				1				
							-	•
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	มหน้าสนาจหนุกปนเสมบันหน้ามาก <mark>เปลาบ้านสนาจนกฎหนุกมหาวงการในประเทศ</mark> ราชสาวประกฎการใหญ่และไปการการการการการการการก	mmummuhananananananana	-	www.www.www.www.www.www.ww	manana manana	www.www.www.	๛๚๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	-0
							-	-
<u> </u>		<u> </u>					<u>, , , , , , , </u>	
210 200 190	180 170 160 150 140 130 120	110 100 90 80 $f_1(ppm) 4 7 4$	70 60	50 40	30	20 10	0 -10	

f1 (ppm)

f1 (ppm)

f1 (ppm)

f1 (ppm)

0,00 S	yn diastereomer		-6.5
OEt			-6.0
	Me		-5.5
Parameter	Value		-5.0
Origin Owner	Varian		-
Site			-4.5
Spectrometer Author	inova		- -4.0
Solvent Temperature Pulse Sequence	CDCl3 20.0 s2pul		-3.5
Experiment Number of Scans	1D 192		-3.0
Receiver Gain Relaxation Delay Pulse Width	60 2.0000 0.0000		-2.5
Modification Date Class	2016-01-21T19:47:14		-2.0
Spectrometer Freque Spectral Width	ency 125.66 30165.9 -1278.4		-1.5
Nucleus Acquired Size	13C 32768		-1.0
Spectral Size	65536		-0.5
MANIYATI MANANA MANA	พร้างการหลุ่มสุดพร้างสุดกุณสมพร้างการสารสารสารสารสารสารสารสารสารสารสารสารสา		MMM -0.0
			0.5
220 210 200	190 180 170 160 150 140	130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)	-10

o o o Syn	diastereomer			ease	
OCT OEt	7			—29.86 Gre	-4000
Parameter	Value				-3500
Origin	Bruker BioSpin GmbH				
Owner	user1d				
Site					-3000
Spectrometer	spect				
Author					ŀ
Solvent					
Temperature	298.0				-2500
Pulse Sequence	zapa30			1	
Experiment	1D				
Number of Scans	6650				-2000
Receiver Gain	191				
Relaxation Delay	1.0000				ŀ
Pulse Width	10.0000				
Acquisition Time	1.1010				-1500
Acquisition Date	2016-10-18T02:15:23				
Modification Date	2016-10-18T02:15:22				Ī
Class					-1000
Spectrometer Frequenc	y 125.83				1000
Spectral Width	29761.9				-
Lowest Frequency	-2281.1				
Nucleus	13C				-500
Acquired Size	32768				
Spectral Size	65536				T T
กม กิจนที่เขม พักธ เมืองเกิดเป็นแม่ เพลิตัน การกิจ เมืองเลงเป็นแหล่ ก็ส่งเลงเป็นเป็น	ייייט איז		น และ หมาย เกมา เป็น การเป็นการเป็นและ เป็นเกมา การเป็นและ เกมาะ เป็น เกมาะ		
	s de menuel de la menuel de la menuel de la factorie de la menuel de la factorie de la menuel de la menuel de l				
					ŀ
210 200 190	180 170 160 150 140	130 120 110 100 90 f1 (ppm)	80 70 60 50 4	40 30 20 10 0 -10	

	Anti diastereomer							-450
Parameter	Value							-400
Origin	Varian							Ļ
Owner								
Site								-350
Spectrometer Author	inova			I				-
Solvent	CDCI3							-300
Temperature	20.0							F
Pulse Sequence	s2pul							
Experiment	1D							-250
Number of Scans	96	1						-
Receiver Gain	60				1	I		
Relaxation Delay	2.0000						I	-200
Pulse Width	0.0000							
Modification Date	2016-07-04T10:24:08							F
Class								-150
Spectrometer Frequer	ncy 125.66							
Spectral Width	30165.9							F
Lowest Frequency	-1276.6							-100
Nucleus	13C							
Acquired Size	32768							F
Spectral Size	65536							
								-50
								-
Nallea Ashenia a Marine a Ashenia a sa a	shalling anidely here is a list of the second state of the second state of the second state of the second state	II. JAN MARAKAN MANAGAN MANAGAN ANA ANA ANA ANA ANA ANA ANA ANA A	انتلاسيد يقاله بالأيوار الاستعاد الم			Laborer Miller Marken Marketer	بالمامية والمراجع والمراجع والمراجع والمراجع والمراجع	
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	k hi da ana aka ka k	Wahimmun Kuch hadan Wammu	WWW.histway.im/hit	WARMANI WINNAN I AMAN WANA	al ua na ana ana ana ana ana ana ana ana ana	WUUNNY WUUN	¹ ala manula matamatan i	-0
								Ļ
								50
<u> </u>		<u> </u>	· · · · · · ·			, <u>, , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·	I
220 210 200	190 180 170 160 150	140 130 120	110 100	90 80 70	60 50 4	0 30 20	10 0 -1/	0

 $\overset{120}{_{f1 (ppm)}} \overset{110}{_{214}}$

f1 (ppm)

Anti diastereomer

-450

f1 (ppm)

	OMe									-500
D D Parameter	Value									-450
Comment										
Origin	Bruker BioSpin GmbH									-400
Owner	user1d									-
Site										-350
Spectrometer	spect									
Author										-
Solvent										-300
Temperature	298.0									
Pulse Sequence	zapa30									
Experiment	1D									-250
Number of Scans	512									
Receiver Gain	191									
Relaxation Delay	2.0000									-200
Pulse Width	10.0000									
Acquisition Time	1.1010									
Acquisition Date	2017-01-28T18:48:39									-150
Modification Date	2017-01-28T18:48:39		1							
Class										
Spectrometer Frequency	/ 125.83									-100
Spectral Width	29761.9	I								
Lowest Frequency	-2282.3					6		1		
Nucleus	13C									-50
Acquired Size	32768									
Spectral Size	65536									
www.www.lowia.wow.uph.wow.wa/www.ana.ali.wuw.ana.ww	งหว่างหน่างหน่างหนึ่งหนึ่งหน่างหน่างหน่างหน่างหน่างหน่างหน่างหน่	www.phan.put.www.man.www.	www.www.www.	www.www.www.uww	www.www.www	nnii (minnmmm	NAMMONTAN MANAMANA	www.www.www.www.ww	nnmhmmmtutunum	• -0
										-50
			· · · · ·	· · · ·	· · · · ·	· · · ·		· · · ·		_
210 200 190 180	170 160 150 14	0 130 12	0 110 100 f1(ppm	₁₎ 299 ⁸⁰	70 60	50	40 30	20 10	0 -10	

FePc

	8	[pA]	[pA*s]	[min]]	[min]	#
1	41.92070	543.25024	1583.67676	0.0388	39 VB	14.639	1
	6.67595	135.67679	252.20367	0.0281	96 BV	14.796	2
7:1 cis:trans	44.85275	434.29486	1694.44336	0.0559	95 BV	15.195	3
	6.55060	103.82152	247.46797	0.0366	49 VB	15.349	4

 $FeCl_{16}Pc$

Area Percent Report

Sorted By	:	Signal	
Multiplier	:		
Dilution	:	1.0000	
Use Multiplier	& Dilution	Factor with	ISTDs

Signal 1: FID1 A,

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %	
 1 2	14.620	BB BB	0.0351	1122.50439 133.54158	444.52274	37.48800	
3 4	15.192 15.345	PB BP	0.0490	1579.35278 158.90454	432.41891 50.52629	52.74525 5.30690	10:1 cis:trans