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SUPPLEMENTAL NOTE

Analytical Description: Ordinary least squares (OLS) regression is the classic method
to estimate mean effects of SNPs on a quantitative trait. OLS models are particularly
useful when the assumptions of linearity, normality, and homoscedasticity are met, but
otherwise, require proper corrections in order to allow unbiased parameter estimation
and valid inference. These models are developed on the basis of true fixed effects and
do not capture true variability in the effects of genetic risk factors in the presence of
single and mixed gene-environment (G⇥E) and gene-gene (G⇥G) interactions. If such
interactions are unadjusted, OLS models will produce estimates with limited
reproducibility that depend on the context of the sample population and the degree of
exposure to interacting variables (e.g. environmental exposure).1 Reproducibility is a
well-known problem in genetic epidemiology for complex phenotypes that involve
interactions.2 Alternatively, GWAS may use case/control designs to compare BMI
categories, where binary logistic regression is used to estimate the fixed effects of SNPs
on the probability of belonging to either of two factor levels (e.g. normal-weight vs.
obesity subgroups). However, subgroup analysis not only reduces statistical power due
to loss of sample size and uneven group levels, but also limits interpretation to pair-wise
comparisons. In addition, logistic regression profiles pre-selected segments of the BMI
distribution, which can be problematic to assign a priori.

Conditional quantile regression (CQR) is an alternative regression technique that permits
the assessment of associations at the full scope of the outcome distribution by
examining the effects of regressors at a series of quantiles of the outcome distribution
without dividing the sample into subgroups.3,4 CQR models the effects of a change in
one unit of a predictor on the position of a given quantile of the outcome. It also utilizes
the entire data set for parameter estimation, confidence interval construction and
hypothesis testing regardless of the specified quantiles and does not suffer the statistical
limitations of subgroup analysis. This regression framework has recently gained traction
in clinical epidemiology to generate fetal, childhood and adolescent growth curves.5-7
Recent reports have highlighted the potential applications of CQR in genetic
epidemiology.8-10 To our knowledge, CQR has not been applied to model the variability in
effect size estimates along the sample outcome distribution in the presence of single and
mixed G⇥E and G⇥G interactions.

Variations in effect size estimates due to unadjusted interactions can be modelled using
CQR as a re-formulation of heteroscedastic OLS models.3,11,12 Lets consider a sample of
n independent and identical distributed (i.i.d) variables Y1, ..., Yn

with cdf F

Y

(y), where
y1, ..., yn are their respective observed values. Let’s also assume they follow a linear
relationship with an interaction term given as
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). The coefficients �0, �1, �2 and �3 represent the intercept, the
marginal effect of X, the marginal effect of G and the interaction effect of G and X,
respectively. The conditional distribution of the response variable Y can be described as
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The resulting conditional distribution F

Y |G(y | G = g) simply translates to a
heteroscedastic linear model with partitioned residuals where �(g) = (�1 + �3g). That is
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). The conditional quantile function for the
heteroscedastic model under i.i.d errors is
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which is a CQR model with the true fixed parameters �

⇤
0(⌧) and �

⇤
1(⌧). ⌧ can be any

quantile of the sample outcome distribution of Y . This formulation can be generalized
further for a set of k independent interacting variables in matrix form as

Q

Y

(⌧ | G = g) = A�(⌧) (6)

where A 2 Rn⇥2 is the design matrix
⇥
1, G

0⇤ and

�(⌧) =

 
�0 +

P
k

j=1 �xjµj

�

g

+
P

k

j=1 �intjµj

!
+

 P
k

j=1 �xjQ✏j(⌧) +Q

✏k+1
(⌧)P

k

j=1 �intjQ✏j(⌧)

!
(7)

Here, �
g

and �

xj are the main effects of the genetic variant and j 2 1, .., j are the
unknown/unmeasured variables with their respective interaction coefficients �

intj . The
cumulative two-way interactions of k variables results in a linear function with ⌧ as a
result of the symmetric heteroscedasticity function 0

� where 2 Rk⇥1 and � has elements
�

j

(g) = �

xj + �

intjg. Under an additive genetic model, the main effect of the genetic
variant �(⌧) is a fixed constant for all ⌧ 2 ⌧1, ..., ⌧m if and only if all interacting effects are
zero, i.e. �

intj = 0. It is possible to further break down the independence assumption
between interacting variables using a variance-covariance matrix of partial errors, but the
above formulation serves as a simple analytical demonstration for the use of CQR in
modelling unadjusted interactions. A linear trend of estimates with ⌧ corresponds to
cumulative two-way interactions, while quadratic curves supports complex higher order
interactions. Hence, the association of genetic variants under unadjusted interacting
variables simply reduces to the modelling of CQR estimates along the distribution of the
outcome at ⌧ 2 ⌧1, ..., ⌧m.



This is accomplished by using meta-regression (MR) to model the heterogeneity of CQR
estimates across the sample outcome distribution and estimate the change in CQR
estimates with ⌧ .13,14 That is, fitting the MR model
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where �

m

is the median effect of the genetic variant, �
⌧

is the slope coefficient for the
change in the median effect with ⌧ , and ✏ 2 Rn⇥1 are random errors with the
cross-quantile variance-covariance matrix of the estimates under i.i.d errors. This
framework provides both location-shift and change in location-shift estimates to further
decipher the nature of complex genetic associations.

Simulations: The power to detect unadjusted interactions using CQR and MR was
explored using simulations. Equation 1 describes the effects of an interaction between a
SNP, G, and a variable, X, on a quantitative trait, Y . Without loss of generality, G was
assumed to be biallellic with a MAF, p, under HWE and an additive genetic effect on Y .
Moreover, G was encoded such that mean genotype was zero (�2p, 1� 2p, or 2� 2p).11
The total variance of Y was assumed to be 1 and the variance of each component of
equation 1 was partitioned accordingly. Specifically, the proportion of the variance (R2) of
Y that was explained by G, X and the interaction between G and X was
R
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. Unless otherwise specified, the simulation conditions were MAF =
0.2, N = 10,000, R2

G

= 0.004, R2
X

= 0.25, and R

2
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was varied between 0 and 0.004.
When more than one interaction was considered, R2

X

was divided equally between all
interaction covariates, while each additional interaction was equal to R

2
G⇥X

. All
regression models were fitted with Y as the dependent variable and G as the
independent variable. CQR models were fitted at every 10th percentile of the distribution
of Y from the 5th to the 95th percentiles. A total of 1,000 Markov chain marginal bootstrap
(MCMB) replicates were used to compute confidence intervals and the cross-percentile
variance-covariance matrix for CQR estimates.12,15,16 Variability in the CQR estimates of
G at these percentiles was modelled using MR, assuming normality, to determine the
effects of percentiles on mean CQR estimates. The power to detect interactions at a
threshold of p < 0.05 was computed from 1,000 replicates of each simulation condition.

Sample Stratification and Interactions: The analysis of secondary traits (e.g. BMI)
collected from case-control studies with disease status (e.g. T2D) as a primary outcome
can be prone to artifacts if potential stratification of secondary traits is not addressed.17
This stems from the fact that secondary traits are often strong risk factors for disease
status and can thus be stratified in cases and controls. Since effect alleles of
disease-associated SNPs are typically enriched in cases and depleted in controls, the
stratification of allele frequencies and secondary traits can correspond. The coinciding
stratification of secondary trait distributions and allele frequency distributions may result
in spurious associations between these disease-associated SNPs and secondary traits.
This phenomenon has also been observed in population-based designs when disease
prevalence differs between the sample and general populations.18 Yaghootkar, et al.,



have recently developed an analytical model relating regression estimate bias to
differences between disease prevalence in the sample and general populations.18 This
model described regression estimate bias in the main effects of SNPs as a function of
the partitioning of allele frequencies by disease status as well as the partitioning of
variance by genotype (i.e. heteroscedasticity). They also extended this description to
include regression models fitted with adjustment for disease status and show that the
bias persists even after this adjustment.18 Importantly, when regression models are
adjusted for disease status the bias in regression estimates is not a function of the
partitioning partitioning of variance by genotype.18 This is critical because it means that
while estimates of the main effects of SNPs from CQR models may be affected by
sample stratification in the same way as estimates from OLS models, the variation of
CQR estimates across the sample distribution is not a function of differences in disease
prevalence between sample and general populations. The analytical model presented
here is not primarily concerned with main effects of SNPs on continuous outcomes,
rather with modelling the variation of CQR estimates across the sample outcome
distribution.

The effect of sample stratification on the power to detect of unadjusted gene interactions
with CQR and MR was assessed in simulations. Consider the disease outcome (Z), the
continuous risk factor (Y ) and the SNP (G), whose relationship is described using a
liability scale disease (probit) model.18
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where the coefficients �4 and �5 represent the respective marginal effects of G and Y on
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is specified in equation 1. Disease
status (D) is defined as follows;
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where ⇡0 is the disease prevalence in the general population. Figure S2A shows a
schematic representation of this model. A population of 100,000 individuals was
simulated with the following conditions; ⇡0 = 0.1 (i.e. population disease prevalence of
10%), MAF = 0.2, R2

G[Y ] = 0.004, R2
X

= 0.25, R2
G[Z] = 0.01 (equivalent to OR ⇠ 1.4 for G

on D), R2
Y

= 0.20 (equivalent to OR ⇠ 2.5 for Y on D) and R

2
G⇥X[Y ] was varied between

0 and 0.004. A random sample of N = 10,000 individuals was then drawn from this
population with pre-specified proportion of cases (5, 10, 25 and 50%) and then disease
adjusted CQR models (y ⇠ g +D) were fitted across the distribution of Y as in
simulations above. Variability in the CQR estimates of G at these percentiles was
modelled using MR to determine the effects of percentiles on mean CQR estimates. The
power to detect interactions at a threshold of p < 0.05 was computed from 1,000
replicates of each simulation condition.
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http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000381.v1.p1.
Mount Sinai School of Medicine samples and data used in this study were provided by
the Mount Sinai School of Medicine (MSSM) Biobank Project funded by The Charles R.
Bronfman Institute for Personalized Medicine (IPM) at Mount Sinai School of Medicine.
The Coronary Artery Disease study (IPM BioBank GWAS) is a genome-wide association
study funded by the Charles R. Bronfman Institute for Personalized Medicine. The
datasets used for the analyses described in this manuscript were obtained from dbGaP
at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000388.v1.p1.
The Children’s Hospital of Philadelphia (CHOP) samples and associated genotype
and phenotype data used in this study were provided by the Center for Applied
Genomics at the Children’s Hospital of Philadelphia. Genotyping for this project was
performed at the Center for Applied Genomics and supported by an Institutional
DevelopmentAwardfromTheChildren’sHospitalofPhiladelphia. Wegratefullythankallthe
children and their families who enrolled in this study, and all individuals who donated
blood samples for research purposes. The datasets used for the analyses described in
this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through
dbGaP accession number phs000490.v1.p1. Boston Children’s Hospital (BCH)
samples and data used in this study are provided by The Gene Partnership (TGP)
(http://www.genepartnership.org/) a prospective longitudinal study to study the genetic
and environmental contributions to childhood health and diseases, collect genetic
information on a large number of children who have been phenotyped, and implement
the Informed Cohort and the Informed Cohort Oversight Board (ICOB). Children’s
Hospital Boston (CHB) has committed $10 million for the start-up of the TGP. The
datasets used for the analyses described in this manuscript were obtained from dbGaP
at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000495.v1.p1.
Cincinnati Children’s Hospital Medical Center (CCHMC) CCHMC is a participating
Pediatric Institution for Phase II of the eMERGE network, a national consortium formed
for the purpose of integrating electronic medical records with DNA and sera repositories
for large scale, high throughput genetic research. Multiple CCHMC PIs have contributed
genome wide association data with various funding support mechanisms. These support
mechanisms can be categorized into two groups: disease specific awards (PI initiatives)
which focus on particular samples and phenotypes and non-specific awards which
contributed to a clinical service. Disease specific awards: 1. Juvenile idiopathic arthritis
(JIA): Samples were collected and genotyping was performed by Dr. David Glass with
funding support from N01AR42272 and P01AR048929 (PI: Glass). Additional support
and genotyping for systemic JIA has been provided by Dr. Dan Kastner’s laboratory at
the NIH. As of the date of submission, the JIA GWAS data have not been published. 2.
Absence seizures: Samples were collected by Dr. Tracy Glauser and genotyping was
performed with the support of 5 U01 NS045911 (PI: Glauser) from the National Institute



of Neurological Disorders and Stroke. 3. Autism Spectrum Disorder (ASD): Samples
were collected by Drs. Cynthia Molloy and Patricia Manning-Courtney and genotyping
was performed with the support of Award 1984, Genome-wide Association Study of
Autism Characterized by Developmental Regression (PIs: Molloy & Manning), from
Autism Speaks Inc. 4. Eosinophilic Esophagitis: Samples were collected and genotyping
was performed by Dr. Marc Rothenberg with funding support of 5 U19 AI066738 Project
3, Eosinophilic esophagitis and food allergy (PI: Sampson, Co-PI & Project 3 PI:
Rothenberg). As of the date of the submission, the eosinophilic esophagitis data have
not been published. 5. Bicuspid Aortic Valve: Samples were collected and genotyping
was performed by Dr. Woodrow Benson with funding support from NIH/NHLBI award
HL69712, Genetic mechanisms of cardiac disease in the young (PI: Benson), and
NIH/NHLBI award HL74728, SCCOR in Pediatric Heart Development and Disease titled
Molecular mechanisms of valve development and disease (PI: Benson).
Non-specific awards: 1. The Cincinnati Control Cohort is a collection of biological
samples that have been collected and genotyped through a multidisciplinary approach
and with collaboration of more than twenty divisions within CCHMC, supported by the
Cincinnati Children’s Research Foundation. Lead PIs responsible for this collection are
Drs. David Glass and Ardythe Morrow. 2. Clinical cytogenetics samples. Since 2007,
more than 2000 samples, enriched for developmental delay, autism and various rare or
common genetic diseases as well as specific chromosomal abnormalities such as
deletions and duplications, have been genotyped for the purpose of uncovering
chromosomal abnormalities. The extraction of data from the EPIC electronic medical
record into the de-identified data warehouse, i2b2, was made possible by institutional
resources and 1UL1RR026314, Cincinnati Center for Clinical and Translational Sciences
and Training Grant (PI: Heubi). The datasets used for the analyses described in this
manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through
dbGaP accession number phs000494.v1.p1. Assistance with phenotype harmonization
and genotype data cleaning was provided by the eMERGE Administrative Coordinating
Center (U01HG004603) and the National Center for Biotechnology Information (NCBI).
The datasets used for the analyses described in this manuscript were obtained from
dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number
(phs000888.v1.p1,pht004678.v1.p1, pht004677.v1.p1, pht004680.v1.p1,
pht005581.v1.p1, pht005587.v1.p1, phg000569.v1, phg000896.v1).

WHI (phs000200.v10.p3): The WHI program is funded by the National Heart, Lung, and
Blood Institute, National Institutes of Health, U.S. Department of Health and Human
Services through contracts HHSN268201100046C, HHSN268201100001C,
HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and
HHSN271201100004C. This manuscript was not prepared in collaboration with
investigators of the WHI, has not been reviewed and/or approved by the Women?s
Health Initiative (WHI), and does not necessarily reflect the opinions of the WHI
investigators or the NHLBI.WHI PAGE is funded through the NHGRI Population
Architecture Using Genomics and Epidemiology (PAGE) network (Grant Number U01
HG004790). Assistance with phenotype harmonization, SNP selection, data cleaning,
meta-analyses, data management and dissemination, and general study coordination,



was provided by the PAGE Coordinating Center (U01HG004801-01). GARNET funding
support for WHI GARNET was provided through the NHGRI Genomics and Randomized
Trials Network (GARNET) (Grant Number U01 HG005152). Assistance with phenotype
harmonization and genotype cleaning, as well as with general study coordination, was
provided by the GARNET Coordinating Center (U01 HG005157). Assistance with data
cleaning was provided by the National Center for Biotechnology Information. Funding
support for genotyping, which was performed at the Broad Institute of MIT and Harvard,
was provided by the NIH Genes, Environment and Health Initiative [GEI] (U01
HG004424). WHISP the Women?s Health Initiative Sequencing Project (WHISP) was
funded by Grant Number RC2 HL102924. This study was part of the NHLBI Grand
Opportunity Exome Sequencing Project (GOESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2
HL102924 (WHISP). The exome sequencing was performed through NHLBI grants RC2
HL102925 (BroadGO) and RC2 HL102926 (SeattleGO). SHARe funding for WHI SHARe
genotyping was provided by NHLBI Contract N02-HL-64278. WHISE the WHI Sight
Exam and the Memory Study was funded in part by Wyeth Pharmaceuticals, Inc, St.
Davids, PA. The datasets used for the analyses described in this manuscript were
obtained from dbGaP at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through
dbGaP accession (phs000200.v10.p3, pht000998.v5.p3, pht001019.v5.p3,
pht000987.v5.p3, pht000998.v5.p3, phg000592.v1).The authors would like to thank the
participants, investigators and staff of the WHI study for their important contributions.


